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Lower-dimensional nonlinear Brinkman’s law

for non-Newtonian flows in a thin porous medium

Maŕıa ANGUIANO1, Francisco J. SUÁREZ-GRAU2

Abstract

In this paper we study the stationary incompressible power law fluid flow in a thin porous medium. The
media under consideration is a bounded perforated 3D domain confined between two parallel plates, where
the distance between the plates is very small. The perforation consists in an array solid cylinders, which
connect the plates in perpendicular direction, distributed periodically with diameters of small size compared
to the period. For a specific choice of the thickness of the domain, we found that the homogenization of the
power law Stokes system results a lower-dimensional nonlinear Brinkman type law.

AMS classification numbers: 76A05, 35B27, 76M50.
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1 Introduction

Modeling non-Newtonian fluid flows in porous medium is very important due to its practical engineering applica-
tions, such as oil recovery, food processing, and materials processing. Non-Newtonian fluids exhibit a nonlinear
behavior that is different from that of Newtonian fluids and the related equations are too complicated to be
solved in the porous medium, due to its complex geometry. Thus, macroscopic laws obtained by homogenization
techniques are used as a good substitute for the original physical laws.

A relevant case of non-Newtonian fluid is the power law or Ostwald-de Waele model, which assumes that the
viscosity satisfies a nonlinear power law. More precisely, if u is the velocity field and Du the gradient velocity
tensor, denoting the shear rate by D[u] = 1

2 (Du+Dtu), the viscosity as a function of the shear rate is given by

ηr(D[u]) = µ|D[u]|r−2, 1 < r < +∞.

The two parameters µ > 0 and r are called the consistency and the flow index, respectively. The matrix norm
| · | is defined by |ξ|2 = Tr(ξξt) with ξ ∈ R3, so the viscosity is expressed in term of the second invariant of the
strain tensor DII [u] = D[u]D[u]t by

|D[u]|r−2 = |DII [u]| r2−1.

We recall that r = 2 yields the Newtonian fluid, for r ∈ (1, 2) the fluid is a shear-thinning and for r ∈ (2,+∞)
is a shear-thickening.

The derivation of macroscopic law for power law fluids through periodic porous medium with a periodic
arrangement of obstacles has been consider in Bourgeat et al. [8, 9]. Denoting ε a small parameter related to
the characteristic size of the obstacles and the period of the periodic structure and starting from the 3D power
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law Stokes system with body forces f , by means of the two-scale convergence method when ε tends to zero, the
following nonlinear Darcy type law for the pressure p is derived in an ε-independent domain Ω = ω× (0, 1) ⊂ R3

u =
1

µ
U(f −∇p) in Ω,

div u = 0 in Ω, u · n = 0 on ∂Ω.

The nonlinear function U : R3 → R3 is called permeability function of the porous medium and is defined through
the solutions of auxiliary problems of power law type depending on the geometrical structure of the domain. We
refer to Mikelić [20, 21] for a complete review on the modeling of non-Newtonian flows in porous medium by
using homogenization.

A more general case of periodic porous medium is when the size of the solid obstacles is assumed to be much
smaller than the period. Thus, denoting ε the period of the periodic porous structure and considering obstacles of
size εδ with δε a parameter which depends on the period and changes simultaneously during the homogenization
process, it is well-known that there exists a critical regime in which the macroscopic law describing the behavior of
Newtonian fluids is the Brinkman’s law instead of the Darcy’s law, see Allaire [1, 2] and Brillard [10]. This change

of behavior occurs for power law fluids as well. More precisely, assuming that the relation σε = ε/δ
3−r
r

ε tends to
a positive constant when ε tends to zero, Fratrović and Marušić-Paloka [15] derived by means of Γ-convergence
the following nonlinear Brinkman type law

−µdiv
(
|D[u]|r−2D[u]

)
+ µG(u) +∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

where the nonlinear function G : R3 → R3 is called the drag force function of the porous medium and it provides
the value of the drag force on the reference obstacle. Moreover, it is defined through the solution of auxiliary
exterior problems of power law type depending on the geometrical structure of the obstacles. We remark that
due to technical reasons, such as the derivation of a sharp Poincaré–Korn inequality and the existence of a unique
solution of exterior auxiliary problems in homogeneous Sobolev spaces, the fluid index r has to be restricted, i.e.
be smaller than the dimension of the domain. In fact, this result is only proved to shear thinning fluids.

On the other hand, the derivation of macroscopic laws for fluid flows in a thin porous medium has recently
become of great interest, see Anguiano and Suárez-Grau [5] and Fabricius et al. [13]. More precisely, a thin
porous medium can be defined as a bounded perforated 3D domain confined between two parallel plates, where
the distance between the plates is very small and the perforation consists of periodically distributed solid cylinders
which connect the plates in perpendicular direction. In previous studies, the thin porous medium is described
by two parameters: one parameter ε denoting the period of the periodic porous structure as well as the size
of the diameter of the cylinders, and another parameter hε denoting the thickness of the domain. Thus, the
derivation of macroscopic laws through a thin porous medium depends on the relation between both parameters.
Concerning power law fluids, in a recent article (see [4]) we derived different lower-dimensional forms of the
nonlinear Darcy’s law in ω ⊂ R2 by using an adaptation of the unfolding method depending on the parameter
ε, which can be written as follows

u′ =
1

µ
U(f ′ −∇x′p), u3 = 0 in ω,

divx′u
′ = 0 in ω, u′ · n = 0 on ∂ω.

Here u′ = (u1, u2), f ′ = (f1, f2), x′ = (x1, x2) and the permeability function U : R2 → R2 is defined through the
solutions of lower-dimensional auxiliary problems of power law type.

The goal of this paper is to study the homogenization of power law fluids in thin porous medium containing
an array of periodically perforated cylinders with diameters much smaller than the period. As far as we know,
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this problem has never been considered in the previous literature. This domain is then defined by three small
parameters denoted by ε, δε and hε, where ε denotes the period of the periodic porous structure, εδε the size of
the diameter of the cylinders and hε the thickness of the domain. For an appropriate choice (critical size) of hε,
we derive in Ω the following lower-dimensional nonlinear Brinkman type law

−µ2−
r
2 ∂x3

(|∂x3
u′|r−2∂x3

u′) + µG(u′) +∇x′p = f ′, u3 = 0 in Ω,

divx′

(∫ 1

0

u′ dx3

)
= 0 in ω,

(∫ 1

0

u′ dx3

)
· n = 0 on ∂ω,

u′(x′, 0) = u′(x′, 1) = 0 in ω,

where the nonlinear drag force function G : R2 → R2 is defined through the solution of lower-dimensional
auxiliary exterior problems of power law type depending on the geometrical structure of the obstacles. The
result is obtained by using a combination of reduction of dimension techniques, monotonicity arguments and an
adaptation of the unfolding method depending on parameters ε and δε. We also remark that due to different
technical reasons, which will be noted along the paper, we have to restrict this study to shear thinning power law
fluids. For instance, in order to obtain optimal a priori estimates of the solution, we need to use Poincaré-Korn’s
and a Sobolev-Poincaré-Wirtinger’s inequalities, and for this the flow index must satisfies 1 < r < 2.

The structure of the paper is as follows. In Section 2 we introduce the domain and give the main result
(Theorem 2.1). In Section 3, we establish some a priori estimates and in Section 4 we introduce the version of
the unfolding method for a domain perforated by cylinders with small diameters. Some compactness results,
which are the main keys when we will pass to the limit later, is addressed in Section 5. Finally, the proof of the
Theorem 2.1 is given in Section 6.

2 Setting of the problem and main result

Geometrical setting. A periodic porous medium is defined by a domain ω and an associated microstructure,
or periodic cell Y ′ = [−1/2, 1/2]2, which is made of two complementary parts: the fluid part Y ′f , and the solid
part Y ′s , such that Y ′f

⋃
Y ′s = Y ′ and Y ′f

⋂
Y ′s = ∅. More precisely, we assume that ω is a smooth, bounded,

connected set in R2, and that Y ′s is an open connected subset of Y ′ with a smooth boundary ∂Y ′s , such that Y
′
s

is strictly included in Y ′. We denote Y = Y ′ × (0, 1) ⊂ R3 and so Yf = Y ′f × (0, 1) and Ys = Y ′s × (0, 1).

Let ε and δ be positive parameters, smaller than one, where δ = δ(ε) is such that δ → 0 as ε → 0. Using
both parameters, we define the parameter

σε =
ε

δ
2−r
r

. (1)

We consider a thin porous medium Ωεδ of thickness σε which is perforated by solid cylinders with diameter of
size εδ and distributed periodically with period ε. The choice of the thickness is justified by the Poincaré-Korn
inequality, see Remarks 3.2 and 3.3. In addition, to work within the thin domain framework, we assume

lim
ε→0

σε = 0. (2)

To define the microstructure of the domain ω, set

Y ′δf = Y ′ \ δY ′s,

such that the domain ω is covered by a regular mesh of size ε, i.e. for k′ ∈ Z2, each cell Y ′k′,ε = εk′ + εY ′ is
divided in a fluid part Y ′δfk′ ,ε and a solid part Y ′δsk′ ,ε, where Y ′δsk′ ,ε denotes the complement in Y ′k′,ε of the set

Y ′δfk′ ,ε. We observe that Y ′k′,ε is similar to the unit cell Y ′ rescaled to size ε.

Thus Y is divided in a fluid part Yδf and a solid part Yδs, and consequently Yk′,ε = Y ′k′,ε× (0, 1) ⊂ R3, which
is also divided in a fluid part Yδfk′ ,ε and a solid part Yδsk′ ,ε.
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Figure 1: View of the 3D reference cells Y (left) and the 2D reference cell Y ′ (right).

