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Abstract

A rigorous mathematical approach on the Proper Orthogonal Decom-
position (POD) basis interpolation via Grassmann manifolds for parametric
Model Order Reduction (pMOR) is given. The work focuses on issues related
to interpolation on Grassmann manifolds making a concrete elucidation of
the local character of linearization. It is shown how the stability of the inter-
polation can be lost if certain geometrical conditions are met. To this effect,
we draw special attention to the injectivity radius and the cut-locus on the
Grassmannian which are essential to establish well defined local maps. Here,
pMOR is applied in hyperelastic structures using a non-intrusive approach
for inserting the interpolated spatial POD ROM basis in a commercial code.
The accuracy of the method is assessed by a posteriori error norms defined
using the ROM FEM solution and its high fidelity counterpart simulation.
High quality correlations of the error norms are found for both numerical
examples. One important outcome concerns the accuracy with respect to
the number of POD modes in which the error norm shows a non-monotonic
decrease with a spurious oscillatory behavior.
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1. Introduction

Computational modeling of hyperelastic structures have been progres-
sively used for surgical and diagnostic procedures to guide clinical studies.
In these numerical problems, challenges often arise due to large scale mod-
els, complexity, geometric non-linearity, advanced constitutive equations and
contact. All these difficulties lead to severe stability/convergence issues in
FEM codes accompanied with high computational times. Therefore, solu-
tions are in general obtained on High Performance Computing (HPC) clus-
ters with process time which can take hours, days, or even weeks [49]. Due
to large demands on computational resources, some studies, for instance the
need of representing variations of material parameter values are out of the
reach of today’s facilities.

In the meanwhile, Reduced-Order Models (ROM) aim to decrease the
computational burden of large-scale systems and solve parametrized prob-
lems by generating models with lower complexity, but accurately enough to
represent the high fidelity counterpart simulations. One popular method is
the Proper Orthogonal Decomposition (POD) [36, 27, 48], also known as
Kharhunen-Loève Decomposition (KLD) [3, 9], Singular Value Decomposi-
tion (SVD) [17] or Principal Component Analysis (PCA) [26, 33]. We need
to emphasize that all these POD techniques are referred as a posteriori as
they require some knowledge (at least partial) on the solution of the problem.

Parametric Model Order Reduction (pMOR) is used to generate a ROM
model that approximates a full-order system with high accuracy over a range
of parameters. In case of solving a parametric problem using the POD, the
method starts by a sampling stage during which the full-order system is
solved for some rather small set of training parameters. The state variable
field ‘snapshots’ are then compressed using the POD method to generate a
ROM basis that is expected to reproduce the most characteristic dynamics of
its high-fidelity counterpart. Nevertheless, since the POD bases are generated
for a set of training points, they are optimal only to these parameters. Thus,
a main drawback of POD is the sensitivity to parameter changes and the lack
of robustness over the entire parameter space. Consequently, any ROM basis
generated by the approach outlined above cannot be expected to give a good
approximation away from the training point. In pMOR, the question we have
to address is how to compute a good approximation of the POD basis related
to a new parameter. Multiple methods have been proposed for adapting POD
basis to address parameter variation as thoroughly documented in related
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review articles [42, 50, 41].
For nonlinear systems, even though a Galerkin projection reduces the

number of unknowns, the computational burden for obtaining the solution
could still be high due to the prohibitive computational costs involved in the
evaluation of nonlinear terms. Hence, the nonlinear Galerkin projection in
principle leads to a ROM but its evaluation could be more expensive than
the evaluation of the original problem. To this effect, to make the result-
ing ROMs computationally efficient, POD is typically used together with
a sparse sampling method, also called hyper reduction, such as the missing
point estimation (MPE) [31], the empirical interpolation method (EIM) [43],
the discrete empirical interpolation method (DEIM) [34], the Gappy POD
method [16], and the Gauss-Newton with approximated tensors (GNAT)
method [38].

Parametric Model Order Reduction using POD has been scarcely applied
in hyperelasticity. Here, pMOR is used to hyperelastic structures by adapt-
ing pre-computed POD basis on Grassmann manifolds. We import what is
done initially in the field of computational fluid dynamics which was pro-
posed for parametrized systems that are linear in state [51, 32, 46, 48]. It
is also worthy to mention the work in [37] on real time simulations of hype-
pelastic structures using POD basis interpolation on Grassmann manifolds
in combination with an asymptotic numerical method. The contribution
here targets on the part of pMOR related to the interpolation procedure fo-
cused on certain geometrical conditions under which the numerical stability
is preserved.

When addressing the question of POD basis interpolation, the main point
is that interpolation cannot be done in a linear space. Indeed, any POD basis
can be performed by some matrix M ∈ Matn,p(R), which is not uniquely
defined. Now, despite the appearances, computation can not be done in
the linear space Matn,p(R) of matrices, but in a quotient space, meaning
that the result has to be independent of the choice of such matrix M. In
mathematics, this idea to make computation independently of some choice
leads to the notion of a manifold [10]. In the specific case of POD basis,
the involved manifold is the classical Grassmann manifold, defined as the
set of fixed dimensional sub-spaces of some Rn. Such Grassmann manifold
interpolation is well documented [32, 46, 48, 22, 28], all coming from the
fluid mechanics community, and computation can be done explicitly.

Thus, we might have been satisfied with a simple application of the exist-
ing and now well-known formulas. However, applying formulae in manifolds
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requires the verification of certain conditions. Indeed, these formulae are
in fact used to perform a linearization, which is a generalization of what is
done on a 2D sphere: locally, one can identify a plane to a sphere. Now,
the formulae are obtained from certain applications, called here logarithm
(to linearize) and exponential (to return to the curved space). Such applica-
tions are defined only locally, and the calculations can only be stable if this
local condition is verified. To our knowledge, this crucial point seems to have
been clarified only in the recent work of Mosquera et al. [46, 48] who recall
a theoretical result on the injectivity radius of the exponential function. In-
deed, in our case which is a specific example of a Riemannian manifold [13],
it is always possible to construct a disk inside which the logarithmic and
exponential functions are inverse to each other, and thus the linearization
process is guaranteed to be totally stable in this disk. It would therefore
seem necessary, for any preamble, to verify that the interpolation only takes
place on the condition of being inside such a disk. What we noticed then,
is that the formulae can apply even outside this disk, which we did, but we
stress here that under such conditions, calculations have no reason to be rel-
evant. We then make a conjecture which is purely mathematical: it is not so
much the notion of the injectivity radius that is involved here as the notion
of cut-locus [13], which remains to be further developed and specified in the
case of Grassmann manifold. Up to our knowledge, such a notion was very
quickly overlooked by [4], who states a result without any proof. Therefore,
to be able to specify and clarify all these theoretical questions we have de-
cided to take up the essential mathematical points concerning Grassmannian
manifolds. Thus, we insist on the local character of these formulae and the
necessary mathematical rigour that this implies in their handling. To em-
phasize all such theoretical difficulties, we propose the simple example of an
interpolation on a 2D cylinder, where injectivity radius and cut-locus can be
exhibited.

