
HAL Id: hal-02902340
https://hal.science/hal-02902340v1

Preprint submitted on 19 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some new facts about the unit-Rayleigh distribution
with applications

Christophe Chesneau, Farrukh Jamal

To cite this version:
Christophe Chesneau, Farrukh Jamal. Some new facts about the unit-Rayleigh distribution with
applications. 2020. �hal-02902340�

https://hal.science/hal-02902340v1
https://hal.archives-ouvertes.fr


Some new facts about the unit-Rayleigh distribution

with applications

Christophe Chesneau1 and Farrukh Jamal2
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Abstract

This paper is devoted to new facts about the so-called unit-Rayleigh distribution. More
precisely, we contribute by: (i) proving new stochastic ordering results, (ii) bringing new char-
acteristics on the form analysis of its main probabilistic and reliability functions with an em-
phasis on the mode(s), (iii) exposing manageable expressions of the incomplete and probability
weighted moments, (iv) investigating distributional properties of the order statistics, (v) giving
the expression of the reliability coefficient, (vi) providing a tractable expression for the Tsallis
entropy and (vii) proposing some bivariate unit-Rayleigh distributions. On a practical level,
two data sets are analyzed and adjusted, revealing that the unit-Rayleigh distribution can be
a better alternative to standard one-parameter unit distributions, such as the one-parameter
Kumaraswamy, Topp-Leone, one-parameter beta, power and transmuted distributions.

Keywords: Unit-Rayleigh distribution; hazard rate function; incomplete moments; order statis-
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1 Introduction

In many applied scenarios, we are often confronted with the uncertainty of a phenomenon which
can be quantified in a bounded range of values. Appropriate modelling must take this information
into account for optimal use. As an immediate example, it is natural to model characteristics
of the proportion type as a random variable (rv) with values in the “unit interval (0, 1)”, thus
following a certain unit distribution, i.e., distribution with support (0, 1). The unit-distributions
are of particular interest because of the following argues: (i) any rv X with bounded support of
the form (0, a), with a > 0, can be rescaled on (0, 1) as Y = X/a, and thus Y follows a certain
unit-distribution, (ii) the unit-distributions allow to define general and simple families of continuous
distributions through the composition techniques; if F (x) denotes a cumulative distribution function
(cdf) of a rv following a unit-distribution and G(x) denotes the cdf of any continuous distribution
with support denoted by A, then a valid cdf is given as H(x) = F (G(x)), x ∈ R, defining a certain
family of distributions with support A (see Al-Hussaini (2012) as pioneer reference, as well as Tahir
et Cordeiro (2016) for a complete survey in this regard), and (iii) the unit-distributions play a
central role to define regression models having some characteristic with unit-interval values (see
Kieschnick and McCullough (2003) for the definitions of such regression models and Ferrari and
Cribari-Neto (2004) for a focus on the one of most popular of them: the beta regression model).
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Among the most useful unit-distributions with various number of parameters, there are the
power distribution, beta distribution, Johnson distribution by Johnson (1949), Topp-Leone dis-
tribution by Topp and Leone (1955), Kumaraswamy distribution by Kumaraswamy (1980), unit-
gamma distribution by Grassia (1977) and Tadikamalla (1981), unit-logistic distribution by Tadika-
malla and Johnson (1982), simplex distribution by Barndorff-Nielsen and Jorgensen (1991), unit-
Birnbaum-Saunders distribution by Mazucheli et al. (2018), exponentiated Kumaraswamy distribu-
tion by Lemonte et al. (2013), exponentiated Topp-Leone distribution by Pourdarvish et al. (2015),
unit-Weibull distribution by Mazucheli et al. (2018) and Mazucheli et al. (2020), unit-Gompertz
by Mazucheli et al. (2019), unit-Lindley distribution by Mazucheli et al. (2019), unit-inverse Gaus-
sian distribution by Ghitany et al. (2019), composite quantile distributions by Rodrigues et al.
(2019), unit-generalized half normal distribution by Korkmaz (2020), and unit modified Burr-III
distribution by Haq et al. (2020).

In this paper, we concentrate on a simple one-parameter unit distribution, called the unit-
Rayleigh distribution. Technically, this distribution is not new; it corresponds to a special case of
the unit-Weibull distribution introduced in Mazucheli et al. (2018), and it is briefly presented as such
in this reference. However, new researches on the unit-Rayleigh distribution have yielded interesting
and surprising mathematical fruits that we share in this paper. Specifically, we provide: (i) new
motivations of considering this special distribution, (ii) new stochastic ordering results involving
the power distribution and some unlisted distributions of potential interest, (iii) new characteristics
on the form analysis of the corresponding probability density function (pdf) (with a closed form
for the mode) and hazard rate function (hrf), revealing an unexpected fitting capability of the
unit-Rayleigh model, (iv) new manageable expressions and approximations of the incomplete and
probability weighted moments involving the complementary error function, (v) some basics on the
distributional properties of the order statistics including discussions on their moments, (vi) a simple
expression for the reliability coefficient which is useful for estimation purposes, (vii) a tractable
expression and approximation of the so-called Tsallis entropy and (viii) some bivariate extensions
of the unit-Rayleigh distribution for two-dimensional modeling objectives. On the practical side,
we analyze two data sets, showing that the unit-Rayleigh distribution can be a better alternative to
standard one-parameter unit distributions, such as the one-parameter Kumaraswamy, Topp-Leone,
one-parameter beta, power and transmuted distributions.

The paper organization is planned as follows. Section 2 recalls the unit-Rayleigh distribution,
with some new facts related to its main functions. The main technical mathematical results are
developed in Section 3. Applications are given in Section 4. Final notes are formulated in Section
5.

