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Lower-dimensional nonlinear Brinkman’s law
for non-Newtonian flows in a thin porous medium

Marfa ANGUIANO!, Francisco J. SUAREZ-GRAU?

Abstract

In this paper we study the stationary incompressible power law fluid flow in a thin porous medium. The
media under consideration is a bounded perforated 3D domain confined between two parallel plates, where
the distance between the plates is very small. The perforation consists in an array solid cylinders, which
connect the plates in perpendicular direction, distributed periodically with diameters of small size compared
to the period. For a specific choice of the thickness of the domain, we found that the homogenization of the
power law Stokes system results a lower-dimensional nonlinear Brinkman type law.

AMS classification numbers: 76A05, 35B27, 76M50.
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1 Introduction

Modeling non-Newtonian fluid flows in porous medium is very important due to its practical engineering applica-
tions, such as oil recovery, food processing, and materials processing. Non-Newtonian fluids exhibit a nonlinear
behavior that is different from that of Newtonian fluids and the related equations are too complicated to be
solved in the porous medium, due to its complex geometry. Thus, macroscopic laws obtained by homogenization
techniques are used as a good substitute for the original physical laws.

A relevant case of non-Newtonian fluid is the power law or Ostwald-de Waele model, which assumes that the
viscosity satisfies a nonlinear power law. More precisely, if u is the velocity field and Du the gradient velocity
tensor, denoting the shear rate by D[u] = 3 (Du + D'u), the viscosity as a function of the shear rate is given by

nr(D[u]) = p|Du)|"2, 1<r < 4oo.

The two parameters p > 0 and r are called the consistency and the flow index, respectively. The matrix norm
| - | is defined by [£]? = Tr(£€Y) with € € R3, so the viscosity is expressed in term of the second invariant of the
strain tensor Dy7[u] = D[u]D[u]t by

ID[u]["™2 = Drrlu]| 27
We recall that r = 2 yields the Newtonian fluid, for » € (1,2) the fluid is a shear-thinning and for r € (2, +00)

is a shear-thickening.

The derivation of macroscopic law for power law fluids through periodic porous medium with a periodic
arrangement of obstacles has been consider in Bourgeat et al. [8, 9]. Denoting & a small parameter related to
the characteristic size of the obstacles and the period of the periodic structure and starting from the 3D power
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law Stokes system with body forces f, by means of the two-scale convergence method when ¢ tends to zero, the
following nonlinear Darcy type law for the pressure p is derived in an e-independent domain = w x (0,1) C R3

1
u:;Z/{(f—Vp) in Q,

divu=0 inQ, w-n=0 ondf.

The nonlinear function I/ : R? — R? is called permeability function of the porous medium and is defined through
the solutions of auxiliary problems of power law type depending on the geometrical structure of the domain. We
refer to Mikeli¢ [20, 21] for a complete review on the modeling of non-Newtonian flows in porous medium by
using homogenization.

A more general case of periodic porous medium is when the size of the solid obstacles is assumed to be much
smaller than the period. Thus, denoting ¢ the period of the periodic porous structure and considering obstacles of
size €0 with J. a parameter which depends on the period and changes simultaneously during the homogenization
process, it is well-known that there exists a critical regime in which the macroscopic law describing the behavior of
Newtonian fluids is the Brinkman’s law instead of the Darcy’s law, see Allaire [1, 2] and Brillard [10]. This change

P

of behavior occurs for power law fluids as well. More precisely, assuming that the relation o, = ¢/6. " tends to
a positive constant when e tends to zero, Fratrovi¢ and Marusié-Paloka [15] derived by means of I'-convergence
the following nonlinear Brinkman type law

—pdiv (|D[u]|"*D[u]) + pG(u) + Vp = f in Q,
divu=0 1in €,
u=0 on 0,

where the nonlinear function G : R? — R3? is called the drag force function of the porous medium and it provides
the value of the drag force on the reference obstacle. Moreover, it is defined through the solution of auxiliary
exterior problems of power law type depending on the geometrical structure of the obstacles. We remark that
due to technical reasons, such as the derivation of a sharp Poincaré—Korn inequality and the existence of a unique
solution of exterior auxiliary problems in homogeneous Sobolev spaces, the fluid index r has to be restricted, i.e.
be smaller than the dimension of the domain. In fact, this result is only proved to shear thinning fluids.