Another unexpected observation is that the numerical studies conducted
here revealed a spurious oscillatory behavior of the error norm, i.e., random
non-monotone decreasing error patterns with respect to the number of POD
modes. And this outcome provided even by the rather trivial hyperelastic
structures chosen in this study. The interesting thing about this fact is that
it does not seem special to the hyperelasticity problems. Thus, a relevant
behavior might exists in other engineering fields, as for example in bench-
mark problems emerging from the CFD analysis (aeroelasticity, laminar or
turbulent wakes behind a circular cylinder, etc).
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Finally, whether for the problems of injectivity radius, of cut-locus or
non-monotone decreasing error, it therefore seemed essential to us to detail
a theoretical mathematical part that allows us to set clear definitions and
constraints.

Considering the mechanical part, the overall procedure comprises an off-
line and an on-line stage. The off-line stage characterizes the potentially
costly procedure of solving FEM problems associated with different values
of the physical or modeling parameter (training points). The on-line stage
consists of POD basis interpolation on Grassmann manifolds to determine a
ROM basis for an unseen target parameter. Then, a non-intrusive approach
is introduced for the obtained spatial POD basis. Note, that this approach
deviates from the POD methods that relying on a Galerkin/Petrov Galerkin
projection on the governing equations. Instead, ROM-FEM models are im-
plemented by inserting the interpolated spatial POD basis using linear con-
straint equations in Abaqus. It is evident that, by constraining the degrees
of freedom, the reduced model still embeds the high dimension. We remark
that we followed this approach using a commercial code only for evaluating
the accuracy of the adaption of POD basis via interpolation on Grassmann
manifolds. It is not our objective to implement a method of nonlinear model
reduction for the effective evaluation of the nonlinear terms, although it is a
quite challenging task to be realized inside a commercial code.

For the pMOR, two hyperelastic structures modeled with isotropic and
anisotropic constitutive laws are studied. Specifically, for the anisotropic
model, a subclass of transversely isotropic materials is considered. In this
subclass, the strain energy function is assumed to depend only on two in-
variant measures of finite deformation [30, 21, 20, 24]. At the numerical
examples, the decision made here is to enter the parameters in two ways
considering a) the model anisotropy defined by the fiber orientation, and b)
the material coefficients of the hyperelastic constitutive equations.

The present paper is organized as follows. From section 3 to section 5
we only focus on the theoretical background, so we produce definitions and
theorems in a mathematical way. Once again, we emphasize here that all this
is done to clarify the rigor required to perform the calculations. More specif-
ically, the Proper Orthogonal Decomposition and the orthonormal basis rep-
resentation of subspaces on Grassmann manifolds are discussed in section 3.
Then section 4, introduces some basic notions and results about the geom-
etry of Grassmann manifolds whereas section 5 provides the computational
framework for the reduced order model adaptation based on interpolation
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on Grassmann manifolds. The mechanical part starts with section 6, which
covers the framework of hyperelasticity theory in continuum mechanics for
an incompressible transverse isotropic material. In section 7, the interpo-
lation performance using two hyperelastic structures is shown, and further
important computational aspects are discussed. Finally, section 8 highlights
the main results and some important outcomes.

2. Problem Formulation

We consider some mechanical problem governed by a specific parameter
λ ∈ [λmin, λmax] ⊂ R, which comes from hyperelasticity in our situation
(see section 6). For each parameter λ, the solution is given by a space-time
smooth field

(t,X) ∈ [0;T ]× Ω0 7→ uλ(X, t) ∈ R3

where Ω0 is a closed convex subset of R3 and T > 0.
To avoid costly computations for all values λ ∈ [λmin, λmax], we would

like to interpolate between a finite number of FEM solutions ui := uλi ,
associated to N training points λ1, . . . , λN . In fact, it is at the level of the
POD performed on the snapshot matrices S(λi) (defined in the next section)
associated to the solutions ui that this interpolation will be considered. But
one of the essential points of this POD is that it associates to each snapshot
matrix S(λi) a certain point mi of a Grassmannian manifold G, and it is
therefore needed at this stage to interpolate between points m1, . . . ,mN on
G. It is now proposed to detail the link between a POD reduction and the
construction of a point on a Grassmannian manifold.

3. Proper Orthogonal Decomposition and Grassmannian manifold

The POD method can be applied to curves defined in Hilbert spaces of
infinite dimension. The initial idea is to determine a subspace of a given
dimension p (which is the fixed number of modes of the POD), allowing to
reflect “as well as possible” this curve, as it is very well explained in [27, 46].
In most cases, however, we do not consider the entire curve, but only a finite
number of points of a Hilbert space Hspatial = RNs of finite dimension Ns (the
number of space points). More precisely any FEM solution u of our problem
under consideration produces a snapshot matrix

Sjk, 1 ≤ j ≤ 3Ns, 1 ≤ k ≤ Nt
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with Nt the number of time steps. Such matrix encodes in fact Nt vectors
uk := u(·, tk) ∈ Hspatial, and we write

S := [u1, . . . ,uNt ]

Take now 〈·, ·〉 to be the standard inner product of the Hilbert space
Hspatial. To any p dimensional vector subspace Vp of Hspatial, there is an
associated orthogonal projection

πp : Hspatial −→ Vp

and the POD method address the question to minimize the distance function

J (Vp) :=
Nt∑
k=1

‖uk − πp(uk)‖2, ‖ · ‖ :=
√
〈·, ·〉

over all p dimensional subspaces Vp. It then appears that the set of all such
subspaces define a smooth compact Riemannian manifold [10, 13]

G(p, n) := {Vp ⊂ Hspatial, dim(Vp) = p} , n := 3Ns

so that any p dimensional vector subspace Vp can be considered as some
point m ∈ G(p, n), and the question is finally to minimize J (m) over all
m ∈ G(p, n).

In practice, let consider an orthonormal basis φ1, . . . , φp of Vp so that the
matrix form of πp is given by

ΦpΦ
T
p , Φp := [φ1, . . . , φp] ∈ Matn,p(R)

where Matn,p(R) is the vector space of n×p matrices, and (right) superscript

(·)T denotes the transposition operation. By direct computation, the distance
function J is then rewritten

J (m) = ‖S−ΦpΦ
T
p S‖2

F

where ‖A‖F :=
√

tr(AAT ) is the Frobenius norm on Matn,p(R).
Now it is classically known that minimization of J is given by Eckart–

Young Theorem [2, 11, 17, 7] and can be obtained via a singular value de-
composition of S. Indeed, take this SVD to be

S = UΣVT , U := [φ1, . . . , φNt ]
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with singular values σ1 ≥ σ2 ≥ . . . ≥ σNt . Then one solution of minimizing
J is given by

m0 := span(φ1, . . . , φp)

which is unique whenever σp > σp+1 [27]. Let also define the reduced model
Sp of our snapshot matrix by

Sp := ΦpΦ
T
p S, Φp := [φ1, . . . , φp].

Taking back our snapshot matrices S(λi) associated to operating points λi,
we thus obtain for any fix mode p ≥ 1 points

mi := span(φ
(i)
1 , . . . , φ

(i)
p ) ∈ G(p, n), i = 1, . . . , N.

Let now explain in more detail the geometry of such a manifold so that we
can interpolate between these points.

4. Notions and Results about Grassmann Manifolds

Let now be given some points defined on a compact smooth Riemannian
manifold, which only look locally like an euclidean vector space. From the
general theory of manifolds, such sets can be described using local charts
and a pointwise metric [39, 10, 13]. Compare to the simple case of an open
subset of some vector space, one may need several charts to describe all the
manifold.