We denote by τ(Y
′
δsk′ ,ε

) the set of all translated images of Y
′
δsk′ ,ε

. The set τ(Y
′
δsk′ ,ε

) represents the solids in

R2. The fluid part of the bottom ωεδ ⊂ R2 of the porous medium is defined by ωεδ = ω\
⋃
k′∈Kε Y

′
δsk′ ,ε

, where

Kε = {k′ ∈ Z2 : Y ′k′,ε ∩ ω 6= ∅}. Thus, the whole fluid part Ωεδ ⊂ R3 in the thin porous medium is defined by

Ωεδ = {(x′, x3) ∈ R2 × R : x′ ∈ ωεδ , 0 < x3 < σε}. (3)

We make the assumption that the solids τ(Y
′
δsk′ ,ε

) do not intersect the boundary ∂ω. We define Y σεδsk′ ,ε =

Y ′δsk′ ,ε × (0, σε). Denote by Sεδ the set of the solids contained in Ωεδ. Then, Sεδ is a finite union of solids, i.e.

Sεδ =
⋃
k′∈Kε Y

σε
δsk′ ,ε

.
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Figure 2: View of the 3D rescaled cell Yk′,ε (left) and the 2D rescaled cell Y ′k′,ε (right).

We define Ω̃εδ = ωεδ× (0, 1), Ω = ω× (0, 1), and Qεδ = ω× (0, σε). We observe that Ω̃εδ = Ω\
⋃
k′∈Kε Y δsk′ ,ε,

and we define Tεδ =
⋃
k′∈Kε Y δsk′ ,ε as the set of the solids contained in Ω̃εδ.

"S"�

�" �"

Figure 3: View of the thin porous medium Ωεδ (left) and the domain without microstructure Qεδ (right).

Following previous notation, we remark that along the paper, the points x ∈ R3 will be decomposed as
x = (x′, x3) with x′ = (x1, x2) ∈ R2, x3 ∈ R. We also use the notation x′ to denote a generic vector of R2.
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Setting of the problem. In the thin porous medium Ωεδ described above we consider the following power
law Stokes system 

−µdiv
(
|D [uεδ] |r−2D [uεδ]

)
+∇pεδ = f in Ωεδ,

div uεδ = 0 in Ωεδ,

uεδ = 0 on ∂Ωεδ,

(4)

where uεδ is the velocity field and pεδ is the pressure. In system (4), we suppose that the right-hand side (body
forces) f is of the form

f(x) = (f ′(x′), 0), a.e. x ∈ Ω,

where f is assumed in Lr
′
(ω)2, where r′ = r/(r − 1) is the conjugate exponent of r. We remark that the choice

of f is usual when we deal with thin domains. Since the thickness of the domain is small, then the vertical
component of f can be neglected and moreover, it can be considered independent of the vertical variable.

Therefore, the classical theory gives the existence of a unique solution (uεδ, pεδ) ∈ W 1,r
0 (Ωεδ)

3 × Lr′(Ωεδ)
with 1 < r < +∞, see Lions [17]. This solution is unique up to an additive constant for pεδ, i.e. it is unique if
we consider the corresponding equivalence class pεδ ∈ Lr

′
(Ωεδ)/R.

Our goal is to study the asymptotic behavior of uεδ and pεδ when ε and δ tend to zero. For this purpose, we
use the dilatation in the variable x3

y3 =
x3

σε
, (5)

in order to have the functions defined in the open set with fixed height Ω̃εδ. Namely, we define ũεδ ∈W 1,r
0 (Ω̃εδ)

3,

p̃εδ ∈ Lr
′
(Ω̃εδ)/R by

ũεδ(x
′, y3) = uεδ(x

′, σεy3), p̃εδ(x
′, y3) = pεδ(x

′, σεy3), a.e. (x′, y3) ∈ Ω̃εδ.

Let us introduce some notation which will be useful in the following. For a vectorial function v = (v′, v3) and
a scalar function w, we will denote Dx′ [v] = 1

2 (Dx′v + Dt
x′v) and ∂y3

[v] = 1
2 (∂y3

v + ∂ty3
v), where we denote

∂y3
= (0, 0, ∂

∂y3
)t. Moreover, associated to the change of variables (5), we introduce the operators: Dσε , Dσε ,

divσε and ∇σε , by

Dσε [v] =
1

2

(
Dσεv +Dt

σεv
)
,

(Dσεv)i,j = ∂xjvi for i = 1, 2, 3, j = 1, 2, (Dσεv)i,3 = σ−1
ε ∂y3

vi for i = 1, 2, 3,

divσεv = divx′v
′ + σ−1

ε ∂y3
v3, ∇σεw = (∇x′w, σ−1

ε ∂y3
w)t.

Using the transformation (5), system (4) can be rewritten as
−µdivσε

(
|Dσε [ũεδ]|p−2 Dσε [ũεδ]

)
+∇σε p̃εδ = f in Ω̃εδ,

divσε ũεδ = 0 in Ω̃εδ,

ũεδ = 0 on ∂Ω̃εδ.

(6)

Our goal then is to describe the asymptotic behavior of the dilated sequence (ũεδ, p̃εδ), which is given by the

theorem below. However, the sequence of solutions (ũεδ, p̃εδ) ∈ W 1,r
0 (Ω̃εδ)

3 × Lr′(Ω̃εδ)/R of system (6) is not

defined in a fixed domain independent of ε and δ, but rather in a varying set Ω̃εδ. Thus, in order to pass to the
limit when ε and δ tend to zero, convergences in fixed Sobolev spaces (defined in Ω) are used. This previously
requires to define an extension of (ũεδ, p̃εδ) to the whole domain Ω. In this sense, we consider the zero extensions

to the whole Ω for both velocity and pressure, which coincide with the original functions in Ω̃εδ. For simplicity
the extensions will be denoted by the same symbol.

Moreover, as noted in the introduction, we restrict the main result to shear thinning power law fluids. More
precisely, this restriction of the flow index r comes from the derivation of the Poincaré-Korn inequality (Remark
3.2) and the Sobolev-Poincaré-Wirtinger inequality (Theorem 4.3-3), which are only valid for 1 < r < 2 and are
necessary to obtain optimal a priori estimates of the solution.
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Theorem 2.1 (Main Theorem). Suppose 1 < r < 2 and let σε be given by (1) satisfying (2). Then, there exist
u = (u′, 0) ∈ W 1,r(0, 1;Lr(ω)3) with u = 0 on y3 = {0, 1} and p ∈ Lr

′
(ω) independent of y3, such that the

extension (ũεδ, p̃εδ) of the solution of (6) satisfies the following convergences

σ
− r
r−1

ε ũεδ ⇀ u weakly in W 1,r(0, 1;Lp(ω)3), p̃εδ → p strongly in Lr
′
(Ω),

where (u′, p) is the unique solution of the lower-dimensional nonlinear Brinkman type equation

−µ2−
r
2 ∂y3

(
|∂y3

u′|r−2∂y3
u′
)

+ µG(u′) +∇x′p = f ′ in Ω,

divx′

(∫ 1

0

u′ dy3

)
= 0 in ω,(∫ 1

0

u′ dy3

)
· n = 0 on ∂ω,

u′ = 0 on y3 = {0, 1}.

(7)

Here, the drag force function G : R2 → R2 is defined by

G(ζ ′) · τ ′ =

∫
R2\Y ′s

|Dz′ [wζ
′
]|r−2Dz′ [wζ

′
] : Dz′ [wτ

′
] dz′, ∀ τ ′, ζ ′ ∈ R2, (8)

where wξ
′
, ξ′ = τ ′, ζ ′, is the unique solution to the auxiliary exterior problem

−divz′
(
|Dz′ [wξ

′
]|r−2Dz′ [wξ

′
]
)

+∇z′πξ
′

= 0 in R2 \ Y ′s ,

divz′w
ξ′ = 0 in R2 \ Y ′s ,

wξ
′

= 0 on ∂Y ′s ,

lim
|z′|→∞

wξ
′

= ξ′,

(wξ
′
, πξ

′
) ∈ D1,r(R2 \ Y ′s )2 × Lr′(R2 \ Y ′s )/R.

(9)

The space D1,r denotes the homogeneous Sobolev space given by D1,r(O) =
{
v ∈ L1

loc(O) : Dv ∈ Lr(O)
}

.

Remark 2.2 (Uniqueness of solution of the auxiliary exterior problem). For every ξ′ ∈ R2, the exterior auxiliary
problem (9) has a unique solution (wξ

′
, πξ

′
) ∈ D1,r(R2 \Y ′s )2×Lr′(R2 \Y ′s )/R, with 1 < r < 2, see [18, Theorem

3]. For more details concerning the homogeneous Sobolev space D1,r we refer to [16, Chapter II.6].

Remark 2.3 (Properties of the drag force function). According to [14], the drag force function G : R2 → R2 is
continuous, strictly monotone and satisfies the homogeneity condition

G(λ ξ′) = |λ|r−2λG(ξ′), ∀ (λ, ξ′) ∈ R× R2.

Moreover, there exists m,M > 0 such that for every ξ′ ∈ R2 it holds

m|ξ′|r−1 ≤ |G(ξ′)| ≤M |ξ′|r−1.

Remark 2.4. The mathematical derivation of lower-dimensional models describing power law fluid flows in a
thin domain Ωε = ω × (0, ε) ⊂ R3 has been considered in [19], see also [3, 6, 7, 22], obtaining the nonlinear
Reynolds’ law 

u′ = 1

2
r′
2 (r′+1)µr′−1

|f ′ −∇x′p|r
′−2(f ′ −∇x′p) in ω,

divx′u
′ = 0 in ω, u′ · n = 0 on ∂ω.