2 The unit-Rayleigh distribution

This section discusses some new facts regarding the primary essence of the unit-Rayleigh distribu-
tion.

2.1 Corresponding functions

As the basis, the unit-Rayleigh distribution is associated with the cdf given as

F (x) = exp
{
−β [log(x)]2

}
, x ∈ (0, 1), (1)

where β > 0, and F (x) = 0 for x ≤ 0 and F (x) = 1 for x > 1. Thus defined, it is a special
case of the unit-Weibull distribution introduced by Mazucheli et al. (2019) with shape parameter
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equal to 2. By construction, the unit-Rayleigh distribution is the distribution of the rv exp(−Y ),
where Y denotes a rv following the Rayleigh distribution with scale parameter β, i.e., with cdf
FY (x) = 1 − exp(−βx2), with x > 0, and FY (x) = 0 otherwise. The Rayleigh distribution also
corresponds to the chi-squared distribution with two degrees of freedom. The basics and properties
of this distribution can be found in Weisstein (2020).

As a new fact, the unit-Rayleigh distribution is also the distribution of the rv 1/Z, where Z
denotes a rv following the Benini distribution with truncated parameter equal to 1, i.e., with cdf

FZ(x) = 1− exp
{
−β [log(x)]2

}
, with x > 1, and FZ(x) = 0 otherwise. The Benini distribution is

a long tail distribution that can be viewed as a generalization of the Pareto distribution. We may
refer to the former work of Benini (1905).

Based on F (x), the pdf of the unit-Rayleigh distribution is given as

f(x) =
d

dx
F (x) = −2β

x
log(x) exp

{
−β [log(x)]2

}
, x ∈ (0, 1), (2)

and f(x) = 0 for x 6∈ (0, 1). The shape properties of this function are fundamental to evaluate the
capability of the unit-Rayleigh model to fit data. This aspect will be discussed later.

As main reliability functions, the survival function is obtained by

F̄ (x) = 1− F (x) = 1− exp
{
−β [log(x)]2

}
, x ∈ (0, 1),

and F̄ (x) = 1 for x ≤ 0 and F̄ (x) = 0 for x > 1, the cumulative hrf is specified as

H(x) = − log[F̄ (x)] = − log
[
1− exp

{
−β [log(x)]2

}]
, x ∈ (0, 1),

and H(x) = 0 for x ≤ 0 and H(x) = +∞ for x > 1, and the hrf is given as

h(x) =
d

dx
H(x) = −2β

x
log(x)

exp
{
−β [log(x)]2

}
1− exp

{
−β [log(x)]2

} , x ∈ (0, 1), (3)

and h(x) = 0 for x 6∈ (0, 1). The shape properties of the hrf are precious indicators on some features
of the unit-Rayleigh model. This point will be discussed later.

We end this part by specifying the quantile function of the unit-Rayleigh distribution obtained
as

Q(x) = F−1(x) = exp

{
−
[
− 1

β
log(x)

]1/2}
, x ∈ (0, 1). (4)

2.2 Analysis of the cdf

Basically, F (x) is an increasing and derivable function with respect to x for x ∈ (0, 1). We can
express it as a function of the power distribution cdf as

F (x) = F∗(x)− log(x),

where F∗(x) = xβ for x ∈ (0, 1), F∗(x) = 0 for x ≤ 0 and F∗(x) = 1 for x ≥ 1. The following
inequalities can be deduced: For any x ∈ (0, exp(−1)), we have F (x) ≤ xβ, and for x ∈ (exp(−1), 1),
the reverse inequality holds: F (x) ≥ xβ.
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In addition, we can remark that F (x) is a decreasing function with respect to β; by setting
F (x;β) = F (x), for any β2 ≥ β1, we have

F (x;β2) ≤ F (x;β1).

This inequality reveals a basic first-order stochastic dominance of the unit-Rayleigh distribution.
Moreover, one can note that, for any x ∈ (0, 1),

∂2F (x;β)

∂β2
= [log(x)]4 exp

{
−β [log(x)]2

}
> 0,

implying that F (x;β) is a convex function with respect to β.

2.3 Analysis of the pdf

In this section, we analyze f(x) as described in (2), also performing a mode(s) analysis. A such
global analysis has been performed in Mazucheli et al. (2020) for the unit-Weibull distribution,
in full generality. Here, we provide more specific details on this aspect for the unit-Rayleigh
distribution, including the expression of the mode and its comportment when β varied.

As an alpha remark, let us note that, for any β > 0,

lim
x→0

f(x) = lim
x→1

f(x) = 0,

with the equivalence f(x) ∼ 2β(1 − x) when x → 1. Since it is positive, the function f(x) is not
monotonic; the points 0 and 1 are not modes of f(x). Now, for x ∈ (0, 1), we have

d

dx
f(x) =

2β

x2
exp

{
−β [log(x)]2

}[
2β [log(x)]2 + log(x)− 1

]
.

Therefore, a critical point for f(x), say x0, satisfies x0 ∈ (0, 1) and 2β [log (x0)]
2 + log (x0)− 1 = 0.

After developments, we get

x0 = exp

{
− 1

4β

[√
8β + 1 + 1

]}
. (5)

Let us now study the nature of this critical point. For any x ∈ (0, 1), we have

d2

dx2
f(x) = −2β

x3
exp

{
−β [log(x)]2

}
(2β log(x) + 1)

[
2β [log(x)]2 + 2 log(x)− 3)

]
.

Since (2β/x3) exp
{
−β [log(x)]2

}
> 0, the sign of d2f(x)/dx2

∣∣
x=x0

is the one of

η = −(2β log(x0) + 1)
[
2β [log(x0)]

2 + 2 log(x0)− 3)
]
.