It should be recalled that the specific case of the Grassmannian man-
ifolds has been particularly studied in the context of POD interpolation
methods [28, 32, 22, 46, 48, 47], and we give again here the main ideas
of these articles. It should also be noted that a very mathematical (and very
systematic) approach to these manifolds is proposed by Kozlov [19].

A Grassmannian manifold G(p, n) can be obtained as a quotient space [39,
Chapter 21] of the (open) space of p linearly independent vectors of Rn. More
specifically [35, Appendix C.2], first define the (non-compact) Stiefel mani-
fold Stnc(p, n) to be the set of p linearly independent vectors {y1, . . . ,yp} of
Rn. Taking any basis of Rn, such a set can be represented by a rank p matrix

Y := [y1, . . . ,yp] ∈ Matn,p(R).

This lead to define a fiber bundle [18, 15], which is also a submersion [39]:

π : Y ∈ Stnc(p, n) 7→ π(Y) = m := {Yγ, γ ∈ GL(p)} ∈ G(p, n) (1)
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Figure 1: Schematic of a fiber bundle.

Informally speaking, it means that any point m of the Grassmannian mani-
fold G(p, n) can be represented by any point Y of the fiber π−1(m) (Figure 1).

From this submersion, the Grassmannian manifold G(p, n) can inherit the
geometry of the Stiefel manifold Stnc(p, n). As this last manifold is in fact
an open space of the vector space Matn,p(R), we have only one chart, so that
it has a “simple” geometry.

Remark 4.1. Some also consider a submersion using the compact Stiefel man-
ifold

Stc(p, n) := {Y ∈ Matn,p(R), Y
T
Y = Ip}

where Ip ∈ Matn,p(R) is the identity matrix, so that we have

πc : Y ∈ Stc(p, n) 7→ πc(Y) = m := {Yg, g ∈ O(p)} ∈ G(p, n)

4.1. The Grassmann Manifold and its Riemannian metric

So far, we have only described the points of the manifold G(p, n). Let
now explain its Riemannian structure [13]. To do so, first attach to each
m ∈ G(p, n) a tangent space, which is a vector space isomorphic to Rp×(n−p),
equipped with a scalar product (depending smoothly on m), so that G(p, n)
becomes a Riemannian manifold.

First of all, as Stnc(p, n) is an open space of Matn,p(R), the tangent space
attached to any Y ∈ Stnc(p, n) is simply given by Matn,p(R), and a natural
inner product of Matn,p(R) is given by

〈A,B〉 := tr(ATB).
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But we need to define on each point Y ∈ Stnc(p, n) a scalar product 〈·, ·〉Y
which is right GL(p) invariant (so that this scalar product can be transferred
to the point m = π(Y)), meaning that

〈Aγ,Bγ〉Yγ = 〈A,B〉Y.

One candidate is given by [4, 28]:

〈A,B〉Y := tr((YTY)−1ATB).

Using submersion π given by (1), such a metric is transferred to any tangent
vector

v ∈ TmG(p, n), π(Y) = m.

Nevertheless, there is no any intrinsic way to describe the tangent space
TmG(p, n). Indeed, it depends on a choice of a point Y ∈ π−1(m), so the
horizontal space is defined by:

HorY := {Z ∈ Matn,p(R), ZTY = 0}.

Finally

1. The tangent space TmG(p, n) is isomorphic to any HorY with Y such
that π(Y) = m. An isomorphism is given by

dπY|HorY : HorY 7−→ TmG(p, n)

2. For any v ∈ TmG(p, n), the unique Z ∈ HorY such that

dπY · Z = v (2)

is called an horizontal lift of v.

3. For any γ ∈ GL(p), then Zγ is another horizontal lift of v (but belong-
ing to the vector space HorYγ) and

dπYγ · (Zγ) = v.

The Riemannian metric on the Grassmannian G(p, n) is then defined by

〈v1, v2〉m := 〈Z1,Z2〉Y,

with π(Y) = m and Z1 (resp. Z2) a horizontal lift of v1 (resp. v2) in HorY.
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4.2. Geodesic distance and principal Jordan angles

The Grassmannian manifold G(p, n) being equipped with a Riemannian
metric, we can define its associated Levi-Civita connection [13, 39], and then
the geodesics associated to this connection [18, p. III.6].

We can also address the question of minimizing curves in G(p, n). To do
so, let first define the length of any curve c : [0; 1]→ G(p, n) to be

L(c) =

∫ 1

0

〈ċ(t), ċ(t)〉c(t)dt

and define the associated Riemannian distance

dr(m0,m1) := inf{L(c), c(0) = m0, c(1) = m1}. (3)

A minimizing curve is finally some curve which realize the Riemannian dis-
tance between two points (as we are in case of a connected manifold [44]). In
the general case, such minimizing curve may not exist. Nevertheless in our
situation:

1. All minimizing curves are geodesics [44, Theorem 6.4];

2. Geodesics are minimizing curves only locally [44, Proposition 6.11].

Returning back to the Riemannian manifold G(p, n), there is a way to
obtain explicit geodesics [19, 28]:

Theorem 4.2. Let m ∈ G(p, n) and v ∈ TmG(p, n) with horizontal lift given
by Z ∈ HorY, π(Y) = m. Let Z = UΣVT be a singular value decomposition
of Z. Then

αv : t ∈ R 7→ π
(
Y(YTY)−1V cos(tΣ) + U sin(tΣ)

)
∈ G(p, n) (4)

is the unique maximal geodesic such that αv(0) = m and α̇v(0) = v.

To obtain the Riemannian distance between any two points m0 and m1

of G(p, n), there is now an important result [4, 19] that links this distance to
the Jordan principal angles [1, 6]:

Definition 4.3. Let m0 and m1 be two points in G(p, n) and define Yi ∈
π−1(mi) (i = 0, 1) such that Y

T

i Yi = Ip. Writing a singular value decompo-
sition

Y
T

0 Y1 = UΣV, Σ = diag(σ1, . . . , σp), 0 ≤ σp ≤ . . . ≤ σ1 ≤ 1
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then the Jordan principal angles between m0 and m1 are given by

0 ≤ θi := arccosσi ≤
π

2

As a consequence of [19, Theorem 12.2], for any two points m0 and m1

of G(p, n) the Riemannian distance is given by

dr(m0,m1) =

( p∑
i=1

θ2
i

)1/2

(5)

and the diameter of G(p, n) (the maximum distance between two points) is
given by [19]

diam =
√
r
π

2
, r = min(p, n− p) (6)

Remark 4.4. From Hopf-Rinow Theorem [13, Theorem 2.103], any two points
of the Grassmannian manifold can be joined by a minimal geodesic. If we
explicitly find such a geodesic among all the ones given by (4), we can deduce
the distance, but this is far from being obvious. Formula (5) not allows us
to find explicit geodesic.

4.3. Exponential and logarithmic map

By exploiting geodesics of a Riemannian manifold, it is possible to es-
tablish local maps (using normal coordinates [13]), in particular through the
exponential function. In the case of the (complete) Grassmannian manifold
G(p, n), such an exponential map makes it possible to obtain, at any point
m ∈ G(p, n), an application between the tangent space TmG(p, n) and an
open subset of G(p, n).