(10)
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The main result of this paper can be considered a generalization of previous result to the case of a thin porous
medium. In fact, if we assume the drag force function G = 0 in the Brinkman’s law (7), i.e. in the absence of
obstacles, we recover the homogenized model obtained in [19, Propositions 3.1 and 3.2] given by

−µ2−
r
2 ∂x3(|∂x3u

′|r−2∂x3u
′) +∇x′p = f ′, u3 = 0 in Ω = ω × (0, 1),

divx′

(∫ 1

0

u′ dx3

)
= 0 in ω,

(∫ 1

0

u′ dx3

)
· n = 0 on ∂ω,

u′ = 0 on y3 = {0, 1},

which gives rise to the nonlinear Reynolds’ law (10), see [19, Propositions 3.4].

3 A Priori Estimates

We need some technical results to obtain a priori estimates of the solution (uεδ, pεδ) of problem (4). First,
to estimate the velocity we need a variant of the Poincaré and Korn inequalities in the thin porous medium
necessary to derive uniform estimates for velocity uεδ. Next, to estimate the pressure we need a result of the
inverse of the divergence operator in thin porous medium.

Lemma 3.1. Suppose 1 < r < +∞ and let σε be given by (1). Then, there exists a constant C independent of
ε such that for any function ϕ ∈W 1,r

0 (Ωεδ)
3, one has

‖ϕ‖Lr(Ωεδ)3 ≤ Cσε ‖Dϕ‖Lr(Ωεδ)3×3 , 1 < r < 2, (Poincaré’s inequality), (11)

‖Dϕ‖Lr(Ωεδ)3×3 ≤ C ‖D[ϕ]‖Lr(Ωεδ)3×3 , 1 < r < +∞, (Korn’s inequality). (12)

Proof. From [15, Lemma 4.1] applied to domain ωεδ, we have the Poincaré inequality

‖ϕ‖rLr(ωεδ)3 ≤ Cσrε ‖Dx′ϕ‖rLr(ωεδ)3×2 ≤ Cσrε ‖Dϕ‖
r
Lr(ωεδ)3×3 , 1 < r < 2.

The desired result (11) follows by integrating previous estimates with respect to x3 between 0 and σε. Finally,
the classical Korn inequality in porous mediums implies that (12) holds for 1 < r < +∞.

Remark 3.2 (Poincaré–Korn’s inequality in Ωεδ). Estimates given in Lemma 3.1 can be expressed as follows

‖ϕ‖Lr(Ωεδ)3 ≤ Cσε ‖D[ϕ]‖Lr(Ωεδ)3×3 , ∀ϕ ∈W 1,r
0 (Ωεδ)

3, 1 < r < 2. (13)

Remark 3.3. As said in the introduction, the thin porous medium Ωεδ is generally described by three parameters.
Thus, if ε and δ describe the perforation of the domain, a new parameter hε should be introduced describing the
thickness of the domain. In that case, it can be proved that the optimal Poincaré-Korn inequality (13) depends
on the relation between hε and σε. More precisely, it can be proved that if hε � σε or hε ≈ σε the Poincaré-Korn
inequality holds with Cσε, while if hε � σε it holds with Chε. Therefore, the thickness of the domain considered
in this paper can be viewed as the critical size of the periodic perforation with respect to the thickness of the
domain, similarly to what happens in [4, Lemma 4.1].

Lemma 3.4 (Inverse of the divergence operator in Ωεδ). Suppose 1 < r < +∞ and let σε be given by (1). Then,
there exists a constant C independent of ε such that for any g ∈ Lr(Ωεδ) there exists ϕ = ϕ(g) ∈ W 1,r(Ωεδ)

3

with ϕ = 0 on ∂Qεδ such that
divϕ = g in Ωεδ, (14)

‖ϕ‖Lr(Ωεδ)3 ≤ C‖g‖Lr(Ωεδ), ‖Dϕ‖Lr(Ωεδ)3×3 ≤ Cσ−1
ε ‖g‖Lr(Ωεδ). (15)
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Proof. Let g ∈ Lr(Ωεδ) be given. We extend g inside the cylinders by means of the function:

G(x) =


g(x) if x ∈ Ωεδ,

− 1

|Qεδ \ Ωεδ|

∫
Ωεδ

g(x) dx if x ∈ Qεδ \ Ωεδ.

It follows that G ∈ Lr0(Qεδ) =
{
q ∈ Lr(Qεδ) :

∫
Qεδ

q dx = 0
}

and

‖G‖rLr(Qεδ)
= ‖g‖rLr(Ωεδ)

+
1

|Qεδ \ Ωεδ|r−1

∣∣∣∣∫
Ωεδ

g(x) dx

∣∣∣∣r . (16)

Since |Qεδ \ Ωεδ| is bounded from below by a positive number, it follows from (16) and Hölder’s inequality that

‖G‖Lr(Qεδ) ≤ C‖g‖Lr(Ωεδ). (17)

Besides that, since G ∈ Lr(Qεδ), it follows from [12, Lemma 4] that we can find ϕ ∈W 1,r
0 (Qεδ)

3 such that

divϕ = G in Qεδ, (18)

‖ϕ‖Lr(Qεδ)3 ≤ C‖G‖Lr(Qεδ), ‖Dϕ‖Lr(Qεδ)3×3 ≤ Cσ−1
ε ‖G‖Lr(Qεδ). (19)

Let us consider ϕ|Ωεδ : it belongs to W 1,r(Ωεδ) with ϕ = 0 on ∂Qεδ. Moreover, (14) follows from (18) and

estimates given in (15) follow from (17) and (19).

By means of previous technical results, we give the estimates of the solution (uεδ, pεδ) of problem (4) in Ωεδ.

Lemma 3.5 (Estimates of velocity and pressure in Ωεδ). Suppose 1 < r < 2 and let σε be given by (1). Then,
there exists a constant C independent of ε, such that if (uεδ, pεδ) ∈ W 1,r

0 (Ωεδ)
3 × Lr′(Ωεδ)/R is the solution of

the problem (4), one has

‖uεδ‖Lr(Ωεδ)3 ≤ Cσ
2r−1
r(r−1)

+1
ε , ‖D [uεδ]‖Lr(Ωεδ)3×3 ≤ Cσ

2r−1
r(r−1)
ε , (20)

‖Duεδ‖Lr(Ωεδ)3×3 ≤ Cσ
2r−1
r(r−1)
ε , (21)

‖pεδ‖Lr′ (Ωεδ) ≤ Cσ
1
r′
ε , (22)

where r′ = r
r−1 .

Proof. We start with the velocity. Multiplying by uεδ in the first equation of (4) and integrating over Ωεδ, we
have

µ

∫
Ωεδ

|D [uεδ]|r−2 D [uεδ] : D [uεδ] dx =

∫
Ωεδ

f · uεδ dx. (23)

Using Hölder’s inequality and the assumption of f , we obtain that∫
Ωεδ

f · uεδ dx′dy3 ≤ Cσ
r−1
r

ε ‖uεδ‖Lr(Ωεδ)3 ,

and by (23), we have

‖D [uεδ]‖rLr(Ωεδ)3×3 ≤ Cσ
r−1
r

ε ‖uεδ‖Lr(Ωεδ)3 . (24)

Taking into account (13), we obtain the second estimate in (20) and consequently, from Korn’s inequality (12)
we obtain (21). Now, from (13) and the second estimate in (20), we deduce the first estimate in (20).

8
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Now, we obtain the estimate for the pressure. Let g ∈ Lr(Ωεδ) be given. From Lemma 3.4, there exists
ϕ ∈W 1,r(Ωεδ)

3 with ϕ = 0 on ∂Qεδ such that

divϕ = g in Ωεδ, ‖ϕ‖Lr(Ωεδ)3 ≤ C‖g‖Lr(Ωεδ), ‖Dϕ‖Lr(Ωεδ)3×3 ≤ Cσ−1
ε ‖g‖Lr(Ωεδ). (25)

Multiplying by ϕ ∈ W 1,r(Ωεδ)
3, with ϕ = 0 on ∂Qεδ, in the first equation of (4) and integrating over Ωεδ, from

the second estimate in (20) and (11), we have∣∣∣∣∫
Ωεδ

pεδ divϕdx

∣∣∣∣ ≤ C‖D[uεδ]‖r−1
Lr(Ωεδ)3×3‖Dϕ‖Lr(Ωεδ)3×3 + Cσ

r−1
r

ε ‖ϕ‖Lr(Ωεδ)3 ≤ Cσ
2r−1
r

ε ‖Dϕ‖Lr(Ωεδ)3×3 ,

and using (25), we get ∣∣∣∣∫
Ωεδ

pεδ g dx

∣∣∣∣ ≤ Cσ r−1
r

ε ‖g‖Lr(Ωεδ). (26)

Now, we consider in (26) the function g = |pεδ|r
′−2

pεδ, which satisfies g ∈ Lr(Ωεδ) due to pεδ ∈ Lr
′
(Ωεδ). Then,

it easily follows

‖pεδ‖r
′

Lr′ (Ωεδ)
≤ Cσ

r−1
r

ε ‖pεδ‖r
′−1
Lr′ (Ωεδ)

,

which, taking into account that (r − 1)/r = 1/r′, implies estimate (22).

Considering the change of variables given in (5), we obtain the following result in the domain Ω̃εδ.

Lemma 3.6 (Estimates of dilated velocity and pressure in Ω̃εδ). Suppose 1 < r < 2 and let σε be given by (1).