After developments, we obtain η = −
√

8β + 1 < 0. We conclude that the point x0 as defined by
(5) is a maximum for the function f(x); it is the (unique) mode of the unit-Rayleigh distribution.
Therefore, the pdf of the unit-Rayleigh distribution is “more or less bell shape”.

Let us now discuss the behavior of this mode. By setting x0(β) = x0, we have

∂

∂β
x0(β) = exp

{
− 1

4β

[√
8β + 1 + 1

]} 4β +
√

8β + 1 + 1

4β2
√

8β + 1
> 0,
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implying that x0(β) is an increasing function with respect to β. Furthermore, we have

lim
β→0+

x0(β) = 0, lim
β→+∞

x0(β) = 1,

meaning that the mode can take all the values of the interval (0, 1). This result indicates a certain
flexibility of the unit-Rayleigh distribution regarding its mode. A graphical illustration of the
possible shapes of f(x) is provided in Figure 1, considering the following values for β: 0.1, 0.5, 0.8,
1.5 and 4.
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Figure 1: Several curves of the pdf of the unit-Rayleigh distribution.

We see in Figure 1 the “more or less bell shape” of the pdf, with an increasing mode according
to β. Note that the black curve, corresponding to the pdf defined with β = 0.1, is “highly spiked”;
the increasing curve does not appear in the figure because it is too sharp. In some senses, this
graphical analysis completes the one performed in (Mazucheli et al., 2018, Figure 1, last subfigure).

2.4 Analysis of the hrf

In this section, we analyze h(x) as specified in (3). As far as we know, this aspect has been explored
only graphically in (Mazucheli et al., 2018, Figure 2, last subfigure). Some new facts are discussed
below. Firstly, for any β > 0, we have

lim
x→0

h(x) = 0, lim
x→1

h(x) = +∞,

with the equivalence h(x) ∼ 2/(1−x) when x→ 1. Since h(x) is positive, the point 0 is a minimum
for h(x). Now, for x ∈ (0, 1), we have

d

dx
h(x) = 2β

w(x)

x2
[
exp

{
β [log(x)]2

}
− 1
]2 ,
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where
w(x) = 2β [log(x)]2 exp

{
β [log(x)]2

}
− (1− log(x))

[
exp

{
β [log(x)]2

}
− 1
]
,

being the difference of two positive functions.
In view of the denominator term, a critical point for h(x), say x1, satisfies x1 ∈ (0, 1) and

w(x1) = 0. The study of this equation is not obvious from the analytical side. As results, we
propose some alternative arguments showing that the hrf can be various forms.

Firstly, due the presence of the β in factor of the first term, by dominance, for any x ∈ (0, 1),
we have limβ→+∞w(x) = +∞. This implies the existence of a β∗ such that, for β > β∗, we have
w(x) > 0 and, a fortiori, dh(x)/dx > 0. Hence, for β > β∗, h(x) is an increasing function with
respect to x. Now, assume that β is small, say β → 0. Then, standard equivalences gives

w(x) ∼ β [log(x)]2 (1 + log(x)),

and the equivalence function is equal to 0 if x = exp(−1) ∈ (0, 1). Therefore, in the case where
β is small enough, at least one critical point exists. This new fact reveals that the hrf is not only
an increasing function, as one can think at first sight of (Mazucheli et al., 2018, Figure 2, last
subfigure); non monotonic shapes are possible for “small or not too small” β.

We illustrate this new fact by some plots of h(x) in Figure 1, considering the following values
for β: 0.1, 0.5, 0.8, 1.5 and 4.
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Figure 2: Several curves of the hrf of the unit-Rayleigh distribution.

We see in Figure 2 that the hrf can be increasing with convex and concave properties. Also, for
the black line corresponding to the hrf defined with β = 0.1, a bathtub shape is observed. These
observations confirm the flexible hazard rate of the unit-Rayleigh distribution.

3 New results

More mathematical results are developed in this section, all new.
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3.1 Stochastic order results

We have already presented some stochastic order results involving the cdfs of the unit-Rayleigh and
power distributions. More technical ones are described in the result below.

Proposition 3.1 The following inequality holds:

Fo(x) ≤ F (x) ≤ Foo(x),

where

• Fo(x) = xβ(1/x−1) for x ∈ (0, 1), Fo(x) = 0 for x ≤ 0 and Fo(x) = 1 for x ≥ 1,

• Foo(x) = xβ(1−x) for x ∈ (0, 1), Foo(x) = 0 for x ≤ 0 and Foo(x) = 1 for x ≥ 1,

both being cdfs of unit-distributions.

Proof. The inequalities are immediate for x ≤ 0 and x ≥ 1. For x ∈ (0, 1), we can express F (x) as
F (x) = xβ[− log(x)]. The desired result is a consequence of the following well-known inequalities: For
x ∈ (0, 1), we have 1− 1/x ≤ log(x) ≤ x− 1. The claims that Fo(x) and Foo(x) are valid cdfs are
developed below. We have limx→0 Fo(x) = limx→0 Foo(x) = 0, limx→1 Fo(x) = limx→1 Foo(x) = 1,
both are derivable for x ∈ (0, 1) with, for x ∈ (0, 1),

d

dx
Fo(x) = βxβ(1/x−1)−2[1− x− log(x)] > 0,

d

dx
Foo(x) = βxβ(1−x)−1[1− x− x log(x)] > 0.

This concludes the proof of Proposition 3.1. �

As far as we know, the cdfs Fo(x) and Foo(x) described in Proposition 3.1 are not listed in
the literature. They can be of independent interest for purposes out the scope of this paper
(modelling of proportion-type characteristics, constructions of new general families of continuous
distributions. . . ).