On the other hand, the derivation of macroscopic laws for fluid flows in a thin porous medium has recently
become of great interest, see Anguiano and Sudrez-Grau [5] and Fabricius et al. [13]. More precisely, a thin
porous medium can be defined as a bounded perforated 3D domain confined between two parallel plates, where
the distance between the plates is very small and the perforation consists of periodically distributed solid cylinders
which connect the plates in perpendicular direction. In previous studies, the thin porous medium is described
by two parameters: one parameter ¢ denoting the period of the periodic porous structure as well as the size
of the diameter of the cylinders, and another parameter h. denoting the thickness of the domain. Thus, the
derivation of macroscopic laws through a thin porous medium depends on the relation between both parameters.
Concerning power law fluids, in a recent article (see [4]) we derived different lower-dimensional forms of the
nonlinear Darcy’s law in w C R? by using an adaptation of the unfolding method depending on the parameter
€, which can be written as follows

1
ul:pu(flfvx’p)a u3 =0 inw,

divpyr' =0 inw, v -n=0 ondw.

Here v’ = (ui,us), f' = (f1, f2), ¥’ = (w1, 22) and the permeability function U/ : R? — R? is defined through the
solutions of lower-dimensional auxiliary problems of power law type.

The goal of this paper is to study the homogenization of power law fluids in thin porous medium containing
an array of periodically perforated cylinders with diameters much smaller than the period. As far as we know,
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this problem has never been considered in the previous literature. This domain is then defined by three small
parameters denoted by €, d. and h., where € denotes the period of the periodic porous structure, £d. the size of
the diameter of the cylinders and h. the thickness of the domain. For an appropriate choice (critical size) of h.,
we derive in 2 the following lower-dimensional nonlinear Brinkman type law

7#2758:%(|am3ul|T72am3ul) + ug(ul) + Vm’p = flv uz3 =0 in Q’

1 1
div, (/ o’ dxg) =0 inw, </ o’ dxg,) ‘n=0 on dw,
0 0

u'(2/,0) =4/ (2/,1) =0 inw,

where the nonlinear drag force function G : R? — R? is defined through the solution of lower-dimensional
auxiliary exterior problems of power law type depending on the geometrical structure of the obstacles. The
result is obtained by using a combination of reduction of dimension techniques, monotonicity arguments and an
adaptation of the unfolding method depending on parameters € and §.. We also remark that due to different
technical reasons, which will be noted along the paper, we have to restrict this study to shear thinning power law
fluids. For instance, in order to obtain optimal a priori estimates of the solution, we need to use Poincaré-Korn’s
and a Sobolev-Poincaré-Wirtinger’s inequalities, and for this the flow index must satisfies 1 < r < 2.

The structure of the paper is as follows. In Section 2 we introduce the domain and give the main result
(Theorem 2.1). In Section 3, we establish some a priori estimates and in Section 4 we introduce the version of
the unfolding method for a domain perforated by cylinders with small diameters. Some compactness results,
which are the main keys when we will pass to the limit later, is addressed in Section 5. Finally, the proof of the
Theorem 2.1 is given in Section 6.

2 Setting of the problem and main result

Geometrical setting. A periodic porous medium is defined by a domain w and an associated microstructure,
or periodic cell Y’ = [~1/2,1/2]?, which is made of two complementary parts: the fluid part Y]ﬁ , and the solid
part Y, such that YUY = Y" and Y; (Y] = (). More precisely, we assume that w is a smooth, bounded,

connected set in R?, and that Y/ is an open connected subset of Y’ with a smooth boundary dY/, such that ?;
is strictly included in Y’. We denote Y =Y” x (0,1) C R? and so Yy = Y7 x (0,1) and Y, = ¥ x (0,1).