Then, there exists a constant C independent of ε, such that if (ũεδ, p̃ε) ∈W 1,r
0 (Ω̃εδ)

3×Lr′(Ω̃εδ)/R is the solution
of the problem (6), one has

‖ũεδ‖Lr(Ω̃εδ)3 ≤ Cσ
r
r−1
ε , ‖Dσε [ũεδ]‖Lr(Ω̃εδ)3×3 ≤ Cσ

1
r−1
ε , (27)

‖Dσε ũεδ‖Lr(Ω̃εδ)3×3 ≤ Cσ
1
r−1
ε , (28)

‖p̃εδ‖Lr′ (Ω̃εδ) ≤ C , (29)

where r′ = r
r−1 .

Remark 3.7 (Extension of (ũεδ, p̃εδ) to the whole domain Ω). We extend the velocity ũεδ by zero to Ω and denote
the extension by the same symbol. Obviously, estimates (27)-(28) remain valid and the extension is divergence
free too. Similarly, we consider the extension by zero of the pressure p̃εδ to Ω, still denoted by the same symbol,
and so estimate (29) remains valid.

4 Unfolding Method in domains with cylinders of small diameter

The change of variable (5) does not provide the information we need about the behavior of (ũεδ, p̃εδ) in the

microstructure associated to Ω̃εδ. To solve this difficulty, we need to introduce an adaptation of the unfolding
method adapted to perforated domains by cylinders with diameters of size εδ distributed periodically with period
ε, see [11, Chapter 9] for more details.

Now, let us introduce the adaption of the unfolding method in which we divide the domain Ω in cubes of
lateral length ε and vertical length 1.

9
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Definition 4.1 (Unfolding operator in domains with cylinders of small diameter). For ϕ̃ ∈ Lr(Ω), 1 ≤ r ≤ +∞,
we define ϕ̂ ∈ Lr(ω × R2 × (0, 1)) by

ϕ̂(x′, z′, y3) =


ϕ̃

(
εκ

(
x′

ε

)
+ εδz′, y3

)
, if (x′, z′, y3) ∈ ω × 1

δY
′ × (0, 1),

0 otherwise,

(30)

where the function κ : R2 → Z2 is defined by

κ(x′) = k′ ⇐⇒ x′ ∈ Y ′k′,1 , ∀ k′ ∈ Z2.

Remark 4.2. We make the following comments:

– For δ = 1 we are in presence of the adaptation of the unfolding operator for domains with cylinders
introduced in [4, Subsection 4.2].

– The function κ is well defined up to a set of zero measure in R2 (the set ∪k′∈Z2∂Y ′k′,1). Moreover, for every
ε > 0, we have

κ

(
x′

ε

)
= k′ ⇐⇒ x′ ∈ Y ′k′,ε.

– For k′ ∈ Kε, the restriction of ϕ̂ to Y ′k′,ε × 1
δY
′ × (0, 1) does not depend on x′, whereas as a function of z′

it is obtained from ϕ̃ by using the changes of variables δz′ = y′ and

y′ =
x′ − εk′

ε
, (31)

which transform Yk′,ε into 1
δY
′ × (0, 1).

Next, we give some useful properties of the unfolding operator (30).

Theorem 4.3 (Properties of the unfolding operator). We have the following properties of ϕ̂:

1. Suppose 1 ≤ r ≤ +∞. For every ϕ̃ ∈ Lr(Ω),

‖ϕ̂‖Lr(ω×R2×(0,1)) ≤ δ
− 2
r ‖ϕ̃‖Lr(Ω) . (32)

2. Suppose 1 ≤ r ≤ +∞. For every ϕ̃ ∈W 1,r(Ω),

‖Dz′ [ϕ̂]‖Lr(ω× 1
δY
′×(0,1))2≤σε ‖Dx′ [ϕ̃]‖Lr(Ω)2 , (33)

‖∂y3 [ϕ̂]‖Lr(ω× 1
δY
′×(0,1))≤δ

− 2
r ‖∂y3 [ϕ̃]‖Lr(Ω) . (34)

3. Suppose 1 ≤ r < 2 and let O be a bounded open set in R2. For every ϕ̃ ∈W 1,r(Ω),

‖ϕ̂− ϕ̄‖Lr(Ω;Lr∗ (R2))≤Cσε ‖Dx′ [ϕ̃]‖Lr(Ω)2 , (35)

‖ϕ̂‖Lr(ω×O×(0,1)) ≤ C|O|
1
2σε‖Dx′ [ϕ̃]‖Lr(Ω)2 + |O| 1r ‖ϕ̃‖Lr(Ω), (36)

where r∗ = 2r
2−r be the associated Sobolev exponent, C denotes the Sobolev-Poincaré-Wirtinger constant for

W 1,r(Y ′) and ϕ̄ ∈ Lr(Ω) is the local average defined by

ϕ̄(x′, y3) =
1

ε2

∫
εκ( x′ε )+εY ′

ϕ̃(τ ′, y3) dτ ′ = δ2

∫
1
δY
′
ϕ̂(x′, τ ′, y3) dτ ′, ∀ ϕ̃ ∈ Lr(Ω). (37)

10
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Proof. 1. Using the definition (30), we have∫
ω×R2×(0,1)

|ϕ̂(x′, z′, y3)|r dx′dz′dy3 ≤
∑
k′∈Kε

∫
Y ′
k′,ε

∫
R2×(0,1)

|ϕ̂(x′, z′, y3)|r dx′dz′dy3

=
∑
k′∈Kε

∫
Y ′
k′,ε

∫
1
δY
′×(0,1)

|ϕ̃(εk′ + εδz′, y3)|r dx′dz′dy3.

We observe that ϕ̃ does not depend on x′, then we obtain∫
ω×R2×(0,1)

|ϕ̂(x′, z′, y3)|r dx′dz′dy3 ≤ ε2
∑
k′∈Kε

∫
1
δY
′×(0,1)

|ϕ̃(εk′ + εδz′, y3)|r dz′dy3,

and by the change of variables

δz′ = y′, dz′ =
dy′

δ2
, ∂z′ = δ∂y′ , (38)

which rescales from 1
δY
′ × (0, 1) to Y , we have∫

ω×R2×(0,1)

|ϕ̂(x′, z′, y3)|r dx′dz′dy3 ≤ ε2 δ−2
∑
k′∈Kε

∫
Y

|ϕ̃(εk′ + εy′, y3)|r dy.

By the change of variables (31), we have∫
ω×R2×(0,1)

|ϕ̂(x′, z′, y3)|r dx′dz′dy3 ≤ δ−2
∑
k′∈Kε

∫
Y ′
k′,ε

∫ 1

0

|ϕ̃(x′, y3)|r dx′dy3

≤ δ−2

∫
ω×(0,1)

|ϕ̃(x′, y3)|r dx′dy3,

i.e.,
‖ϕ̂‖Lr(ω×R2×(0,1)) ≤ δ

− 2
r ‖ϕ̃‖Lr(Ω) .

2. Observe that, by the definition (30), we can deduce∫
ω× 1

δY
′×(0,1)

|Dz′ [ϕ̂(x′, z′, y3)]|r dx′dz′dy3 ≤
∑
k′∈Kε

∫
Y ′
k′,ε

∫
1
δY
′×(0,1)

|Dz′ [ϕ̃(εk′ + εδz′, y3)]|r dx′dz′dy3.

As ϕ̃ does not depend on x′, then we obtain∫
ω× 1

δY
′×(0,1)

|Dz′ [ϕ̂(x′, z′, y3)]|r dx′dz′dy3 ≤ ε2
∑
k′∈Kε

∫
1
δY
′×(0,1)

|Dz′ [ϕ̃(εk′ + εδz′, y3)]|r dz′dy3,

and by the change of variables (38), we have∫
ω× 1

δY
′×(0,1)

|Dz′ [ϕ̂(x′, z′, y3)]|r dx′dz′dy3 ≤ ε2 δr−2
∑
k′∈Kε

∫
Y

|Dy′ [ϕ̃(εk′ + εy′, y3)]|r dy.

By the change of variables (31), we have∫
ω× 1

δY
′×(0,1)

|Dz′ [ϕ̂(x′, z′, y3)]|r dx′dz′dy3 ≤ εr δr−2
∑
k′∈Kε

∫
Y ′
k′,ε

∫ 1

0

|Dx′ [ϕ̃(x′, y3)]|r dx′dy3

≤ εr δr−2

∫
ω×(0,1)

|Dx′ [ϕ̃(x′, y3)]|r dx′dy3,

11
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i.e.,
‖Dz′ [ϕ̂]‖Lr(ω× 1

δY
′×(0,1))2≤ε δ δ−

2
r ‖Dx′ [ϕ̃]‖Lr(Ω)2 = σε ‖Dx′ [ϕ̃]‖Lr(Ω)2 .

Similarly, using definition (30) and the change of variables (38), we have∫
ω× 1

δY
′×(0,1)

|∂y3 [ϕ̂(x′, z′, y)]|r dx′dz′dy3 ≤ ε2 δ−2
∑
k′∈Kε

∫
Y

|∂y3 [ϕ̃(εk′ + εy′, y3)]|r dy.

By the change of variables (31), we obtain∫
ω× 1

δY
′×(0,1)

|∂y3
[ϕ̂(x′, z′, y3)]|r dx′dz′dy3 ≤ δ−2

∫
ω×(0,1)

|∂y3
[ϕ̃(x′, y3)]|r dx′dy3,

i.e.,
‖∂y3

[ϕ̂]‖Lr(ω× 1
δY
′×(0,1))≤δ

− 2
r ‖∂y3

[ϕ̃]‖Lr(Ω) .