Let now recall definition of the exponential map [44]:

Definition 4.5. Let m ∈ G(p, n), then the exponential map at m is defined
by

Expm : TmG(p, n) −→ G(p, n), v 7→ Expm(v) := αv(1)

where αv is given by (4).

From this exponential map, it is thus possible to simply write down any
geodesic with initial velocity v:

t ∈ R 7→ Expm(tv). (7)

However, there is no reason why this geodesic should be a minimizing one
between m = Expm(0) and m1 := Expm(t1v) for any t1 > 0.
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Remark 4.6. The length of the geodesic (7) between the points m = Expm(0)
and m1 = Expm(t1v) is simply given by t1‖v‖. Taking a horizontal lift Z of
v, we thus obtain the length

t1‖v‖ = t1‖Z‖F
which is not, in general, the Riemannian distance dr(m0,m1) given by (3).

There is no reason now that the exponential map can be injective:

Definition 4.7. For any point m ∈ G(p, n), the injectivity radius at m is
defined to be

rm := sup{r > 0, Expm : B(0, r) −→ Expm (B(0, r)) is a diffeomorphism}

where B(0, r) := {v ∈ TmG(p, n), ‖v‖ < r}. The injectivity radius rg of
G(p, n) is given by

rg := inf{rm, m ∈ G(p, n)}.
Such an injectivity radius rg just make sure that, for any point m ∈

G(p, n), the map Expm is a diffeomorphism from B(0, rg) onto its image. Of
course, it may happen that Expm is a diffeomorphism on some bigger open
set U ⊃ B(0, rg), so we can consider its inverse map on Expm(U).

Now, in the specific case of Grassmannian manifold, we have:

Theorem 4.8 ([19]). For any integers n, p such that min(p, n− p) ≥ 2, the
injectivity radius of G(p, n) is given by

rg =
π

2

As there is an explicit formulae for the geodesics, and thus for the ex-
ponential map, it is also possible to define an explicit logarithm map. First
define for any point m ∈ G(p, n) the open set

Um := {m1 ∈ G(p, n), YTY1 is invertible, π(Y) = m, π(Y1) = m1}
(8)

Definition 4.9 (Logarithm map in Grassmannian manifold). For any m ∈
G(p, n), the logarithm map at m is defined on the open space Um given as
above by

m1 ∈ Um 7→ Logm(m1) = dπY ·
(
U arctan(Σ)VT

)
∈ TmG(p, n) (9)

where π(Y1) = m1, π(Y) = m and[
Y1

(
YTY1

)−1 (
YTY

)
−Y

] (
YTY

)−1/2
= UΣVT
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In fact we now have:

Lemma 4.10. For any m ∈ G(p, n) and m1 ∈ Um, we have

Expm ◦Logm(m1) = m1

Proof. We follow here the same ideas as the ones in [45, Theorem 2.3.36].
Take first two orthonormal basis for m,m1 and write Y,Y1 the correspond-
ing matrices. Then from (9) we have

Logm(m1) = dπY ·
(
U arctan(Σ)VT

)
with

Y1

(
YTY1

)−1 −Y = UΣVT

From (4) we thus have

Expm ◦Logm(m1) = π (YV cos (arctan(Σ)) + U sin (arctan(Σ)))

where Q := cos (arctan(Σ)) is some invertible matrix and

sin (arctan(Σ)) = ΣQ

so that

YV cos (arctan(Σ)) + U sin (arctan(Σ)) = YVQ + UΣQ = (YV + UΣ)Q

=
(
YV + Y1

(
YTY1

)−1
V −YV

)
Q

= Y1

(
YTY1

)−1
VQ

where
(
YTY1

)−1
VQ is an invertible matrix and then

π (YV cos (arctan(Σ)) + U sin (arctan(Σ))) = π(Y1) = m1

which concludes the proof.

Remark 4.11. Lemma 4.10 doesn’t mean that the Grassmannian logarithmic
map Logm from Definition 4.9 is the inverse map of the exponential map
Expm defined on all the tangent space TmG(p, n). For instance, we cannot
have

Logm ◦Expm(v) = v

for all v ∈ TmG(p, n). Indeed, taking any v such that ‖v‖ > diam (given
by (6)), such relation is impossible.
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5. ROM Adaptation Based on Interpolation in Grassmann Mani-
folds

Take back here the N points {mi}Ni=1 in the Grassmannian manifold
G(n, p), all obtained from the ROMs of the snapshot matrices (as detailed
in section 3). The goal here is to obtain an interpolation of a snapshot ma-
trix associated with a new target point λ̃. To do so, we can for instance
follow [32]: the idea is to consider normal coordinates [13] in a neighborhood
U0 of some base point m0 ∈ {m1, . . . ,mN}, given by the exponential map
Expm0

(see Definition 4.5).
Of course, the map

φ0 :=
(
Expm0

)
|U0
⊂ Tm0G(n, p) : U0 −→ φ0 (U0) ⊂ G(n, p)

has to be a diffeomorphism, and assumption mi ∈ φ0 (U0) for i = 1, . . . , N
should be made. Under these assumptions, let define

vi := φ−1
0 (mi) ∈ Tm0G(n, p)

and let use classical interpolation (as the Lagrange interpolation) to obtain a
new vector ṽ ∈ Tm0G(n, p) associated to the target point λ̃. The interpolated
point is finally given by:

m̃ := φ0(ṽ).

Remark 5.1. To be sure the restricted Exponential map is a diffeomorphism,
we can consider the injectivity radius (see Theorem 4.8) and consider only
the points mi such that

d(m0,mi) ≤
π

2

Nevertheless, we notice in all our cases that Logm0
(mi) could be computed,

even outside the injectivity radius (see Appendix B), so we could always
obtain vectors vi ∈ Tm0G(n, p), and thus an interpolated vector ṽ. We have
to be aware that in those case, we don’t know what can happen, as we can
have a loose of injectivity (see Example 5.2).

Example 5.2. The case of a cylinder C := S1×]−6; 6[⊂ R3 (where S1 is the first
dimensional circle) can easily illustrate the situation of loose of injectivity.
Taking A(1, 0, 0) ∈ C and TAC = R2, the exponential map is simply given by

ExpA : v = (θ, z) ∈ R2 7→ ExpA0
(v) = (cos(θ), sin(θ), z)
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where it is easy to check that the injectivity radius is π. Now, taking B =
(−1, 0, 0) ∈ C and U := (S1 −B)×]− 6; 6[ we can define

LogA : M ∈ U 7→ (θ, z) ∈]− π; π[×R, M = (cos(θ), sin(θ), z)

so that ExpA ◦LogA(M) = M for all M ∈ U. Note here that the open subset
U is the cut–locus [13] of the point A.

Let consider the helix curve

ϕ(t) := (cos(t), sin(t), t), t ∈]− 1; 5[

and take four points

A0 := ϕ(0) = 1, A1 := ϕ
(
−π

6

)
, A2 := ϕ

(
5π

6

)
, A3 := ϕ

(
4π

3

)
so we can compute the associated vectors on TAC

vi = LogA(Ai)

and the loose of injectivity of the exponential map translates into a discon-
tinuity from v2 to v3 (see Figure 2).