Let € and § be positive parameters, smaller than one, where § = §(¢) is such that 6 — 0 as ¢ — 0. Using
both parameters, we define the parameter
0e =z (1)
We consider a thin porous medium 2.5 of thickness o. which is perforated by solid cylinders with diameter of
size €6 and distributed periodically with period €. The choice of the thickness is justified by the Poincaré-Korn
inequality, see Remarks 3.2 and 3.3. In addition, to work within the thin domain framework, we assume

lim o, = 0. (2)

e—=0

To define the microstructure of the domain w, set
Y(Slf =Y’ \ 5?;5

such that the domain w is covered by a regular mesh of size ¢, i.e. for k' € Z?2, each cell Yk’,78 =ck' +eY'is

divided in a fluid part Yé/fku and a solid part Yé’skl,a, where Y;s/sk,, . denotes the complement in Y}, _ of the set

€ €

Yalfk,,s- We observe that Y’/’E is similar to the unit cell Y’ rescaled to size .

Thus Y is divided in a fluid part Y5y and a solid part Y5, and consequently Yy . = Y,c’,75 x (0,1) C R3, which
is also divided in a fluid part Y5y, e and a solid part Y5, , c.
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Figure 1: View of the 3D reference cells Y (left) and the 2D reference cell Y’ (right).

We denote by T(?;SkME) the set of all translated images of Y;Sk,’s. The set T(?gsk/,e) represents the solids in

R?. The fluid part of the bottom w.s C R? of the porous medium is defined by w.s = w\ Uy ex. ?;Skue, where
K.={k e€27?: YicNw# 0}. Thus, the whole fluid part .5 C R? in the thin porous medium is defined by

Qs = {(z,23) ER*xR: 2/ €w.s, 0< 23 <0} (3)

We make the assumption that the solids T(Y;Sk,,e) do not intersect the boundary dw. We define Y =

6Sk’7€
Y(S/sk/,s x (0,0¢). Denote by Scs the set of the solids contained in Q5. Then, S5 is a finite union of solids, i.e.

o,
Ses = LJI@’GKJS Yﬁsk/,a'

Je
| Y&fk,7s

O¢ Oe
)%sk/ »€

Figure 2: View of the 3D rescaled cell Y} . (left) and the 2D rescaled cell Y}, _ (right).

We define Q.5 = w.s x (0,1), 2 =wx(0,1), and Q5 = w x (0, 0.). We observe that Qs = O\ Uk,e,cs 755%5,
and we define T,5 = Uk’EICE ?55%5 as the set of the solids contained in ng.

Os O¢

Sas g
Figure 3: View of the thin porous medium Qs (left) and the domain without microstructure Qs (right).

Following previous notation, we remark that along the paper, the points x € R? will be decomposed as
x = (2/,23) with 2/ = (z1,22) € R?, 23 € R. We also use the notation 2’ to denote a generic vector of R.
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Setting of the problem. In the thin porous medium 2.5 described above we consider the following power
law Stokes system
—pdiv (“D) [uszS] |T72]D) [UszS]) +Vpes = fin Qcs,
div Uegs = 0 in ng, (4)

ues = 0 on 94,

where ugs is the velocity field and p.s is the pressure. In system (4), we suppose that the right-hand side (body
forces) f is of the form
fla) = (f(2'),0), ae. z€Q,

where f is assumed in L™ (w)2, where r’ = r/(r — 1) is the conjugate exponent of r. We remark that the choice
of f is usual when we deal with thin domains. Since the thickness of the domain is small, then the vertical
component of f can be neglected and moreover, it can be considered independent of the vertical variable.

Therefore, the classical theory gives the existence of a unique solution (ucs,pes) € Wy (Qe5)® x L™ (Qes)
with 1 < r < 400, see Lions [17]. This solution is unique up to an additive constant for p.s, i.e. it is unique if
we consider the corresponding equivalence class p.s € L™ (2.5)/R.