3. Suposse 1 ≤ r < 2. For a.e. (x′, y3) ∈ Ω, taking into account the definition of the local average (37), we
proceed as previous statements to obtain

‖ϕ̂− ϕ̄‖rLr(Ω;Lr∗ (R2))

≤
∑
k′∈Kε

∫
Y ′
k′,ε×(0,1)

∫
1
δY
′

∣∣∣∣∣ϕ̃(εk′ + εδz′, y3)− δ2

∫
1
δY
′
ϕ̃(εk′ + εδτ ′, y3) dτ ′

∣∣∣∣∣
r∗

dz′

 r
r∗

dx′dy3

≤ ε2
∑
k′∈Kε

∫ 1

0

∫
1
δY
′

∣∣∣∣∣ϕ̃(εk′ + εδz′, y3)− δ2

∫
1
δY
′
ϕ̃(εk′ + εδτ ′, y3) dτ ′

∣∣∣∣∣
r∗

dz′

 r
r∗

dy3.

From the change of variables (38), we have

‖ϕ̂− ϕ̄‖rLr(Ω;Lr∗ (R2))

≤ ε2δ−2 r
r∗
∑
k′∈Kε

∫ 1

0

(∫
Y ′

∣∣∣∣ϕ̃(εk′ + εy′, y3)−
∫
Y ′
ϕ̃(εk′ + ετ ′, y3) dτ ′

∣∣∣∣r∗ dy′
) r
r∗

dy3.

Applying the Sobolev-Poincaré-Wirtinger inequality in W 1,r(Y ′) with 1 ≤ r < 2(∫
Y ′

∣∣∣∣ϕ̃(εk′ + εy′, y3)−
∫
Y ′
ϕ̃(εk′ + ετ ′, y3) dτ ′

∣∣∣∣r∗ dy′
) 1
r∗

≤ C
(∫

Y ′
|Dy′ ϕ̃(εk′ + εy′, y3)|r dy′

) 1
r

, ∀ k′ ∈ Kε,

we deduce

‖ϕ̂− ϕ̄‖rLr(Ω;Lr∗ (R2)) ≤ Cε2δ−2 r
r∗
∑
k′∈Kε

∫
Y ′

∫ 1

0

|Dy′ ϕ̃(εk′ + εy′, y3)|r dy′dy3.

By using the change of variables (31), we obtain

‖ϕ̂− ϕ̄‖r
Lr(Ω;Lr∗ (R2))

≤ Cεrδ−2 r
r∗
∑
k′∈Kε

∫
Y ′
k′,ε

∫ 1

0

|Dx′ ϕ̃(x′, y3)|r dx′dy3,

which from r∗ = 2r
2−r and Korn’s inequality gives

‖ϕ̂− ϕ̄‖Lr(Ω;Lr∗ (R2)) ≤ Cεδ
r−2
r ‖Dx′ [ϕ̃]‖Lr(Ω)2 = Cσε‖Dx′ [ϕ̃]‖Lr(Ω)2 .

12
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Finally, let O be a bounded open set in R2. Then we have

‖ϕ̂‖Lr(ω×O×(0,1)) ≤ ‖ϕ̂− ϕ̄‖Lr(ω×O×(0,1)) + ‖ϕ̄‖Lr(ω×O×(0,1)). (39)

For the first term in the right-hand side of (39), by using Hölder’s inequality with q = 2/(2 − r) and q′ = 2/r,
and taking into account that rq = r∗, we get

‖ϕ̂− ϕ̄‖Lr(ω×O×(0,1)) =

(∫
ω×O×(0,1)

|ϕ̂(x′, z′, y3)− ϕ̄(x′, y3)|r dx′dz′dy3

) 1
r

≤

(∫
Ω

|O|
1
q′

(∫
O
|ϕ̂(x′, z′, y3)− ϕ̄(x′, y3)|rqdz′

) 1
q

dx′dy3

) 1
r

= |O|
1
rq′

(∫
Ω

(∫
O
|ϕ̂(x′, z′, y3)− ϕ̄(x′, y3)|rqdz′

) r
rq

dx′dy3

) 1
r

= |O| 12 ‖ϕ̂− ϕ̄‖Lr(Ω;Lr∗ (R2)).

For the second one, since ϕ̄ does not depend on z′, we have

‖ϕ̄‖Lr(ω×O×(0,1)) = |O| 1r ‖ϕ̄‖Lr(Ω).

By using Hölder’s inequality and (32), we have

‖ϕ̄‖Lr(Ω) =

(∫
Ω

∣∣∣∣∣δ2

∫
1
δY
′
ϕ̂(x′, τ ′, y3) dτ ′

∣∣∣∣∣
r

dx′dy3

) 1
r

≤ δ2

(∫
Ω

|1
δ
Y ′| rr′

(∫
1
δY
′
|ϕ̂(x′, τ ′, y3)|rdτ ′

)
dx′dy3

) 1
r

= δ2− 2
r′ ‖ϕ̂‖Lr(ω×R2×(0,1))

≤ ‖ϕ̃‖Lr(Ω),

which implies
‖ϕ̄‖Lr(ω×O×(0,1)) ≤ |O|

1
r ‖ϕ̃‖Lr(Ω).

Then, we have that (39) reads

‖ϕ̂‖Lr(ω×O×(0,1)) ≤ |O|
1
2 ‖ϕ̂− ϕ̄‖Lr(Ω;Lr∗ (R2)) + |O| 1r ‖ϕ̃‖Lr(Ω),

which together with (35) gives (36).

Now, from extensions (ũεδ, p̃εδ), we define (ûεδ, p̂εδ) by using (30). Below, we get the estimates for this
sequence.

Lemma 4.4 (Estimates of the unfolded velocity and pressure). Suppose 1 < r < 2, let σε be given by (1) and
O be a bounded open set in R2. Then, there exists a constant C independent of ε, such that (ûεδ, p̂εδ), defined
by (30), satisfies

‖ûεδ‖Lr(ω×O×(0,1))3 ≤ Cσ
r
r−1
ε , (40)

‖Dz′ [ûεδ]‖Lr(ω× 1
δY
′×(0,1))3×2≤Cσ

r
r−1
ε , ‖∂y3 [ûεδ]‖Lr(ω× 1

δY
′×(0,1))3≤Cσ

r
r−1
ε δ−

2
r , (41)

13
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‖Dz′ ûεδ‖Lr(ω× 1
δY
′×(0,1))3×2≤Cσ

r
r−1
ε , ‖∂y3

ûεδ‖Lr(ω× 1
δY
′×(0,1))3≤Cσ

r
r−1
ε δ−

2
r , (42)

‖ûεδ − ūεδ‖Lr(Ω;Lr∗ (R2)3)≤Cσ
r
r−1
ε , (43)

‖p̂εδ‖Lr′ (ω×R2×(0,1))/R ≤ Cδ
− 2(r−1)

r . (44)

Proof. Taking into account the first estimate in (27) and estimate (28) in (36), we deduce (40). We remark that

if we had used (27) and (32), we would have obtained estimate ‖ûεδ‖Lr(ω×R2×(0,1))3 ≤ Cσ
r
r−1
ε δ−

2
r , which is not

as sharp a (40). Also, taking into account the second estimate in (27) and (33), we get the first estimate in (41).
And using the second estimate in (27) and (34), we get the second estimate in (41). Consequently, from Korn’s
inequality (12), we also have (42). Estimate (35) together with the second estimate in (27) gives (43). Finally,
taking into account the estimate (29) in (32), and r′ = r/(r − 1), we can deduce (44).

5 Some compactness results

In this section, we obtain some compactness results about the behavior of the extension of the sequence (ũεδ, p̃εδ)
and the sequence ûεδ satisfying the a priori estimates given in Lemmas 3.6 and 4.4, respectively.

Lemma 5.1 (Compactness results for extension of dilated velocity and pressure). Suppose 1 < r < 2 and let
σε be given by (1) satisfying (2). Then, for a subsequence of ε, still denoted by ε, there exist p ∈ Lr

′
(Ω)/R

independent of y3 and u ∈W 1,r
0 (0, 1;Lr(ω)3) with u3 = 0, such that

σ
− r
r−1

ε ũεδ ⇀ (u′, 0) weakly in W 1,r(0, 1;Lr(ω)3), (45)

divx′

(∫ 1

0

u′(x′, y3) dy3

)
= 0 in ω,

(∫ 1

0

u′(x′, y3) dy3

)
· n = 0 on ∂ω, (46)

p̃εδ → p strongly in Lr
′
(Ω)/R. (47)

Proof. First, we focus on the convergence of the extension of the velocity. The first estimate given in (27) and
estimate (28) imply the existence of u ∈W 1,r(0, 1;Lr(ω)3) such that, up to a subsequence, it holds

σ
− r
r−1

ε ũεδ ⇀ u weakly in W 1,r(0, 1;Lr(ω)3), (48)

which implies

σ
− r
r−1

ε divx′ ũ
′
εδ ⇀ divx′u

′ weakly in W 1,r(0, 1;W−1,r′(ω)). (49)

Since divσε ũεδ = 0 in Ω, multiplying by σ
− r
r−1

ε we obtain

σ
− r
r−1

ε divx′ ũ
′
εδ + σ

− 2r−1
r−1

ε ∂y3
ũεδ,3 = 0 in Ω, (50)

which combined with (49) implies that σ
− 2r−1
r−1

ε ∂y3
ũεδ,3 is bounded in Lr(0, 1;W−1,r′(ω)). Using then that ũεδ,3 =

0 on ω×{1}, we deduce that σ
− 2r−1
r−1

ε ũεδ,3 is bounded in W 1,r(0, 1;W−1,r′(ω)), and therefore, up to a subsequence,

there exists w ∈W 1,r(0, 1;W−1,r′(ω)) with w(1) = 0 in W−1,r′(ω), such that

σ
− 2r−1
r−1

ε ũεδ,3 ⇀ w weakly in W 1,r(0, 1;W−1,r′(ω)).