5.1. Lagrange Interpolation

Considering the velocities vi ∈ Tm0G(p, n) (i = 1, . . . , N), the Lagrange
polynomials are used for the interpolated velocity ṽ, given by:

ṽ =
N∑
i=1

∏
i 6=j

λ̃− λj
λi − λj

vi (10)

Remark 5.3. For explicit computation, let first consider Y0 ∈ π−1(m0)
(see (1)) and define Zi to be the horizontal lift associated to vi (see (2)).
Then we define

Z̃ =
N∑
i=1

∏
i 6=j

λ̃− λj
λi − λj

Zi

corresponding to ṽ.
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(a) Helix curve on a cylinder (b) Interpolation on tangent plane using logarithm
map

Figure 2: Interpolation of points on helix curve on a cylinder.

6. Application to Hyperelasticity

6.1. Kinematics of Continuum Mechanics Framework

Let Ω0 ⊂ R3 and Ω ⊂ R3 represent the reference and the current configu-
rations of a body, parameterized in X and in x, respectively. The non-linear
deformation map ϕ : Ω0 → Ω at time t, transforms the referential (mate-
rial) position X into the related current (spacial) position x = ϕ(X, t). The
deformation gradient F is defined by

F := ∇ϕ(X) =
∂ϕ(X)

∂X
=
∂x

∂X
(11)

with the Jacobian J(X) = det(F) > 0 (volume ratio). The right and left
Cauchy-Green tensors are defined as C = FTF and B = FFT , respectively.

The three principal invariants of C which are identical to those of B are
defined as

I1 = tr(C), I2 =
1

2
[(tr(C))2 − tr

(
C2
)
], I3 = det(C). (12)
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6.2. Incompressible Transverse Isotropic Material

A material with one family of fibers is considered where the stress at a
material point depends not only on the deformation gradient F but also on
the fiber direction. The fibers are modelled by a flow [13] obtained from
some unit vector field a0 on Ω0. The direction of a fiber at point X ∈ Ω0 is
thus obtained by the unit vector a0(X), |a0| = 1.

Note that the unit vector field a0 induces a unit vector field a on current
configuration Ω defined by

F(X)a0(X) = αa(x)

where the length changes of the fibers along its direction a0 is determined by
the stretch α as the ratio between the current and the reference configuration.

Consequently, since |a| = 1, we can define the square of the stretch α
following the symmetries of the deformation gradient

α2 = a0F
TFa0 = a0Ca0.

6.3. Linearization of the principle of internal virtual work in the spatial de-
scription

The linearization of the internal virtual work in the spatial description
reads (see Section 8.4 in [25])

D∆uδWint(u, δu) =

∫
Ω

(gradδu : c : grad∆u + gradδu : grad∆u σ)dv (13)

or in index notation (with Einstein convention on repeated indices),

D∆uδWint(u, δu) =

∫
Ω

∂δua
∂xb

(δacσbd + cabcd)
∂∆uc
∂xd

dv (14)

where the term δacσbd + cabcd is the effective elasticity tensor in the spatial
description. The term δacσbd corresponds to the geometrical stress contribu-
tion to linearization (initial stress contribution at every increment) whereas
cabcd represents the material contribution to linearization. The elasticity ten-
sor cabcd in the spatial description is derived from the push-forward of the
linearized second Piola-Kirchhoff stress tensor which yields the linearized
Kirchhoff stress tensor ∆τ from relation

∆τ = Jc : grad∆u (15)
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Replacing the direction ∆u of the directional derivative with the velocity
vector v, ∆τ and grad∆u result in the Lie time derivative Lv(τ ) of τ and
the spatial velocity gradient l = ḞF−1, respectively. Again, using the minor
symmetries of c, the following relation can be written

Lv(τ ) = Oldr(τ ) = τ̇ − lτ − τ lT = Jc : d (16)

where Oldr(τ ) denotes the objective Oldroyd stress rate (convected rate) of
the contravariant Kirchhoff stress tensor τ and d = sym(l) (symmetric part
of l) the rate of the deformation tensor. At this point we have to recall that for
structural elements (shells, membranes, beams, trusses) Abaqus/Standard
uses the elasticity tensor related to the Green-Naghdi objective rate (see
Appendix A). The detailed constitutive model used here is given in [30].

7. Numerical Investigations

The objective of this section is to investigate the POD basis interpolation
accuracy in two examples in hyperelasticity.

7.1. Abaqus implementation of POD-ROM approximations

To implement the interpolated spatial POD basis into a commercial code,
a non intrusive approach is used. Specifically, the multi-point constraint
equations in Abaqus [40] are used to construct the ROM model. A linear
multi-point constraint requires that a linear combination of nodal variables
is equal to zero:

A1u
P
i + A2u

Q
j + · · ·+ ANu

R
k = 0 (17)

where uPi is the nodal variable at node P , degree of freedom i and Ai, (i =
1, . . . N) are coefficients that define the relative motion of the nodes. In
Abaqus/Standard the first nodal variable specified (uPi corresponding to A1)
will be eliminated to impose the constraint. In addition, the coefficient A1

should not be set to zero. For the construction of the reduced order model,
p reference points are created corresponding to the total number of POD
modes (arbitrary positioned in space). These reference points are used to
define the constraint equations for introducing the spatial POD modes and
to assign the extra degrees of freedom corresponding to the unknown time
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variables. Thus, the interpolated spatial basis m̃ := span(φ̃1, . . . , φ̃p) on
G(p, n) is imposed to the linear constraint equations as follows:

u(xl, t, λ̃)−
p∑

h=1

φ̃h(xl)ψh(t) = 0 (18)

where xl, (l = 1, . . . , Ns) is related to the nodal point positions, φ̃h(xl) repre-
sent the associated spatial POD h-mode for xl, and ψh(t) is the time variable
assigned to the reference point h that has to be determined. Note also that
the system of equations defined in (18) has to be generated for each degree
of freedom.

Remark 7.1. In fact this is not a standard POD-Galerkin approach since we
are not projecting the linearized system of equations onto the interpolated
spatial POD basis. But it serves to asses the accuracy of the ROM FEM
model which is constructed by the interpolated POD basis.

7.2. Inflation of a spherical balloon

The first benchmark model concerns the inflation of an anisotropic spher-
ical balloon considering material anisotropy as a parameter. The sphere has
an initial radius of R = 10, thickness h = 0.5 and is loaded by an internal hy-
drostatic pressure of P = 40 (no units). Analysis is performed on an octant
S0 of the sphere using plane symmetry boundary conditions, as depicted in
Figure 3 where three radial points A(R, 0, 0), B(0, R, 0) and C(0, 0, R) are
defined on each axis, respectively. Three-node shell elements (S3R) are used
for the mesh. A total number of 514 elements are generated with 228 nodes.
The constitutive behavior is implemented in Abaqus/Standard with a user-
defined subroutine (UMAT) [40].

Remark 7.2. The fiber orientation has to be defined on each point M ∈ S0

using an orthonormal basis of the tangent plane TMS0, which has to be
specified.

The choice made in Abaqus is to consider first an outward normal n(M) to
this tangent plane and then a first vector E1(M) as the orthogonal projection
(normalized) of e1 := (1, 0, 0) onto TMS0. The second unit vector is the cross
product E2(M) := n(M) ∧ E1(M).