3.2 Incomplete moments

The incomplete moments of the unit-Rayleigh remain unexplored. We now fill this gap by providing
their analytical expressions via comprehensive functions.

Proposition 3.2 Let r be a nonnegative integer and X be a rv following the unit-Rayleigh distri-
bution. Then, the rth incomplete moment of X at t ∈ (0, 1) is given as

mr(t) = E (XrI{X ≤ t})

= tr exp
{
−β [log(t)]2

}
− exp

(
r2

4β

)
r√
β

√
π

2
erfc

(
−
√
β log(t) +

r

2
√
β

)
,

where erfc(a) is the complementary error function defined by erfc(a) = (2/
√
π)
∫ +∞
a exp(−y2)dy,

with a ∈ R.

Proof. We recall that the unit-Rayleigh distribution corresponds to the one of the rv exp(−Y ),
where Y is a rv following the Rayleigh distribution with scale parameter β, i.e., with pdf fY (x) =
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2βx exp(−βx2), with x > 0, and fY (x) = 0 otherwise. Therefore, we have

mr(t) = E (exp(−rY )I{exp(−Y ) ≤ t}) = E (exp(−rY )I{Y ≥ − log(t)})

=

∫ +∞

− log(t)
exp(−rx)fY (x)dx = 2β

∫ +∞

− log(t)
x exp(−rx− βx2)dx

= 2β exp

(
r2

4β

)∫ +∞

− log(t)
x exp

{
−
(√

βx+
r

2
√
β

)2
}
dx.

By applying the change of variable y =
√
βx + r/(2

√
β), that is x =

[
y − r/(2

√
β)
]
/
√
β, and

performing some calculus, we obtain

mr(t) = 2β exp

(
r2

4β

)∫ +∞

−
√
β log(t)+r/(2

√
β)

1√
β

(
y − r

2
√
β

)
exp(−y2) 1√

β
dy

= 2 exp

(
r2

4β

){[
−1

2
exp(−y2)

]+∞
−
√
β log(t)+r/(2

√
β)

− r

2
√
β

∫ +∞

−
√
β log(t)+r/(2

√
β)

exp(−y2)dy

}

= exp

(
r2

4β

)
exp

{
−
(
−
√
β log(t) +

r

2
√
β

)2
}
− exp

(
r2

4β

)
r√
β

√
π

2
erfc

(
−
√
β log(t) +

r

2
√
β

)
= tr exp

{
−β [log(t)]2

}
− exp

(
r2

4β

)
r√
β

√
π

2
erfc

(
−
√
β log(t) +

r

2
√
β

)
.

The result of Proposition 3.2 is obtained. �

From Proposition 3.2, by taking r = 0, we obtain m0(t) = F (t) = exp
{
−β [log(t)]2

}
with

t ∈ (0, 1). Also, the rth raw moments of X can be derived as

mr = E(Xr) = lim
t→1

mr(t) = 1− exp

(
r2

4β

)
r√
β

√
π

2
erfc

(
r

2
√
β

)
.

We thus rediscover the formula in (Mazucheli et al., 2018, Subsection 2.2).
In addition, the incomplete moments of X allowus to define an arsenal of interesting measures

and functions involving the unit-Rayleigh distribution, such as mean deviations, mean residual life
function, variance residual life function, reversed mean residual life function, Zenga curve, and so
on. The complete list can be found in the book of Cordeiro et al. (2020), among others.

For approximation purposes of the incomplete moments of X, for any a ∈ R, we can express
and approximate erfc(a) as

erfc(a) = 1− 2√
π

+∞∑
j=0

(−1)j

(2j + 1)j!
a2j+1 ≈ 1− 2√

π

J∑
j=0

(−1)j

(2j + 1)j!
a2j+1,

where J denotes a large integer. Let us mention that some more simple approximations of erfc(a)
exist, with the assumptions that x is “small enough” or “large enough” (see Decker (1975)). On
the other side, erfc(a) is implemented in all the modern mathematical softwares, making the com-
putations of mr(t) straightforward.

The following result presents a new and simple series expansion of the incomplete moments, with
direct integration; no existing results on erfc(x) is used. It thus provides an alternative expression
to the one presented in Proposition 3.2.
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Proposition 3.3 Under the setting of Proposition 3.2, for any t ∈ (0, 1), the following series
expansion holds:

mr(t) =

+∞∑
j=0

1

j!
(−1)jrjβ−j/2Γ

(
j

2
+ 1, β[log(t)]2

)
,

where Γ(a, x) is the incomplete upper gamma function defined by Γ(a, x) =
∫ +∞
x ta−1 exp(−t)dt,

with a, x > 0.

Proof. By making the change of variable x = Q(y) as defined as (4), we get

mr(t) =

∫ t

0
xrf(x)dx =

∫ F (t)

0
[Q(y)]rdy =

∫ exp{−β[log(t)]2}

0
exp

{
−r
[
− 1

β
log(y)

]1/2}
dy.

By applying the Taylor series expansion of the exponential function, we obtain

mr(t) =

+∞∑
j=0

1

j!
(−1)jrjβ−j/2

∫ exp{−β[log(t)]2}

0
[− log(y)]j/2 dy.

Now, the change of variable y = exp(−z) yields∫ exp{−β[log(t)]2}

0
[− log(y)]j/2 dy =

∫ +∞

β[log(t)]2
zj/2 exp(−z)dz = Γ

(
j

2
+ 1, β[log(t)]2

)
.