From this convergence and (48), we get that σ
− r
r−1

ε ũεδ,3 tends to zero and so, by uniqueness of the limit, u3 = 0
which finishes the proof of (45). Moreover, ũεδ = 0 on y3 = {0, 1} and the continuity of the trace applications
from the space of functions u such that ‖u‖Lr and ‖∂y3

u‖Lr to Lr(ω × {y3}) with y3 = {0, 1} imply that u = 0

on y3 = {0, 1} and so u ∈W 1,r
0 (0, 1;Lr(ω)3) with u3 = 0.
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Next, we prove the divergence condition (46). To do this, we consider ϕ ∈ C1(ω) as test function in
divσε ũεδ = 0 in Ω and taking into account that ũεδ = 0 on ∂Ω, we get

0 =

∫
Ω

(
σ
− r
r−1

ε divx′ ũ
′
εδ + σ

− 2r−1
r−1

ε ∂y3
ũεδ,3

)
ϕ(x′) dx′dy3 = −

∫
Ω

σ
− r
r−1

ε ũ′εδ · ∇x′ϕ(x′) dx′dy3.

From convergence (45), we get ∫
Ω

u′ · ∇x′ϕ(x′) dx′dy3 = 0,

which implies (46).

Last, we focus on the extension of the pressure by proving (47). From estimate (29) we deduce that there
exists p ∈ Lr′(Ω)/R such that, up to a subsequence, it holds

p̃εδ ⇀ p weakly in Lr
′
(Ω)/R. (51)

To prove that p is independent of y3, we multiply system (6) by σε ϕ with ϕ ∈ C∞0 (Ω). Integrating by parts and
taking into account estimates of the extension of the velocity (27), assumption of force f and convergence (51),
we pass to the limit and obtain ∫

Ω

p ∂y3
ϕdx′dy3 = 0.

This implies that p does not depend on y3. Moreover, if we argue similarly as in [8, Lemma 4.4], we have that
the convergence of the pressure p̃εδ is in fact strong, which concludes the proof.

Next, we give a compactness result for the unfolded function ûεδ. To do this, following [11, Chapters 9 and
10], we consider the homogeneous Sobolev space of weakly differentiable functions defined locally on R2 having
a gradient in Lr(R2)2 and zero value on the obstacle Y ′s , which is given by

KY ′s =
{
Φ(z′) ∈W 1,r

loc (R2) : ∇z′Φ ∈ Lr(R2)2 and Φ = 0 on Y ′s
}
. (52)

We remark that if Φ ∈ KY ′s then it has a limit at infinity denoted Φ∞, i.e. there exists Φ∞ ∈ R such that
lim|z′|→+∞ Φ(z′) = Φ∞. In addition, to relate the value at infinity of the limit of ûεδ with the limit of ũεδ, we
consider a more general space

LY ′s =
{
Φ(x′, z′, y3) ∈ Lr(Ω; KY ′s ) : Φ∞ = Φ(·,∞, ·) ∈W 1,r

0 (0, 1;Lr(ω))
}
. (53)

Lemma 5.2 (Compactness results for unfolded velocity). Suppose 1 < r < 2, let σε be given by (1) satisfying
(2) and u ∈ W 1,r

0 (0, 1;Lr(ω)3) be given in Lemma 5.1. Then, for a subsequence of ε, still denoted by ε, there
exists U ∈ L3

Y ′s
where U∞ = u and U3 is independent of y3, such that

σ
− r
r−1

ε ûεδ ⇀ U weakly in Lr(Ω;Lrloc(R2)3) , (54)

σ
− r
r−1

ε Dz′ ûεδ1 1
δY
′ ⇀ Dz′U weakly in Lr(ω × R2 × (0, 1))3×2, (55)

divx′

(∫ 1

0

U ′∞ dy3

)
= 0 in ω, (56)

divz′U
′ = 0 in ω × R2 × (0, 1) . (57)

Proof. For the sake of completeness, we give a sketch of a proof, following, for instance, the proof of [11,
Proposition 10.1].
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By estimate (40), there exists U ∈ Lr(Ω;Lrloc(R2)3) such that, up to a subsequence, convergence (54) holds.
Using the continuous embedding of W 1,r(0, 1;Lr(ω)) into Lr(Ω), the definition of the local average (37) and
according to [11, Proposition 1.25(ii)], we deduce from (45) the following convergence

σ
− r
r−1

ε ūεδ ⇀ u weakly in Lr(Ω)3,

so that
σ
− r
r−1

ε ūεδ1 1
δY
′ ⇀ u weakly in Lr(Ω;Lrloc(R2)3). (58)

From the first estimate in (42) and estimate (43), there exists W ∈ Lr(Ω;Lr
∗
(R2)3) with Dz′W in Lr(ω ×R2 ×

(0, 1))3×2 such that

σ
− r
r−1

ε (ûεδ − ūεδ) 1 1
δY
′ ⇀W weakly in Lr(Ω;Lr

∗
(R2)3), (59)

and
σ
− r
r−1

ε Dz′ ûεδ1 1
δY
′ ⇀ Dz′W weakly in Lr(ω × R2 × (0, 1))3×2. (60)

From (54), (58) and (59), one concludes

U = W + u and Dz′U = Dz′W, (61)

and so, from convergence (60), we have that (55) holds. Since ũεδ = 0 in Tεδ, we have ûεδ = 0 in ω × Ys and
then, using convergence (54), we deduce

U = 0 in ω × Ys. (62)

Due to (59)-(62) and [11, Proposition 9.2], we have that U ∈ L3
Y ′s

and U∞ = u.

Since U∞ = u, then (56) holds from the divergence condition (46). Next, from divergence condition divσε ũεδ =

0 in Ω̃εδ and the change of variables (31) and (38), we deduce

(εδ)−1divz′ û
′
εδ 1 1

δY
′ + σ−1

ε ∂y3
ûεδ,3 1 1

δY
′ = 0 in ω × R2 × (0, 1). (63)

Multiplying by σ
− r
r−1

ε (εδ), we get

σ
− r
r−1

ε divz′ û
′
εδ 1 1

δY
′ + δ

2
r σ
− r
r−1

ε ∂y3 ûεδ,3 1 1
δY
′ = 0 in ω × R2 × (0, 1). (64)

From the second estimate in (42) and convergence (54), we deduce that δ
2
r σ
− r
r−1

ε ∂y3
ûεδ,3 tends to zero, and so

passing to the limit in (64) we get (57).

Finally, we prove that U3 is independent of y3. To do this, consider ϕ ∈ C1
c (Ω) as test function in (63), which

gives ∫
ω× 1

δY
′×(0,1)

∂y3
ûεδ,3 ϕ(x′, y3)dx′dz′dy3 = 0.

Multiplying by σ
− r
r−1

ε , we have∫
ω× 1

δY
′×(0,1)

σ
− r
r−1

ε ûεδ,3 ∂y3
ϕ(x′, y3)dx′dz′dy3 = 0,

and from convergence (54), we get U3 is independent of y3.
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6 Homogenized model: proof of the main Theorem

In this section, we use previous compactness results to prove the main result of the paper. To do this, we
need the following version of [11, Lemma 10.4] in order to choose an appropriate test function in the variational
formulation of system (6) and then pass to the limit.

Lemma 6.1. Suppose 1 ≤ r < +∞. Let ϕ be in D(Ω;W 1,r
loc (R2)) such that ∇z′ϕ is in D(Ω;Lr(R2)2) and has a

compact support. We set

ϕεδ(x
′, y3) = ϕ

(
x′,

1

δ

x′ − εκ(x
′

ε )

ε
, y3

)
in (x′, y3) ∈ Ω. (65)

By [11, Proposition 9.2], it has a limit at infinity denoted by ϕ∞ ∈ D(Ω). If δ is small enough, the function ϕεδ
belongs to D(0, 1;W 1,r(ω)) and

ϕεδ → ϕ∞ strongly in Lr(Ω). (66)

Remark 6.2 (Properties of test function). From the definition of ϕεδ given in (65), we have

∇x′ϕεδ(x′, y3) = ∇x′ϕ

(
x′,

1

δ

x′ − εκ(x
′

ε )

ε
, y3

)
+ (εδ)−1∇z′ϕ

(
x′,

1

δ

x′ − εκ(x
′

ε )

ε
, y3

)
,

∂y3
ϕεδ(x

′, y3) = ∂y3
ϕ

(
x′,

1

δ

x′ − εκ(x
′

ε )

ε
, y3

)
.

(67)

Moreover, applying the unfolding operator (30), we have

ϕ̂εδ(x
′, z′, y3) =

 ϕ(x′, z′, y3) +Θεδ(x
′, z′, y3), if (x′, z′, y3) ∈ ω × 1

δY
′ × (0, 1),

0 otherwise,

with Θεδ(x
′, z′, y3) = ϕ(εκ(x

′

ε ) + εδz′, z′, y3)− ϕ(x′, z′, y3). Consequently

∇z′ ϕ̂εδ(x′, z′, y3) = ∇z′ϕ(x′, z′, y3) +∇z′Θεδ(x′, z′, y3) in ω × 1

δ
Y ′ × (0, 1), (68)

where, from the mean value theorem applied to ∇z′Θεδ, the fact that |εκ(x
′

ε ) + εδz′ − x′| < ε for x′ ∈ Y ′k′,ε,
k′ ∈ Kε, and ∇z′ϕ ∈ D(Ω;Lr(R2)2), it holds

‖∇z′Θεδ‖Lr(ω×R2×(0,1))2 ≤ Cε. (69)

Proof of Theorem 2.1. The proof of the main result will be divided in two steps.