Our goal is to study the asymptotic behavior of u.5 and p.s when € and § tend to zero. For this purpose, we
use the dilatation in the variable x3

T3
Yys = —, (5)

O¢

in order to have the functions defined in the open set with fixed height ﬁsg. Namely, we define .5 € WO1 ’7'(6255)3,
f)eé eL” (Qsﬁ)/R by

Ues (2, y3) = ues (@', 0cy3), Pes(@’,y3) = pes(@’,0eys), ace. (2/,y3) € Qes.
Let us introduce some notation which will be useful in the following. For a vectorial function v = (v/,v3) and
a scalar function w, we will denote D,/ [v] = 4(Dyv + DLv) and 9y, [v] = 5(8y,v + 0L, v), where we denote
dys = (0,0, -2-)t. Moreover, associated to the change of variables (5), we introduce the operators: D,_, D,._,

s > Oys
div,, and V,_, by

1
D, [v] = 5 (Do.v + Dy, v)
(Dyv)ij = 0g,v; for i=1,2,3, j=1,2, (Do.v)i3 =07 0y,v; for i=1,2,3,
divy, v = divy v’ + 0. 10,03, Ve.w = (Vew,o 0y,w)t.

Using the transformation (5), system (4) can be rewritten as
—udiv, (D, [es] P~ Do, [es]) + Vi ey = f i O,
divy, iies = 0 in Qg (6)

ﬂg,g =0 on 8555.

Our goal then is to describe the asymptotic behavior of the dilated sequence (s, Pes), which is given by the
theorem below. However, the sequence of solutions (fies, pes) € Wo' (Qes)® X L™ (€e5)/R of system (6) is not
defined in a fixed domain independent of € and 4, but rather in a varying set Qes. Thus, in order to pass to the
limit when € and § tend to zero, convergences in fixed Sobolev spaces (defined in Q) are used. This previously
requires to define an extension of (@.s, Pes) to the whole domain €. In this sense, we consider the zero extensions
to the whole Q for both velocity and pressure, which coincide with the original functions in (255. For simplicity
the extensions will be denoted by the same symbol.

Moreover, as noted in the introduction, we restrict the main result to shear thinning power law fluids. More
precisely, this restriction of the flow index r comes from the derivation of the Poincaré-Korn inequality (Remark
3.2) and the Sobolev-Poincaré-Wirtinger inequality (Theorem 4.3-3), which are only valid for 1 < r < 2 and are
necessary to obtain optimal a priori estimates of the solution.
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Theorem 2.1 (Main Theorem). Suppose 1 <r < 2 and let o, be given by (1) satisfying (2). Then, there erist
u= (u,0) € Whr(0,1; L"(w)3) with u = 0 on y3 = {0,1} and p € L" (w) independent of ys, such that the
extension (les, Des) of the solution of (6) satisfies the following convergences

oc iies —u  weakly in WH(0,1; LP(w)?), pes —p  strongly in LT/(Q),
where (u',p) is the unique solution of the lower-dimensional nonlinear Brinkman type equation

_/JQ_% Oy, <|8y3’u/|r_28y3ul) +uGu)+Vap=f" inQ,

1
divy (/ o’ dy3> =0 inw,
0
1
(/ u’dy3)~n=O on Ow,
0

=0 onys=1{0,1}.

Here, the drag force function G : R2 — R? is defined by

G(¢) 7' = / oy P WD ) DT, R, (8)

where w€', & =1/, is the unique solution to the auziliary exterior problem
—dives (D2 w7 ?Dar [w]) + Vart =0 inR2\ Y,
divow® =0 inR2\ Y,

w =0 ondY!, (9)

/

lim wé = ,

|2’ | =00

(w®,7¢) € DV (R*\ Y{)* x L™ (R”\ Y{)/R.

The space DV denotes the homogeneous Sobolev space given by DV (O) = {v €Ll (O): Dve LT(O)}.

loc

Remark 2.2 (Uniqueness of solution of the auxiliary exterior problem). For every ¢’ € R?, the eaterior auziliary
problem (9) has a unique solution (w® ,7¢) € DV (R2\Y/)2 x L™ (R?\ Y!)/R, with 1 < r < 2, see [18, Theorem
3]. For more details concerning the homogeneous Sobolev space D> we refer to [16, Chapter IL.6].