The proof of Proposition 3.3 follows from the above equalities. �

From Proposition 3.3, by taking r = 0 with the convention 00 = 1 in the sum, we rediscover

m0(t) = F (t) = 1 × Γ
(
1, β[log(t)]2

)
= exp

{
−β [log(t)]2

}
, with t ∈ (0, 1). Also, the rth raw

moments of X can be derived as

mr = E(Xr) = lim
t→1

mr(t) =

+∞∑
j=0

1

j!
(−1)jrjβ−j/2Γ

(
j

2
+ 1

)
,

where Γ(a) is the standard gamma function defined by Γ(a) =
∫ +∞
0 ta−1 exp(−t)dt, with a > 0.

Also, the following simple finite sum approximation holds:

mr(t) ≈
J∑
j=0

1

j!
(−1)jrjβ−j/2Γ

(
j

2
+ 1, β[log(t)]2

)
,

where J denotes a large integer.

3.3 Probability weighted moments

The probability weighted moments can be viewed as generalizations of raw moments. They appear
quite naturally when we deal with the raw moments of order statistics. The closed forms of the
probability weighted moments for the unit-Rayleigh distribution are given below.
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Proposition 3.4 Let r and s be two nonnegative integers and X be a rv following the unit-Rayleigh
distribution. Then, the (r, s)th probability weighted moment of X is given as

mr,s = E [XrF (X)s] =
β

β + s

[
1− exp

(
r2

4(β + s)

)
r√
β + s

√
π

2
erfc

(
r

2
√
β + s

)]
,

erfc(x) being the complementary error function.

Proof. First of all, based on (1) and (2), let us notice that

F (x)sf(x) = −2β

x
log(x) exp

{
−(β + s) [log(x)]2

}
=

β

β + s
f∗(x),

where f∗(s) denotes the pdf of a rv Z following the unit-Rayleigh distribution with scale parameter
β + s. Therefore

mr,s =

∫ 1

0
xrF (x)sf(x)dx =

β

β + s

∫ 1

0
xrf∗(x)dx =

β

β + s
E(Zr).

Owing to Proposition 3.2 with β + s instead of β and t→ 1, we have

E(Zr) = 1− exp

(
r2

4(β + s)

)
r√
β + s

√
π

2
erfc

(
r

2
√
β + s

)
.

By combining the two equalities above, we conclude the proof of Proposition 3.4. �

Clearly, we have mr = mr,0. The probability weighted moments will find applications in the
next section.

3.4 Order statistics

The modelling of several physical systems involved the use of order statistics. In this section, the
basic properties of the order statistics of the unit-Rayleigh distribution are discussed. The theory
and details on order statistics in a general setting can be found in David and Nagaraja (2003).

First, the pdf of the uth order statistic of X in a random sample of size n from the unit-Rayleigh
distribution, say X(u), can be expressed as

fX(u)
(x) =

n!

(u− 1)!(n− u)!
f(x)F (x)u−1[1− F (x)]n−u, x ∈ R. (6)

Hence, based on (1) and (2), for x ∈ (0, 1), we can write

fX(u)
(x) = − n!

(u− 1)!(n− u)!

2β

x
log(x) exp

{
−βu [log(x)]2

}[
1− exp

{
−β [log(x)]2

}]n−u
.

In particular, for the minimum and maximum order statistics, we get

fX(1)
(x) = −n2β

x
log(x) exp

{
−β [log(x)]2

}[
1− exp

{
−β [log(x)]2

}]n−1
and

fX(n)
(x) = −n2β

x
log(x) exp

{
−βn [log(x)]2

}
,
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respectively. The raw moments of X(u) can be simply expressed via the probability weighted
moments of the former unit-Rayleigh distribution. Indeed, from (6) and the binomial formula, we
can write

fX(u)
(x) =

n!

(u− 1)!(n− u)!

n−u∑
j=0

(
n− u
j

)
(−1)jf(x)F (x)j+u−1

and the rth raw moment of X(u) is specified by

m(u),r = E(Xr
(u)) =

∫ 1

0
xrfX(u)

(x)dx

=
n!

(u− 1)!(n− u)!

n−u∑
j=0

(
n− u
j

)
(−1)j

∫ 1

0
xrf(x)F (x)j+u−1dx

=
n!

(u− 1)!(n− u)!

n−u∑
j=0

(
n− u
j

)
(−1)jmr,j+u−1,

where, by Proposition 3.4,

mr,j+u−1 =
β

β + j + u− 1
×[

1− exp

(
r2

4(β + j + u− 1)

)
r√

β + j + u− 1

√
π

2
erfc

(
r

2
√
β + j + u− 1

)]
.

From the raw moments of X(u), several measures can be derived such as the skewness and kurtosis
coefficients, L-moments, allowing to define the L-scale, L-skewness and L-kurtosis, among others.

3.5 Reliability coefficient

The reliability coefficient allows to study the behavior of various random systems. It is defined
as the probability that a hierarchy exists between two characteristics of the system with unknown
values a priori. All the details can be found in Surles and Padgett (2001). Here, we show that the
reliability coefficient can be expressed in a simple manner for the unit-Rayleigh distribution.

Proposition 3.5 Let U and V be two independent rvs following the unit-Rayleigh distribution with
scale parameters β and β∗, respectively. Then, the corresponding reliability coefficient is defined by
R = P (U ≤ V ) and

R =
β∗

β + β∗
.

Proof. Let F (x;β) = F (x) be the cdf of U , f(x;β∗) = f(x) be the pdf of V and f∗(x) be the pdf
of the unit-Rayleigh distribution with scale parameter β + β∗. Then, we have

R = P (U ≤ V ) =

∫ 1

0
F (x;β)f(x;β∗)dx =

∫ 1

0
−2β∗

x
log(x) exp

{
−(β + β∗) [log(x)]2

}
dx

=
β∗

β + β∗

∫ 1

0
f∗(x)dx =

β∗
β + β∗

.
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This proved Proposition 3.5. �

From Proposition 3.5, we clearly have R < 1/2 for β∗ < β, R = 1/2 for β∗ = β, and R > 1/2 for
β∗ > β. The simple expression of R is useful for statistical aims. In particular, by the invariance
property, maximum likelihood estimates of the parameters β and β∗, say β̂ and β̂∗, respectively,
provide the maximum likelihood estimate for R given as

R̂ =
β̂∗

β̂ + β̂∗
.