Explicit fiber orientations on the octant

Let make now an explicit definition of the fiber orientations, with param-
eter some angle θ using local basis E1(M),E2(M) of the tangent plane TMS0
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Figure 3: Geometry of an octant S0 of a spherical balloon made of transversely isotropic
material. Three radial points A, B and C are defined on axis 1,2 and 3, respectively; plane
symmetry boundary conditions are used.

as explained in Remark 7.2. More specifically, take

M = (cos(u) sin(v), sin(u) sin(v), cos(v)) ∈ S0, (u, v) ∈
]
0;
π

2

[
×
]
0;
π

2

[
and then define

E1(M) :=
Xh

‖Xh‖
, Xh :=

 1− cos2(u) sin2(v)
− sin(u) cos(u) sin2(v)
− cos(u) sin(v) cos(v)

 ,

E2(M) := n(M) ∧ E1(M).

Note here that the vector Xh corresponds to the orthogonal projection of the
vector (1, 0, 0) onto the tangent plane TMS0.

Finally, the unit vector defining the fiber orientation is given by (see
Figure 4 for some examples).

a0(θ) := cos(θ)E1(M) + sin(θ)E2(M)
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(a) Fibers orientation with θ = 0 degree (b) Fibers orientation with θ = 45 degree

(c) Fibers orientation with θ = 60 degree (d) Fibers orientation with θ = 90 degree

Figure 4: Different fibers on the sphere.

Model for strain energy function

For a homogeneous transversely isotropic non-linear material, let consider
a free energy function that depends only on two invariants (I1, I4)

Ψ = Ψ (I1(C), I4(C, a0))

where I1 = tr(C), while
I4 = a0Ca0, (19)

is the invariant related to anisotropy. Since we assume incompressibility of
the isotropic matrix material, i.e., I3 = 1, the free energy is enhanced by an
indeterminate Lagrange multiplier p which is identified as a reaction pressure

Ψ = Ψ[I1(C), I4(C, a0)] + p(I3 − 1).

The specific model used here is developed for membranous or thin shell-
like sheets considering a plane stress state throughout the sheet [30]. Fol-
lowing the method of Humphrey [14] which is based on a derivation by
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Spencer [5], the strain energy function is defined as

Ψ(I1, I4) := c0(exp(Q)− 1), Q := c1(I1 − 3)2 + c2(I4 − 1)2 (20)

where ci, i = 0, 1, 2 are material parameters defined as: c0 = 86.1, c1 = 0.0059
and c2 = 0.031 (dimensionless).

Remark 7.3. This model introduces an inherent constitutive coupling be-
tween the isotropic and anisotropic material response. In order to avoid non-
physical behavior of soft biological tissues, the related strain-energy function
must be polyconvex. It can be shown that polyconvexity of a (continuous)
strain-energy function implies that the corresponding acoustic tensor is el-
liptic for all deformations, which means from the physical point of view that
only real wave speeds occur; then the material is said to be stable. There ex-
ists a vast literature on polyconvexity, a term introduced by Ball [8]. In (20),
the anisotropic term c2(I4 − 1)2 is activated only when I4 ≥ 1 (the actual
fiber stretches are greater than unity).

Moreover, as discussed in [23], the constitutive description based on (20)
is limited to deformations in which the in-plane strains are positive, or tensile
and is not able to incorporate the behavior of the structure in compression.
Due to the membrane-like geometry of the structure, it is unlikely to support
compressive strains without buckling. This limitation extends to the issue of
bending stiffness, which is neglected in this model.

Snapshot matrices and error norms

In what follows, the training points are represented by the variable angle
λ = θ. FEM simulations are performed in Abaqus/Standard for the training
points λi ∈ Λs = {0, 45, 50, 60, 85, 90} whereas the target point for the inter-
polation is set to λ = 75. Because of this choice, it is natural to constraint
the training set to Λt = {50, 60, 85, 90} for the interpolation (see Figure 5 for
some FEM results). For each parametric simulation, a sequence of uniform
time snapshots is extracted from the model database. From the discretiza-
tion of the space-time fields (displacement/rotation), the snapshot matrices
S(λi) of size (n = 1728)× (Nt = 1000) are formed.

The eigenvalue spectrum of the matrices S(λi) corresponding to training
points λi ∈ Λt is shown in a log-log scale in Figure 6. The condition number
of the matrices is of the order of 1.0e+ 10. Notice that the distance between
the first and the second eigenvalue is of two orders of magnitude.
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Figure 5: Inflation modes of the benchmark anisotropic spherical balloon after reconstruc-
tion of the complete balloon using the plane symmetries conditions at the boundaries of
the octant S0.
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Figure 6: The eigenvalue spectrum of snapshot matrices Si corresponding to training
points λi = 50, 60, 85, 90.
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To quantify the accuracy of the interpolation, the relative L2-error norm
(in time) for a given target point λ̃ is evaluated with respect to the high-
fidelity FEM solution. Using the interpolated and the HF-FEM snapshot
matrices S̃ and SFEM, respectively, the following error measure is defined at
each time snapshot

eL2(S̃) =
‖ũi − uFEM

i ‖L2

‖uFEM
i )‖L2

, i = 1, . . . , Nt (21)

In addition, the relative Frobenius error norm represents a global error
measure which considers the error in the full time interval of the time steps

eF (S̃) = ‖S̃− SFEM‖F/‖SFEM‖F (22)

First, the accuracy of POD ROM-FEM is assessed using the Lagrange
interpolation. Using the linear constraint equations defined in (18), p refer-
ence points (for each POD mode) are created to assign the spatial POD basis
representing the interpolated subspace m̃ ∈ G(p, n) and the unknown time
variables. The total number of equations of the ROM-FEM model is 6 × p
while the total number of equations of the corresponding HF-FEM model is
288×6 = 1728. Figure 7 and Figure 8 show the relative L2-error norm eL2(S̃)
and the Frobenius error norm eF (S̃) for the target point λ̃ of the ROM-FEM
solution (constructed from the interpolated p spatial modes) and the high
fidelity FEM counterpart solution.
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POD ROM-FEM

Figure 7: Relative L2-error norm eL2
(S̃) against the number of POD vectors for the POD

ROM-FEM; target point: m̃(λ = 75).
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Figure 8: Relative Frobenious error norm against the number of POD vectors for the POD
ROM-FEM; target point: m̃(λ = 75).

Remark 7.4. Unexpectedly, the error is minimum for p = 2 POD modes and
increases by introducing additional modes, a result which is contradicting
the expected improvement of the solution with the number of vectors. The
non-monotonous decrease and the random oscillations can be attributed to
the independence between the p-dimensional solutions on the Grassmann
manifolds associated with the Grassmannian imbedding theorem (Theorem
13) [4].

Additionally, the position vector error norm ex = ‖x̃(t) − xFEM(t)‖L2 at
the nodal points is computed for p =1,2,5 and 10 POD modes. Figure 9 and
Figure 10 present the local error at the increment state t = 0.002 and at
the final increment state t = 1, respectively. In general, different patterns of
the spatial error distribution can be observed with respect to the number of
POD modes. In the majority of cases, the maximum error is located at the
boundary points of the octant S0 of the sphere where the plane symmetries
are imposed and at points of maximum displacement. Again, it is evident
that the error is not decreasing with the number of POD vectors.
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Figure 9: POD ROM-FEM; Position vector error norm ex = ‖x̃(t) − xFEM(t)‖L2 at the
nodal points at state t = 0.002 for POD modes p = {1, 2, 5, 10}; target point: m̃(λ = 75).
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Figure 10: POD ROM-FEM; Position vector error norm ex = ‖x̃(t)− xFEM(t)‖L2
at the

nodal points at state t = 1 for POD modes p = {1, 2, 5, 10}; target point: m̃(λ = 75).