Remark 2.3 (Properties of the drag force function). According to [14], the drag force function G : R? — R? is
continuous, strictly monotone and satisfies the homogeneity condition

GAE) = IN"T2NG(E), V(N E) eR xR
Moreover, there exists m, M > 0 such that for every & € R? it holds
ml¢'|"h <1G(EN] < Mg

Remark 2.4. The mathematical derivation of lower-dimensional models describing power law fluid flows in a
thin domain Q. = w x (0,&) C R? has been considered in [19], see also [3, 6, 7, 22], obtaining the nonlinear
Reynolds’ law
u/: %'f/_vm’pr _Q(fl_vz’p) in w,
27(T/+1)Mr’—1
(10)
divgu' =0 inw, 4 -n=0 ondw.
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The main result of this paper can be considered a generalization of previous result to the case of a thin porous
medium. In fact, if we assume the drag force function G = 0 in the Brinkman’s law (7), i.e. in the absence of
obstacles, we recover the homogenized model obtained in [19, Propositions 3.1 and 3.2] given by

— 12720, (|00, |" 2050 ) + Vap=f, uz=0 inQ=wx(0,1),

1 1
divy (/ o dmg) =0 inuw, </ o d:r3> n=0 on dw,
0 0

u'=0 onys={0,1},

which gives rise to the nonlinear Reynolds’ law (10), see [19, Propositions 3.4).

3 A Priori Estimates

We need some technical results to obtain a priori estimates of the solution (u.s,pes) of problem (4). First,
to estimate the velocity we need a variant of the Poincaré and Korn inequalities in the thin porous medium
necessary to derive uniform estimates for velocity u.s. Next, to estimate the pressure we need a result of the
inverse of the divergence operator in thin porous medium.

Lemma 3.1. Suppose 1 < r < 400 and let 0. be given by (1). Then, there exists a constant C' independent of
€ such that for any function ¢ € Wol’r(Qa;)B, one has

ol L. < CocllDollpr(qyysxs, 1 <1 <2, (Poincaré’s inequality), (11)
1Dl 1. gy3xs < C D[]l 1rqugyoxs, 1 <7 <+00, (Korn’s inequality). (12)

Proof. From [15, Lemma 4.1] applied to domain w,s, we have the Poincaré inequality
1Pl zr (53 € COZNDarpllpr o, psxz < COLNDPN o ppaxs, 1< <2

The desired result (11) follows by integrating previous estimates with respect to 3 between 0 and o.. Finally,
the classical Korn inequality in porous mediums implies that (12) holds for 1 < r < +o0. O

Remark 3.2 (Poincaré-Korn’s inequality in Q.5). Estimates given in Lemma 3.1 can be expressed as follows
1,r
lellLr(.pe < Coe IRl poxa, Vo € Wo (Qe6)’, 1 <7 <2. (13)

Remark 3.3. As said in the introduction, the thin porous medium Q.4 is generally described by three parameters.
Thus, if € and § describe the perforation of the domain, a new parameter he should be introduced describing the
thickness of the domain. In that case, it can be proved that the optimal Poincaré-Korn inequality (18) depends
on the relation between h. and o.. More precisely, it can be proved that if he > o, or he = 0. the Poincaré-Korn
inequality holds with Co., while if he < o it holds with Ch.. Therefore, the thickness of the domain considered
in this paper can be viewed as the critical size of the periodic perforation with respect to the thickness of the
domain, similarly to what happens in [4, Lemma 4.1].

Lemma 3.4 (Inverse of the divergence operator in §.5). Suppose 1 < r < +o0 and let 0. be given by (1). Then,

there exists a constant C' independent of € such that for any g € L"(Qes) there exists ¢ = o(g) € WHT(Q.5)3
with o =0 on 0Qc5 such that

divp =g in Qgs, (14)

el < Cllgller@usys  1DlLr@ugyexs < CoZtllglira.s)- (15)
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Proof. Let g € L"(Qs) be given. We extend g inside the cylinders by means of the function:

g(x) if xe Q.