The simple expression and the nice theoretical guarantees on this estimate are advantages.

3.6 Tsallis entropy

Let X be a rv following the unit-Rayleigh distribution. Then, for τ 6= 1 and τ > 0, the Tsallis
entropy of X is given as

Tτ =
1

τ − 1

[
1−

∫ 1

0
f(x)τdx

]
.

Commonly, Tr is a measure of randomness of X. One can refer to the study of Amigo et al. (2018)
for discussions on the roles of various entropy measures in applied sciences, including the Tsallis
entropy. The following result concerns a series expansion of this entropy measure.

Proposition 3.6 Let τ 6= 1 and τ > 0. Then, we can express Tτ as

Tr =
1

τ − 1

1− 2τ−1β(τ−1)/2τ−(τ+1)/2
+∞∑
j=0

1

j!
(τ − 1)jβ−j/2τ−j/2Γ

(
j + τ + 1

2

) ,
where J denotes a large integer.

Proof. We only need to treat the integral term in the definition of Tr. Owing to (2), we have∫ 1

0
f(x)τdx = 2τβτ

∫ 1

0
x−τ [− log(x)]τ exp

{
−βτ [log(x)]2

}
dx.

Therefore, by making the change of variable x = exp(−y), i.e., y = − log(x), and by introducing a
rv Y following the Rayleigh distribution with scale parameter βτ , we get∫ 1

0
f(x)τdx = 2τβτ

∫ +∞

0
exp[(τ − 1)y]yτ exp(−βτy2)dy

= 2τ−1βτ−1τ−1
∫ +∞

0
exp[(τ − 1)y]yτ−1

[
2βτy exp(−βτy2)

]
dy

= 2τ−1βτ−1τ−1E
{

exp[(τ − 1)Y ]Y τ−1} .
Now, by using the Taylor expansion series of the exponential function and the following well-known
moment properties of the Rayleigh distribution: For any υ > −2, E(Y υ) = β−υ/2τ−υ/2Γ(υ/2 + 1),
we have

E
{

exp[(τ − 1)Y ]Y τ−1} =

+∞∑
j=0

1

j!
(τ − 1)jE(Y j+τ−1)

= β−(τ−1)/2τ−(τ−1)/2
+∞∑
j=0

1

j!
(τ − 1)jβ−j/2τ−j/2Γ

(
j + τ + 1

2

)
.
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By putting the above equalities together, we obtain∫ 1

0
f(x)τdx = 2τ−1β(τ−1)/2τ−(τ+1)/2

+∞∑
j=0

1

j!
(τ − 1)jβ−j/2τ−j/2Γ

(
j + τ + 1

2

)
.

The desired result follows by substituting this series expansion into the former definition of Tr. �

Also, from Proposition 3.6, the following approximation holds:

Tr ≈
1

τ − 1

1− 2τ−1β(τ−1)/2τ−(τ+1)/2
J∑
j=0

1

j!
(τ − 1)jβ−j/2τ−j/2Γ

(
j + τ + 1

2

) ,
where J is a large enough integer.

3.7 Some bivariate unit-Rayleigh distributions

Now, we present some motivated ideas to construct bivariate unit-Rayleigh distributions, which are
of interest for the modelling of conjoint characteristics with values on the unit interval. In order
to keep a control on the structure of the marginal rvs, we propose to use the special probabilistic
functions called copulas (see Nelsen (2006)).

As a first approach, we can define the Farlie-Gumbel-Morgenstern unit-Rayleigh distribution
by the following cdf:

F (x, y) = F (x;β)F (y;β∗) + λF (x;β)F (y;β∗) [1− F (x;β)] [1− F (y;β∗)] , (x, y) ∈ R2,

where λ ∈ [−1, 1], F (x;β) and F (y;β∗) are defined as (1) with the scale parameters β and β∗,
respectively. Hence, for (x, y) ∈ (0, 1)2, we have

F (x, y) = exp
{
−β [log(x)]2 − β∗ [log(y)]2

}
+ λ exp

{
−β [log(x)]2 − β∗ [log(y)]2

}
×[

1− exp
{
−β [log(x)]2

}] [
1− exp

{
−β∗ [log(y)]2

}]
.

By taking λ = 0, the marginal rvs are independent.
Similarly, one can also define a bivariate unit-Rayleigh distribution by using the Clayton copula.

Thus, we can define the Clayton unit-Rayleigh distribution by the following cdf:

F∗(x, y) =
[
max

(
F (x;β)−λ + F (y;β∗)

−λ − 1, 0
)]−1/λ

, (x, y) ∈ R2,

where λ ≥ −1 and λ 6= 0, F (x;β) and F (y;β∗) are defined as (1) with the scale parameters β and
β∗, respectively. Thus, for (x, y) ∈ (0, 1)2, we have

F∗(x, y) =
[
max

(
exp

{
λβ [log(x)]2

}
+ exp

{
λβ∗ [log(y)]2

}
− 1, 0

)]−1/λ
.