Finally, Figure 11 shows the time-displacement histories for the radial
points A, B and C on the spherical balloon for the POD ROM-FEM compared
against its high fidelity counterpart solution using the first POD mode. It can
be observed that the interpolated ROM-FEM solution delivers good accuracy
and is accurate enough to predict the anisotropic balloon inflation at the
target condition.
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Figure 11: POD ROM-FEM using Lagrange interpolation; comparison of the displacement
of radial points A,B and C against the high-fidelity FEM solution; training points: m0(λ =
85) (reference point); m1(λ = 50); m2(λ = 60); m3(λ = 90); target point: m̃(λ = 75);
POD modes p = 1.

7.3. Hyperelastic structure with multiple components

In what follows, pMOR is investigated for a structural model consider-
ing the material stiffness as a parameter. The model consists of two basic
components: a plane shell section which is connected with truss elements
(non-symmetrically) (see Figure 12). The plane geometry has dimensions
20× 20 (mm), a constant thickness of 0.5 mm and is meshed with rectangu-
lar shells (S4). The hyperelastic model defined in (20) (UMAT) is assigned
to the plane section in which the fiber orientations are aligned with the x-
axis. The following parameters are used: c0 = 0.0520 (kPa), c1 = 4.63 and
c2 = 22.6. The truss elements is of type T3D2 with a cross section area of 1
mm2. For these elements, an isotropic incompressible hyperelastic material
model is implemented into the Abaqus/Standard subroutine UHYPER [40].
The material model is derived from the following strain-energy function

U = α1(exp[α2(I1 − 3)]− 1) (23)

where α1 and α2 are material parameters defined as: α1 = 0.0565 kPa
and α2 is used for the parametric analysis. At the boundary of the plane
section (x = 0) and at the foundations of the truss elements all degrees of
freedom are set to zero. A constant hydrostatic pressure of 120 mmHg (0.016
MPa) is applied at the bottom of the plane section.
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Figure 12: Geometry, boundary conditions and total displacement of the structural model.

Simulations are performed in Abaqus/Standard (Implicit). The follow-
ing training points for the exponential parameter α2 are selected which are
represented by the variable λ ∈ {5, 10, 15, 20, 25, 30}. Figure 13 shows the
second Piola-Kirchhoff stress-stretch curves for the associated parameter val-
ues which reveals a wide spectrum of stress values. For each parametric sim-
ulation, a sequence of snapshots uniformly distributed over time using an
increment of ∆t = 0.001 is extracted for all nodes of the plane structure
from the model database. The space-time snapshot matrices S(λi) ∈ Rn×Nt

of size (n = 726) × (Nt = 1000) are associated to nodal displacement and
rotational fields. The following training points λi ∈ Λt = {15, 20, 25, 30} are
chosen for estimating the target point λ̃ = 17.5. Then, the set of the low-
dimensional POD basis is interpolated on the Grassmann manifold using
Lagrange interpolation. POD ROM-FEM interpolation is compared against
the high-fidelity FEM solution.

The eigenvalue spectrum of snapshot matrices Si corresponding to train-
ing points λi ∈ Λt is shown in a log-log scale in Figure 14. It is evident that
the distance between the first and the next two eigenvalues is in a range of
one order of magnitude.
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Figure 13: Second Piola-Kirchhoff stress vs stretch for the examined parameter range.
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Figure 14: The eigenvalue spectrum of snapshot matrices Si corresponding to training
points λi = 15, 20, 25, 30.

First, the application of the POD ROM-FEM is investigated. The inter-
polated spatial basis representing the subspace m̃ on G(p, n) is introduced
using the linear constraint equations (Section 7.1) in Abaqus to construct a
low dimensional ROM FEM model associated to the target parametric point.
For each low dimensional model corresponding to p = 1, 2, 5, 10, 20 modes, a
number of {RPh}ph=1 reference points are created to assign the interpolated
spatial POD modes and the unknown time variables. Table 1 and Table 2
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report in detail the degrees of freedom of the high fidelity and the reduced
order FEM model using p = 10 POD modes, respectively. Clearly, at the
ROM model, a reduction of the total number of equations by a factor ≈ 9.5
is obtained. Besides, the constraint of the degrees of freedom induced by the
POD spatial modes enhance the stability and convergence of the ROM-FEM
problem.

The accuracy of the POD ROM-FEM is assessed by comparing the rela-
tive L2-error norm eL2(S̃) between the reduced order FEM and its directly
high-fidelity computed counterpart solution with the number of POD modes,
as shown in Figure 15. Opposite to the previous example, in this case, the
error is decreasing by using more POD modes. Furthermore, Figure 16 shows
a comparison of the approximated time histories of selected nodal total dis-
placements for p = 20 modes against the high fidelity FEM solution. It is
evident that all nodal time-histories are nearly identical.

Table 1: High Fidelity FEM

Element type N. of elements DOF N. of nodes Total DOF
S4 100 6 121 726

T3D2 6 3 12 36
N. of tie constraints

6 3 6 18
N. of equations 744

Table 2: ROM-FEM

Element type N. of elements DOF N. of nodes Total DOF
- - 6 10 (RP) 60

T3D2 6 3 12 36
N. of tie constraints

6 3 6 18
N. of equations 78
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Figure 15: POD ROM-FEM; relative L2-error norm eL2(S̃) against the number of POD
vectors; target point: m̃(λ = 17.5); Lagrange interpolation.
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Figure 16: POD ROM-FEM; comparison of selected nodal time-displacement histories
against the high-fidelity FEM solution; training points: m0(λ = 15); m1(λ = 20); m2(λ =
25); m3(λ = 30); target point: m̃(λ = 17.5); POD modes = 20.
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8. Conclusions

A concrete mathematical approach for POD ROM basis interpolation
on Grassmann manifolds for pMOR in hyperelasticity is presented. Special
attention has been paid on the local maps on the Grassmann manifolds con-
sidering the logarithm and the exponential maps. The implication of the
injectivity radius which defines the radius of the largest ball about the origin
on the tangent plane that the exponential map is a diffeomorphism is high-
lighted together with the notion of the cut-locus. The loss of injectivity is
clearly exhibited using an illustrative low dimensional example. Via a non-
intrusive method, the target POD spatial basis is inserted in a commercial
code to construct a ROM-FEM model. To this end, only the accuracy of in-
terpolation is assessed against the high-fidelity FEM solution since the ROM
model still embeds the high dimension. Different structural problems are
used to evaluate the accuracy of the ROM FEM models constructed from
the interpolated spatial POD basis. Numerical investigations of the error
norms showed good accuracy in both numerical cases. It has to be remarked
that the interpolated ROM FEM solutions associated to the p-dimensional
POD basis for p = 1, . . . , k are not connected. A direct consequence is the
possible occurrence of a non-monotonic and spurious oscillatory behavior of
the error norm with respect to the number of POD modes.
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Appendix A. Derivation of the Green-Naghdi objective rate

Using the definitions of the Jaumman-Zaremba and the Green-Naghdi
objective rates, the following relation holds

GreeNag(τ ) = Jaum(τ ) + (w −Ω)τ − τ (w −Ω) (A.1)

where Ω = ṘRT , R is the rotation tensor and w is the spin tensor.
Mehrabadi and Nemat-Nasser [12] (Appendix A. Derivation of 8.15) showed
that it is possible to solve this equation explicitly for (w−Ω) by repeatedly
using the Cayley-Hamilton theorem; The end result is expressed as
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w −Ω = �(v) : d (A.2)

where � is a fourth-order tensor defined through eq.(7.3.12a) in Simo and
Hughes [29] and v denote the left spatial stretch tensor derived from the
polar decomposition of the deformation gradient F = vR.