@@\malgg“”xlferd\m&

It follows that G € L%(Q.5) = {q €L (Qes) : [, qde= o} and

T

1

G Tr = r.,- + T
1GN%r(@.s) = 912 (.4 Qs \ Qeg |71

(16)

/Qsé g(x)dz

Since |Qes \ Qes| is bounded from below by a positive number, it follows from (16) and Holder’s inequality that

1Gl27(@.s) < Cllgllrs)- (17)

Besides that, since G € L"(Q.5), it follows from [12, Lemma 4] that we can find ¢ € W,'"(Q.s)® such that

dive =G in Qes, (18)

lelLr@.sy2 < ClGILr@es)s 1Dl Lr(@usyoxs < CoZtIGllLr(qus)- (19)

Let us consider ¢, : it belongs to WhT(Qes) with ¢ = 0 on dQ.s. Moreover, (14) follows from (18) and
estimates given in (15) follow from (17) and (19). O

By means of previous technical results, we give the estimates of the solution (ucs, pes) of problem (4) in Q..

Lemma 3.5 (Estimates of velocity and pressure in Q). Suppose 1 < r < 2 and let o. be given by (1). Then,
there exists a constant C' independent of €, such that if (ues,pes) € WOI’T(QE(;)P’ x L™ (2:5)/R is the solution of
the problem (4), one has

T2::1 +1 T2::1
sl 1r (.5 < Col™ D ||D [uss]| Lr(Qu5)3%3 < ColT, (20)
2r—1
IDuesl|r (g gy0x0 < Coe™™, (21)
1
1Pl (. < Coe" (22)

r
r—1°

where ' =

Proof. We start with the velocity. Multiplying by wes in the first equation of (4) and integrating over .5, we
have

M/Qes ID [ues])” 2 D fues] 2 D [ues] d = /965 f - ues da. (23)

Using Holder’s inequality and the assumption of f, we obtain that
r=1
[ s dsttyy < Co7 Juasllo e
QEJ

and by (23), we have
1D [tes]l| Lr(oepyoxs < Coe™ teslliriq g0 - (24)

Taking into account (13), we obtain the second estimate in (20) and consequently, from Korn’s inequality (12)
we obtain (21). Now, from (13) and the second estimate in (20), we deduce the first estimate in (20).
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Now, we obtain the estimate for the pressure. Let g € L"(€Qs) be given. From Lemma 3.4, there exists
© € WHr(Q.5)3 with ¢ = 0 on dQ.s such that

dive=g in Q, [l@llor@.s < Cllgllr@gys  [1PellLr@up)sxs < Cotllgllor - (25)

Multiplying by ¢ € W17 (0.5)3, with ¢ = 0 on 0Q.s, in the first equation of (4) and integrating over 2.4, from
the second estimate in (20) and (11), we have

/ Des div ¢ dx
QEB

and using (25), we get

< ClID[ucs][I7-

Tty Dol syxs + 0ol @llir@ups < Coe ™ 1D@llzrasyses,

/ Pes g dx
Q55

Now, we consider in (26) the function g = |p€5|rlf2 Ppes, which satisfies g € L"(Qz5) due to pes € L™ (Qes). Then,
it easily follows

<Co.m ||9||LT 2s) (26)

||p€5||Lr (Qes) < CUE ||p€5||Lr (Qe5)’

which, taking into account that (r — 1)/r = 1/r/, implies estimate (22). O

Considering the change of variables given in (5), we obtain the following result in the domain Q.s.

Lemma 3.6 (Estimates of dilated velocity and pressure in 6255) Suppose 1 < r < 2 and let o, be given by (1).

Then, there exists a constant C' independent of €, such that if (Ues, pe) € VVO1 T(Qgtg) x L (Q 85)/R 18 the solution
of the problem (6), one has

_r_ 1
||'[L55||Lr(§£6)3 S CUET.?: H]D)Ug [ﬁ65]||[,r(§£6)3><3 S Co'erila (27)
1
||D0'5u€6HL7‘ Qos)3x3 < CUE 5 (28)
”pe&‘ L™ (Qes) <C, (29)

r
r—1"

where r' =

Remark 3.7 (Extension of (#es, Pes) to the whole domain ). We extend the velocity ties by zero to Q and denote
the extension by the same symbol. Obuviously, estimates (27)-(28) remain valid and the extension is divergence
free too. Similarly, we consider the extension by zero of the pressure pes to 2, still denoted by the same symbol,
and so estimate (29) remains valid.