Step 1. Suppose 1 < r < 2. We set

W =


(v′, V ′) ∈W 1,r(0, 1;Lr(ω)2)× L2

Y ′s
: V ′∞(x′, y3) = v′(x′, y3) a.e. in (x′, y3) ∈ Ω,

divz′V
′ = 0 in ω × R2 × (0, 1), divx′

(∫ 1

0

v′ dy3

)
= 0 in ω,

(∫ 1

0

v′ dy3

)
· n = 0 on ∂ω,

 .

To simplify the notation, we define the operator S : R3
sym → R3

sym by

S(ξ) = |ξ|r−2ξ, ∀ ξ ∈ R3×3
sym,

and denote by Oε a generic real sequence, which tends to zero with ε and δ and can change from line to line.
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In this step, we prove that the pair of functions (u, U) ∈ W given in Lemma 5.2 satisfies the homogenized
problem

µ

∫
Ω

S(∂y3
[u′]) : ∂y3

[v′] dx′dy3 + µ

∫
ω×(R2\Y ′s )×(0,1)

S(Dz′ [U ′]) : Dz′ [V ′] dx′dz′dy3

=

∫
Ω

f ′ · v′ dx′dy3, ∀ (v′, V ′) ∈W.
(70)

To prove this, we consider ϕ(x′, z′, y3) ∈ D(Ω; K3
Y ′s

) such that Dz′ϕ has a compact support, ϕ3 is independent of

y3 and we define ϕεδ by (65). From Lemma 6.1, if δ is small enough the function ϕεδ belongs to D(0, 1;W 1,r(ω)3)
and it has a limit at infinity ϕ∞ ∈ D(Ω)3 satisfying convergence (66).

Multiplying (6) by ϕεδ, taking into account the extensions of the velocity and pressure, integrating by parts
and using (67), we have

µ

∫
Ω

S (Dσε [ũεδ]) :
(
Dx′ [ϕ] + σ−1

ε ∂y3
[ϕ]
)
dx′dy3 + µ(εδ)−1

∫
Ω

S (Dσε [ũεδ]) : Dz′ [ϕ] dx′dy3

−
∫

Ω

p̃εδ divx′ϕ
′ dx′dy3 − (εδ)−1

∫
Ω

p̃εδ divz′ϕ
′ dx′dy3 =

∫
Ω̃εδ

f ′ · ϕ′ dx′dy3 .
(71)

To simplify, from now on we use the following notation:

• ϕ = ϕ(x′, 1
δ

x′−εκ( x
′
ε )

ε , y3) in the integrals in Ω,

• ϕ = ϕ(x′, z′, y3) in the integrals in ω × 1
δY
′ × (0, 1) obtained after applying the changes of variables (31)

and (38).

First, we analyze the first term in (71). Thus,

µ

∫
Ω

S
(
Dx′ [ũεδ] + σ−1

ε ∂y3
[ũεδ]

)
:
(
Dx′ [ϕ] + σ−1

ε ∂y3
[ϕ]
)
dx′dy3

= µ

∫
Ω

S
(
σεDx′

[
σ
− r
r−1

ε ũεδ

]
+ ∂y3

[
σ
− r
r−1

ε ũεδ

])
: (σεDx′ [ϕ] + ∂y3 [ϕ]) dx′dy3.

(72)

Next, we analyze the second term in (71). By the changes of variables (31) and (38) and taking into account
(68), we deduce

µ (εδ)−1

∫
Ω

S
(
Dx′ [ũεδ] + σ−1

ε ∂y3
[ũεδ]

)
: Dz′ [ϕ] dx′dy3

= µ (εδ)−1δ2

∫
ω× 1

δY
′×(0,1)

S
(
(εδ)−1Dz′ [ûεδ] + σ−1

ε ∂y3
[ûεδ]

)
: (Dz′ [ϕ] + Dz′ [Θεδ]) dx′dz′dy3 (73)

= µ

∫
ω× 1

δY
′×(0,1)

S
(
Dz′

[
σ
− r
r−1

ε ûεδ

]
+ δ

2
r ∂y3

[
σ
− r
r−1

ε ûεδ

])
: (Dz′ [ϕ] + Dz′ [Θεδ]) dx′dz′dy3.

By Hölder’s inequality, estimates given in (41) and taking into account (69), we have∣∣∣∣∣
∫
ω× 1

δY
′×(0,1)

S
(
Dz′

[
σ
− r
r−1

ε ûεδ

]
+ δ

2
r ∂y3

[
σ
− r
r−1

ε ûεδ

])
: Dz′ [Θεδ] dx′dz′dy3

∣∣∣∣∣ ≤ Cε,
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and then, (73) reads

µ (εδ)−1

∫
Ω

S
(
Dx′ [ũεδ] + σ−1

ε ∂y3 [ũεδ]
)

: Dz′ [ϕ] dx′dy3

= µ

∫
ω× 1

δY
′×(0,1)

S
(
Dz′

[
σ
− r
r−1

ε ûεδ

]
+ δ

2
r ∂y3

[
σ
− r
r−1

ε ûεδ

])
: Dz′ [ϕ] dx′dz′dy3 +Oε

= µ

∫
ω× 1

δY
′×(0,1)

S
(
Dz′

[
σ
− r
r−1

ε ûεδ

]
+ δ

2
r ∂y3

[
σ
− r
r−1

ε ûεδ

])
:
(
Dz′ [ϕ] + δ

2
r ∂y3

[ϕ]
)
dx′dz′dy3 (74)

−µ δ 2
r

∫
ω× 1

δY
′×(0,1)

S
(
Dz′

[
σ
− r
r−1

ε ûεδ

]
+ δ

2
r ∂y3

[
σ
− r
r−1

ε ûεδ

])
: ∂y3 [ϕ] dx′dz′dy3 +Oε.

Since ϕ belongs to D(Ω;W 1,r
loc (R2)3), by Hölder’s inequality and estimates in (41), we have∣∣∣∣∣δ 2

r

∫
ω× 1

δY
′×(0,1)

S
(
Dz′

[
σ
− r
r−1

ε ûεδ

]
+ δ

2
r ∂y3

[
σ
− r
r−1

ε ûεδ

])
: ∂y3

[ϕ] dx′dz′dy3

∣∣∣∣∣ ≤ Cδ 2
r .

Then, (74) reads

µ (εδ)−1

∫
Ω

S
(
Dx′ [ũεδ] + σ−1

ε ∂y3 [ũεδ]
)

: Dz′ [ϕ] dx′dy3 (75)

= µ

∫
ω× 1

δY
′×(0,1)

S
(
Dz′

[
σ
− r
r−1

ε ûεδ

]
+ δ

2
r ∂y3

[
σ
− r
r−1

ε ûεδ

])
:
(
Dz′ [ϕ] + δ

2
r ∂y3

[ϕ]
)
dx′dz′dy3 +Oε.

Now, we analyze the terms which involve the pressure. By the changes of variables (31) and (38) in the third
and fourth terms in (71) and taking into account (68), we deduce

−
∫

Ω

p̃εδ divx′ϕ
′ dx′dy3 − (εδ)−1

∫
Ω

p̃εδ divz′ϕ
′ dx′dy3

= −
∫

Ω

p̃εδ divx′ϕ
′ dx′dy3 − δ2(εδ)−1

∫
ω×R2×(0,1)

p̂εδ (divz′ϕ
′ + divz′Θ

′
εδ) dx

′dz′dy3.
(76)

By Hölder’s inequality, estimate (44) and taking into account (69), we have∣∣∣∣∣δ2(εδ)−1

∫
ω×R2×(0,1)

p̂εδ divz′Θ
′
εδ dx

′ dz′dy3

∣∣∣∣∣ ≤ Cδ 2−r
r ,

and then, we have that (76) reads

−
∫

Ω

p̃εδ divx′ϕ
′ dx′dy3 − (εδ)−1

∫
Ω

p̃εδ divz′ϕ
′ dx′dy3

= −
∫

Ω

p̃εδ divx′ϕ
′ dx′dy3 − δ2(εδ)−1

∫
ω×R2×(0,1)

p̂εδ divz′ϕ
′ dx′dz′dy3 +Oε.

(77)

Then, taking into account (72), (75) and (77) in (71), we obtain

µ

∫
Ω

S
(
σεDx′

[
σ
− r
r−1

ε ũεδ

]
+ ∂y3

[
σ
− r
r−1

ε ũεδ

])
: (σεDx′ [ϕ] + ∂y3 [ϕ]) dx′dy3

+µ

∫
ω× 1

δY
′×(0,1)

S
(
Dz′

[
σ
− r
r−1

ε ûεδ

]
+ δ

2
r ∂y3

[
σ
− r
r−1

ε ûεδ

])
:
(
Dz′ [ϕ] + δ

2
r ∂y3 [ϕ]

)
dx′dz′dy3

−
∫

Ω

p̃εδ divx′ϕ
′ dx′dy3 − δ2(εδ)−1

∫
ω×R2×(0,1)

p̂εδ divz′ϕ
′ dx′dz′dy3

=

∫
Ω̃εδ

f ′ · ϕ′ dx′dy3 +Oε.