� : d =
1

I1vI2v − I3v

(
I2

1v(vd− dv)− I1v(Bd− dB) + Bdv− vdB

)
(A.3)

where

I1v = tr(v), I2v =
1

2

(
tr(v)2 − tr(v2)

)
, I3v = det(v) (A.4)

In index notation, � is expressed as:

Λijkl =
1

I1vI2v − I3v

(
I2

1v

1

2
(δjlvik + δjkvil − (δikvjl + δilvjk))

− I1V
1

2
(δjlBik + δjkBil − (δikBjl + δilBjk))

+
1

2
(Bikvlj +Bilvkj − (vikBlj + vilBkj))

)
(A.5)

Note that � does not have the major symmetries but possesses minor
symmetry and skew symmetry

Λijkl 6= Λklij (A.6)

Λijkl = Λijlk = −Λjikl (A.7)

The following terms of � are equal to zero:

Λ1111 = Λ1122 = Λ1112 = Λ2211 = Λ2222 = Λ2212 = 0 (A.8)

Hence,

GreeNag(τ ) = cJZ : d + (� : d)τ − τ (� : d) = cGN : d (A.9)
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or in index notation

GreeNag(τ)ij = [cJZijkl − Λiαklταj + τiαΛαjkl]dkl = cGNijkl : dkl (A.10)

where the terms between the brackets yield the desired result, i.e. the
components of the non-symmetric Green–Naghdi tangent moduli cGNijkl. The
lack of diagonal (major) symmetry of the elasticity tensor associated with
the Green-Naghdi rate of the Kirchhoff stress has been pointed out as one of
the drawbacks of this choice [29], as it implies that the stiffness matrices are
non-symmetric, i.e.,

cGNijkl − cGNklij 6= 0 (A.11)

Appendix B. Grassmannian distances and injectivity radius

The interpolation procedure given in section 5 uses normal coordinates
on Grassmann manifold. One main issue is that such manifold is not a vector
space, but only looks like an open space of a vector space, via local charts.
Normal coordinates use the exponential map (see 4.5), but only whenever
they define a diffeomorphism. This is the case for any open ball of radius
r ≤ π/2, as injectivity radius of Grassmannian manifold is rg = π/2 (see 4.8).

Nevertheless, it was pointed out in Lemma 4.10 that one can define a
logarithmic map outside the injectivity radius (maybe inside the cut-locus
as mentioned in Example 5.2), and thus enable us to make computation on
a tangent space. But doing so, there is no way to control what can happen
during the procedure.

In the two numerical situations presented in section 7, the interpolation
procedure was done, even for cases when Riemannian distance was beyond
injectivity radius, as detailed below.

In all cases, recall that for two given points m0 and m1 in Grassmannian
manifold G(n; p), the Riemannian distance d(m0,m1) is given by (3).

Issued from the spherical balloon numerical investigation (see 7.2) Fig-
ure B.17 produces the Riemannian distance d(m0,mi) between the reference
point m0(λ = 85) and the points mi for λi ∈ {50; 60; 90}, for different modes
of the POD (from 1 to 10 modes). The main result here is that distances
are below injectivity radius only in the first and the second mode. As it may
be interesting, we also propose in Figure B.18 all previous distances normal-
ized with the Grassmannian diameter

√
pπ/2 (with p being the mode of the
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POD). As shown in Figure B.19, where respective distances d(mi,mj) are
given, no any choice would have lead to situation where all points are inside
a ball of radius r ≤ rg.
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Figure B.17: Distance between subspaces on the Grassmann manifold with respect to the
number of POD modes; Reference point: m0(λ = 85).
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thesis. La Rochelle, 2018.

[46] Rolando Mosquera et al. “POD basis interpolation via Inverse Dis-
tance Weighting on Grassmann manifolds”. In: Discrete & Continuous
Dynamical Systems-S 12.6 (2018), p. 1743.

[47] M Oulghelou and C Allery. “Non intrusive method for parametric
model order reduction using a bi-calibrated interpolation on the Grass-
mann manifold”. In: arXiv preprint arXiv:1901.03177 (2018).

[48] Rolando Mosquera et al. “Generalization of the Neville-Aitken Inter-
polation Algorithm on Grassmann Manifolds: Applications to Reduced
Order Model”. In: arXiv preprint arXiv:1907.02831 (2019).

[49] Mariano Vázquez et al. Advanced HPC-based Computational Model-
ing in Biomechanics and Systems Biology. Lausanne: Frontiers Media,
2019.

[50] Ralf Zimmermann. Manifold interpolation and model reduction. 2019.
arXiv: 1902.06502 [math.NA].

43

https://doi.org/10.1186/2213-7467-1-11
https://hal.archives-ouvertes.fr/hal-01590981
http://dblp.uni-trier.de/db/journals/siamrev/siamrev57.html#BennerGW15
http://dblp.uni-trier.de/db/journals/siamrev/siamrev57.html#BennerGW15
https://doi.org/10.1002/nme.5177
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.5177
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.5177
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5177
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5177
https://arxiv.org/abs/1902.06502


[51] Charbel Farhat and David Amsallem. “Recent Advances in Reduced-
Order Modeling and Application to Nonlinear Computational Aeroe-
lasticity”. In: 46th AIAA Aerospace Sciences Meeting and Exhibit. doi:
10.2514/6.2008-562. eprint: https://arc.aiaa.org/doi/pdf/10.
2514/6.2008-562. url: https://arc.aiaa.org/doi/abs/10.2514/
6.2008-562.

44

https://doi.org/10.2514/6.2008-562
https://arc.aiaa.org/doi/pdf/10.2514/6.2008-562
https://arc.aiaa.org/doi/pdf/10.2514/6.2008-562
https://arc.aiaa.org/doi/abs/10.2514/6.2008-562
https://arc.aiaa.org/doi/abs/10.2514/6.2008-562

	Introduction
	Problem Formulation
	Proper Orthogonal Decomposition and Grassmannian manifold
	Notions and Results about Grassmann Manifolds
	The Grassmann Manifold and its Riemannian metric
	Geodesic distance and principal Jordan angles
	Exponential and logarithmic map

	ROM Adaptation Based on Interpolation in Grassmann Manifolds
	Lagrange Interpolation

	Application to Hyperelasticity
	Kinematics of Continuum Mechanics Framework
	Incompressible Transverse Isotropic Material
	Linearization of the principle of internal virtual work in the spatial description

	Numerical Investigations
	Abaqus implementation of POD-ROM approximations
	Inflation of a spherical balloon
	Hyperelastic structure with multiple components

	Conclusions
	Acknowledgements
	Derivation of the Green-Naghdi objective rate
	Grassmannian distances and injectivity radius