As last example, we can define the Gumbel unit-Rayleigh distribution by the following cdf:

F∗∗(x, y) = exp

{
−
[
(− log[F (x;β)])λ + (− log[F (y;β∗)])

λ
]1/λ}

, (x, y) ∈ R2,

where λ ≥ 1, F (x;β) and F (y;β∗) are defined as (1) with the scale parameters β and β∗, respectively.
Hence, for (x, y) ∈ (0, 1)2, we have

F∗∗(x, y) = exp

{
−
[
βλ [log(x)]2λ + βλ∗ [log(y)]2λ

]1/λ}
.

These bivariate extensions need further investigations in an applied setting, that we leave for a
future work.
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4 Applications

This section shows the applicability behavior of the unit-Rayleigh distribution in a data analysis
framework, which has not received a particular attention in Mazucheli et al. (2018) or Mazucheli et
al. (2020). We estimate the parameter β by the maximum likelihood method, as done in Mazucheli
et al. (2018) but by putting the shape parameter equal to 2; it is not to be estimated. In this case,
from n observations of a rv following the unit-Rayleigh distribution, say x1, . . . , xn, the maximum
likelihood estimate of β is defined by

β̂ =

{
1

n

n∑
i=1

[log(xi)]
2

}−1
.

Also, based on (1), (2) and (3), the estimated cdf, pdf and hrf are obtained by substituting β by β̂
in their own expressions.

Thus, with the maximum likelihood method, we aim to compare the fit behavior of the unit-
Rayleigh distribution with those of the following well-known one-parameter competitors.

• the one-parameter Kumaraswamy (Ku) distribution (or special Lehmann type II power dis-
tribution) defined by the cdf given as

FKu(x) = 1− (1− x)α, x ∈ (0, 1),

FKu(x) = 0 for x ≤ 0 and FKu(x) = 1 for x ≥ 1, with α > 0. See Kumaraswamy (1980).

• the Topp-Leone (TL) distribution defined by the cdf specified by

FTL(x) = xθ(2− x)θ, x ∈ (0, 1),

FTL(x) = 0 for x ≤ 0 and FTL(x) = 1 for x ≥ 1, where θ > 0. See Topp and Leone (1955).

• the one-parameter beta (B) distribution defined by the cdf given as

FB(x) =
1

B(µ, 2)

∫ x

0
tµ−1(1− t)dt, x ∈ (0, 1),

FB(x) = 0 for x ≤ 0 and FB(x) = 1 for x ≥ 1, where µ > 0 and B(a, b) =
∫ 1
0 t

a−1(1− t)b−1dt,
a, b > 0.

• the power (P) distribution defined by the cdf expressed by

FP (x) = xη, x ∈ (0, 1),

FP (x) = 0 for x ≤ 0 and FP (x) = 1 for x ≥ 1, where η > 0.

• the transmuted (TM) distribution defined by the cdf expressed by

FTM (x) = (1 + λ)x− λx2, x ∈ (0, 1),

FTM (x) = 0 for x ≤ 0 and FTM (x) = 1 for x ≥ 1, where λ ∈ [−1, 1]. We may refer to Shaw
and Buckley (2009) all the characteristics of the transmuted distribution.
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These distributions can be assimilated to semi-parametric statistical models for adjustment pur-
poses. The following classic criteria are used to compare the fits: minus estimated log-likelihood
(−ˆ̀), consistent Akaike information criterion (CAIC), Hannan-Quinn information criterion (HQIC),
Akaike information criterion (AIC), Bayesian information criterion (BIC), Cramer-von Mises crite-
rion (W) and Anderson-Darling criterion (A) are computed. The lower the values of these criteria,
the better the fit. The R software developed by R Development Core Team (2005) is used, with
the help of the R function goodness.fit function from the package AdequacyModel (see Marinho et
al. (2019)).

First of all, we consider data of times to infection of kidney dialysis patients as described by Klein
and Moeschberger (2006). These “times of infection” data set is: {2.5, 2.5, 3.5, 3.5, 3.5, 4.5, 5.5,
6.5, 6.5, 7.5, 7.5, 7.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 12.5, 13.5, 14.5, 14.5, 21.5, 21.5, 22.5, 22.5, 25.5,
27.5}. Now, we make a normalization operation by divided these data by 30, to get data between
0 and 1. The transformed data set becomes: {0.08333333, 0.08333333, 0.11666667, 0.11666667,
0.11666667, 0.15000000, 0.18333333, 0.21666667, 0.21666667, 0.25000000, 0.25000000, 0.25000000,
0.25000000, 0.28333333, 0.31666667, 0.35000000, 0.38333333, 0.41666667, 0.41666667, 0.45000000,
0.48333333, 0.48333333, 0.71666667, 0.71666667, 0.75000000, 0.75000000, 0.85000000, 0.91666667}.

The second data set concerns the failure times of the air conditioning system of an air plane as
reported in Linhart and Zucchini (1986). These “failure times” data set is: {23, 261, 87, 7, 120, 14,
62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95}. Again,
we make a normalization operation by divided these data by 265, to get data between 0 and 1.
That is, we work with the following data set: {0.086792453, 0.984905660, 0.328301887, 0.026415094,
0.452830189, 0.052830189, 0.233962264, 0.177358491, 0.849056604, 0.267924528, 0.928301887, 0.079245283,
0.158490566, 0.075471698, 0.018867925, 0.045283019, 0.452830189, 0.041509434, 0.011320755, 0.052830189,
0.267924528, 0.041509434, 0.052830189, 0.041509434, 0.060377358, 0.339622642, 0.003773585, 0.060377358,
0.196226415, 0.358490566}.

The two transformed data sets are basically analyzed in Table 1.