(78)
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Now, we consider v = (v′, 0) ∈ D(Ω)3 which satisfies the divergence condition divx′
∫ 1

0
v′ dy3 = 0 in ω. Also,

we consider V ∈ D(Ω; K3
Y ′s

) such that Dz′V has a compact support, V3 is independent of y3 and divz′V
′ = 0

in ω × R2 × (0, 1). We define Vεδ by (65), which has a limit at infinity denoted by V∞ ∈ D(Ω)3, and suppose
V∞(x′, y3) = v(x′, y3) a.e. in Ω. Then, we choose as test function ϕ in (78) the following functions

• ϕεδ = V

(
x′, 1

δ

x′−εκ( x
′
ε )

ε , y3

)
− σ−

r
r−1

ε ũεδ in the integrals in Ω and Ω̃εδ,

• ϕεδ = V (x′, z′, y3)− σ−
r
r−1

ε ûεδ in the integrals in ω × 1
δY
′ × (0, 1) and ω × R2 × (0, 1).

Taking into account (63), applying Hölder’s inequality and using the second estimate in (42) and estimate (44),
the fourth term in (78) satisfies∣∣∣∣∣δ2(εδ)−1

∫
ω×R2×(0,1)

p̂εδ divz′ϕ
′
εδ dx

′dz′dy3

∣∣∣∣∣ =

∣∣∣∣∣δ2(εδ)−1

∫
ω×R2×(0,1)

p̂εδ divz′ û
′
εδ dx

′dz′dy3

∣∣∣∣∣
=

∣∣∣∣∣δ2σ−1
ε

∫
ω×R2×(0,1)

p̂εδ ∂y3 ûεδ,3 dx
′dz′dy3

∣∣∣∣∣ ≤ Cσ 1
r−1
ε ,

and so (78) reads

µ

∫
Ω

S
(
σεDx′

[
σ
− r
r−1

ε ũεδ

]
+ ∂y3

[
σ
− r
r−1

ε ũεδ

])
: (σεDx′ [ϕεδ] + ∂y3 [ϕεδ]) dx

′dy3

+µ

∫
ω× 1

δY
′×(0,1)

S
(
Dz′

[
σ
− r
r−1

ε ûεδ

]
+ δ

2
r ∂y3

[
σ
− r
r−1

ε ûεδ

])
:
(
Dz′ [ϕεδ] + δ

2
r ∂y3 [ϕεδ]

)
dx′dz′dy3

−
∫

Ω

p̃εδ divx′ϕ
′
εδ dx

′dy3 =

∫
Ω̃εδ

f ′ · ϕ′εδ dx′dy3 +Oε.

From this, we deduce

−µ
∫

Ω

(
S
(
σεDx′

[
σ
− r
r−1

ε ũεδ

]
+ ∂y3

[
σ
− r
r−1

ε ũεδ

])
− S (σεDx′ [V ] + ∂y3

[V ])
)

: (σεDx′ [ϕεδ] + ∂y3
[ϕεδ]) dx

′dy3

−µ
∫

Ω

S (σεDx′ [V ] + ∂y3
[V ]) : (σεDx′ [ϕεδ] + ∂y3

[ϕεδ]) dx
′dy3

−µ
∫
ω× 1

δY
′×(0,1)

(
S
(
Dz′

[
σ
− r
r−1

ε ûεδ

]
+ δ

2
r ∂y3

[
σ
− r
r−1

ε ûεδ

])
− S

(
Dz′ [V ] + δ

2
r ∂y3

[V ]
))

:
(
Dz′ [ϕεδ] + δ

2
r ∂y3 [ϕεδ]

)
dx′dz′dy3

−µ
∫
ω× 1

δY
′×(0,1)

S
(
Dz′ [V ] + δ

2
r ∂y3

[V ]
)

:
(
Dz′ [ϕεδ] + δ

2
r ∂y3

[ϕεδ]
)
dx′dz′dy3

+

∫
Ω

p̃εδ divx′ϕ
′
εδ dx

′dy3 = −
∫

Ω̃εδ

f ′ · ϕ′εδ dx′dy3 +Oε.

Since the operator S is monotone, i.e. (S(ξ)− S(ζ)) : (ξ − ζ) ≥ 0 for every ξ, ζ ∈ R3, we have

µ

∫
Ω

S (σεDx′ [V ] + ∂y3
[V ]) : (σεDx′ [ϕεδ] + ∂y3

[ϕεδ]) dx
′dy3

+µ

∫
ω× 1

δY
′×(0,1)

S
(
Dz′ [V ] + δ

2
r ∂y3

[V ]
)

:
(
Dz′ [ϕεδ] + δ

2
r ∂y3

[ϕεδ]
)
dx′dz′dy3

−
∫

Ω

p̃εδ divx′ϕ
′
εδ dx

′dy3 ≥
∫

Ω̃εδ

f ′ · ϕ′εδ dx′dy3 +Oε.

(79)
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Maŕıa Anguiano and Francisco J. Suárez-Grau

Then, passing to the limit by taking into account that σε and δ
2
r tend to 0 and using convergences (45), (47),

(55) and (66), we obtain

µ

∫
Ω

S (∂y3
[V ′∞]) : (∂y3

[V ′∞ − u′]) dx′dy3 + µ

∫
ω×(R2\Y ′s )×(0,1)

S (Dz′ [V ]) : Dz′ [V − U ] dx′dz′dy3

−
∫

Ω

p divx′(V
′
∞ − u′) dx′dy3 ≥

∫
Ω

f ′ · (V ′∞ − u′) dx′dy3.

Since p does not depend on y3, according to V ′∞ = v′ in Ω and divx′
∫ 1

0
v′ dy3 = 0 in ω, we have∫

Ω

p divx′(V
′
∞ − u′) dx′dy3 =

∫
Ω

pdivx′(v
′ − u′) dx′dy3 =

∫
ω

p divx′

(∫ 1

0

(v′ − u′)dy3

)
dx′ = 0,

so we get

µ

∫
Ω

S (∂y3 [V ′∞]) : (∂y3 [V ′∞ − u′]) dx′dy3 + µ

∫
ω×(R2\Y ′s )×(0,1)

S (Dz′ [V ]) : Dz′ [V − U ] dx′dz′dy3

≥
∫

Ω

f ′ · (V ′∞ − u′) dx′dy3,

which, due to Minty Lemma [17, Chapter 3, Lemma 1.2], is equivalent to

µ

∫
Ω

S (∂y3
[u′]) : ∂y3

[V ′∞] dx′dy3 + µ

∫
ω×(R2\Y ′s )×(0,1)

S (Dz′ [U ]) : Dz′ [V ] dx′dz′dy3 =

∫
Ω

f ′ · V ′∞ dx′dy3. (80)

Taking in the previous variational equation W = (0, 0, U3) as test function, we have∫
R2\Y ′s

|Dz′ [U ]|r−2Dz′ [U ] : Dz′ [W ] dz′ = 0, a.e. in Ω,

and since U3 ∈ LY ′s , from [11, Proposition 9.2], we have

‖U3 − U∞,3‖rLr∗ (R2) ≤ C‖Dz′ [U3]‖rLr(R2)2 a.e. in Ω.

From Lemma 5.2, we know that U∞,3 = 0 in Ω and so, we deduce

‖U3‖rLr∗ (R2) ≤ C‖Dz′ [U3]‖rLr(R2)2 ≤ C

∣∣∣∣∣
∫
R2\Y ′s

|Dz′ [U ]|r−2Dz′ [U ] : Dz′ [W ] dz′
∣∣∣∣∣ = 0,

which implies U3 = 0. Then, the variational equation (80) reads

µ

∫
Ω

S (∂y3
[u′]) : ∂y3

[v′] dx′dy3 + µ

∫
ω×(R2\Y ′s )×(0,1)

S (Dz′ [U ′]) : Dz′ [V ′] dx′dz′dy3 =

∫
Ω

f ′ · v′ dx′dy3,

which by density gives (70) for every (v′, V ′) ∈W.

Step 2. Let us obtain a problem for u′ identifying U ′ in (70). For this purpose, for every ξ′ ∈ R2 we consider
the unique solution of the auxiliary problem (9) denoted by (wξ

′
, πξ

′
) ∈ D1,r(R2 \Y ′s )2×Lr′(R2 \Y ′s )/R and the

drag force function G(ξ′) given by (8). We remark that then wξ
′ ∈W 1,r

loc (R2 \ Y ′s )2, see [16, Lemma II.6.1].

Thus, we can take in (70) the pairs of functions (u′, U ′), (v′, V ′) ∈W in the following way

U ′(x′, z′, y3) = wu
′(x′,y3)(z′), V ′(x′, z′, y3) = wv

′(x′,y3)(z′) a.e. ω × (R2 \ Y ′s )× (0, 1),
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and then, we deduce

µ

∫
Ω

S(∂y3 [u′]) : ∂y3 [v′] dx′dy3 + µ

∫
Ω

G(u′) · v′ dx′dy3 =

∫
Ω

f ′ · v′ dx′dy3 , ∀ v′ ∈ V, (81)

where

V =

{
v′ ∈W 1,r(0, 1;Lr(ω)2) : divx′

(∫ 1

0

v′(x′, y3) dy3

)
= 0 in ω,

(∫ 1

0

v′(x′, y3) dy3

)
· n = 0 on ∂ω

}
.

From the properties of G given in Remark 2.3 and following [15, Lemma 4.4], the variational formulation (81)
has a unique solution u′ ∈ V. Finally, taking into account that

|∂y3
[u′]|r−2 = |Tr(∂y3

[u′]∂ty3
[u′])| r2−1,

which implies
S(∂y3

[u′]) = 2−
r
2S(∂y3

u′),

we deduce that there exists q ∈ Lr′(ω)/R such that the variational formulation (81) is equivalent to system (7).
It remains to prove that such function q coincides with the pressure p given in Lemma 5.1. This can be easily
done by proceeding as in Step 1 but considering test functions without satisfying the divergence condition divx′ ,
and identifying limits. Since problem (7) has a unique solution, then the entire sequence (ũεδ, p̃εδ) converges to
(u, p). This finishes the proof.
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