Table 1: Descriptive analyzes for the times of infection and failure times data sets.

n Mean Median Variance Skewness Kurtosis Min Max

Times of infection 28 0.38 0.3 0.06 0.72 -0.75 0.08 0.92

Failure times 30 0.22 0.08 0.07 1.61 1.64 0.003 0.98

Table 1 indicates that the times of infection data is right-skewed, with small dispersion and
negative kurtosis. This point means that the curve of the unknown pdf behind these data is flatter
than a normal pdf. Concerning the failure times data, we can say that is “significantly” right-
skewed, with small dispersion and “significant” kurtosis. So the nature of the two data sets differ
on numerous aspects. This is also illustrated through the corresponding boxplots in Figure 3,
presenting different quantiles characteristics. Note that some extreme points are present.
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Figure 3: Boxplots of the (a) times of infection data set and (b) failure times data set.

We complete the first statistical analysis by the total time on test (TTT) plots of the two data
sets in Figure 4.
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Figure 4: TTT plots of the (a) times of infection data set and (b) failure times data set.

We see that the TTT curve for the times of infection data set is concave indicating an increasing
failure intensity, whereas the TTT curve for the failure times data set is convex then concave
suggesting a U-shape failure intensity. Thus, these TTT plots highlighted the different nature of
the failure intensity of these two data sets. It should also be noted that the increasing and U-shaped
failure intensities are covered by the unit-Rayleigh model, which makes it suitable for more suitable
analyzes of these data sets.
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The quality of fit measurements for the models, as well as the MLEs and standard errors (SEs)
of the parameters involved are collected in Tables 2 and 3 for the times of infection and failure
times data sets, respectively.

Table 2: Goodness-of-fit measures, MLEs and SEs for the times of infection data set.

Model −ˆ̀ CAIC HQIC AIC BIC W A MLEs (SEs)

UR -4.4825 -6.8111 -6.557 -6.9650 -5.6328 0.0556 0.3832 0.5221

(β) (0.0986)

Ku -3.0686 -3.9834 -3.7300 -4.1373 -2.8051 0.1109 0.6897 1.6615

(α) (0.3140)

TL -3.8524 -5.551 -5.2975 -5.704 -4.3726 0.1066 0.6678 1.3778

(θ) (0.2603)

B -3.7584 -5.3629 -5.1095 -5.5168 -4.1846 0.1097 0.6839 1.3085

(µ) (0.2151)

TM -2.9334 -3.7131 -3.4596 -3.8669 -2.5347 0.0963 0.6172 0.7936

(λ) (0.2721)
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Table 3: Goodness-of-fit measures, MLEs and SEs for the failure times data set.

Model −ˆ̀ CAIC HQIC AIC BIC W A MLEs (SEs)

UR -12.7730 -23.4033 -23.0979 -23.5461 -22.1449 0.1253 0.7933 0.1497

(β) (0.0273)

Ku -7.5378 -12.9330 -12.627 -13.0759 -11.6747 0.2153 1.3759 2.2333

(α) (0.4077)

TL -11.9801 -21.8175 -21.5121 -21.9603 -20.5591 0.2379 1.5102 0.6017

(θ) (0.1098)

B -12.0261 -21.9094 -21.6040 -22.0523 -20.6511 0.23084 1.4687 0.6228

(µ) (0.1061)

P -12.7018 -23.2607 -22.9553 -23.4036 -22.0024 0.2068 1.3212 0.4501

(η) (0.0821)

TM -8.4186 -14.6944 -14.3890 -14.8373 -13.4361 0.1764 1.1390 0.8688

(λ) (0.1318)

From Tables 2 and 3, the unit-Rayleigh model can be considered as the best model for the two
data sets, because it has the smallest values for the CAIC, HQIC, AIC, BIC, W and A statistics.
Figures 5 and 6 confirm this claim through a graphical approach. In them, we plot the estimated
pdfs over the adequate histograms and the estimated cdfs over the adequate empirical cdfs for the
times of infection and failure times data sets, respectively.

18



x

pd
f

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

UR
Ku
TL
B
TM

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

cd
f

UR
Ku
TL
B
TM

(a) (b)

Figure 5: Plots of the (a) estimated pdfs and (b) estimated cdfs for the times of infection data set.
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Figure 6: Plots of the (a) estimated pdfs and (b) estimated cdfs for the failure times data set.

Figures 5 and 6 show the nice fits of the unit-Rayleigh model, which has captured the main
characteristics of the data contrary to most of the competitors. We complete this graphical analysis
by plotting the estimated hrfs of the unit-Rayleigh model only in Figure 7.
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Figure 7: Plots of the estimated hrfs for the (a) times of infection data set and (b) failure times
data set.

As expected with the TTT plots in Figure 4, based on the unit-Rayleigh model, Figure 7 shows
an increasing estimated hrf for the times of infection data set, and a U-shape estimated hrf for
the failure time data set. We thus see the importance of the possible U-shape of the hrf of the
unit-Rayleigh distribution as evoked above for such a modelling.

All the preceding points highlight the undeniable capacities of the unit-Rayleigh model in the
adjustment of various data.

5 Final notes

In this article, we highlight new facts about the unit-Rayleigh distribution, including new motiva-
tions, interests, theoretical results, and practical benefits. The most relevant facts are a detailed
analysis of the main functions, results on some stochastic ordering, the expressions of the incomplete
and probability weighted moments, as well as those of the Tsallis entropy and reliability coefficient,
various properties on the order statistics, and a list of potential bivariate extensions. An applied
work show how the unit-Rayleigh distribution can be used in practice. Also, we show that it can
be superior to others well-reputed one-parameter unit distributions for some data sets.

A possible continuation of this work may be the use of the unit-Rayleigh distribution for the
construction of general families of distributions, through composition techniques or others, and the
construction of regression models including characteristics with values on the unit interval. All of
these studies remain to be developed; we leave it for future investigations.
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