4 Unfolding Method in domains with cylinders of small diameter

The change of variable (5) does not provide the information we need about the behavior of (t.s,pes) in the
microstructure associated to Q.5. To solve this difficulty, we need to introduce an adaptation of the unfolding
method adapted to perforated domains by cylinders with diameters of size €9 distributed periodically with period
g, see [11, Chapter 9] for more details.

Now, let us introduce the adaption of the unfolding method in which we divide the domain 2 in cubes of
lateral length € and vertical length 1.
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Definition 4.1 (Unfolding operator in domains with cylinders of small diameter). For ¢ € L"(Q2), 1 < r < +o0,
we define p € L"(w x R? x (0,1)) by

/
@ (SK (i) + 552/,?!3) ’ Z.f (xlvz/ayii) €EwX %Y/ X (07 1)7

@', 2 ys) = (30)
0 otherwise,
where the function k : R? — Z2 is defined by
k(@) =k < 2’ €Y, VK ez’
Remark 4.2. We make the following comments:
— For 6 = 1 we are in presence of the adaptation of the unfolding operator for domains with cylinders

introduced in [4, Subsection 4.2].

— The function k is well defined up to a set of zero measure in R? (the set Uy ez2 aYk’/71), Moreover, for every
€ > 0, we have
1,/
n( =k < 2 €Y/ ..
c :

— For k' € K., the restriction of ¢ to Yy, _ % 3V’ x (0,1) does not depend on x’, whereas as a function of 2’
it is obtained from @ by using the changes of variables 6z’ =y’ and

, xl — ek

y=—" (31)

which transform Yiy < into Y x (0,1).

Next, we give some useful properties of the unfolding operator (30).

Theorem 4.3 (Properties of the unfolding operator). We have the following properties of ¢:
1. Suppose 1 <1 < 4o00. For every ¢ € L"(Q),
18l wxrzxo1)) < 877 1l - (32)
2. Suppose 1 < r < 4o0. For every p € WHT(Q),
D [@]“LT(UJX%Y’X(O,I))? <o Do [@]HLT(Q)Z ; (33)

. _2 ~
[0y, [SD]HU(WX%Y/X(OJ)) <677 |0y, [‘P]”LT(Q) ‘ (34)

3. Suppose 1 <1 <2 and let O be a bounded open set in R2. For every ¢ € WhHT(Q),

6 — ol L7 (Q;L7" (R2)) <Coc || Da [95” L (Q)2 (35)

L™ (wx0Ox(0,1)) < C|O|%JEHDOE’ [@]l

. 1.
1] @2 T O |2l ) (36)
2r

where r* = 57 be the associated Sobolev exponent, C' denotes the Sobolev-Poincaré- Wirtinger constant for
WL (Y') and @ € L™(Q) is the local average defined by

o i o -
P =% [ e =8 [ gl ) dr Vg e L(Q) (37)
€ Eli(%)JrEY, %Y’

10
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Proof. 1. Using the definition (30), we have

/ |p(a’, 2 y3)|" da'd2'dys < Z/ / o2, 2 y3)|" da'd2 dys
wxR2 (0 1) ke, R2 ><01)
= Z / / ek’ + €02, y3)|" da’d dys.
=] o Y’ x 01)

We observe that ¢ does not depend on z’, then we obtain

/ |p(a’, 2, ys)|" da'dz' dys < & Z / ek’ + 62, y3)|" d2'dys,
wxR2x(0,1) K ek, Y’ x(0, 1)
and by the change of variables
d /
02 =4/, di = 5%, 0.1 = 60y,

which rescales from 1Y’ x (0,1) to Y, we have

L |8 ) s <2267 50 [ iptel )l
wX X

k'eke

By the change of variables (31), we have

IA

/ |p(2, 2, y3)|" da'dz' dys
wxR2x(0,1)

522/ /Iw (', y3)|" da’'dys

k'eke

INA
S

‘@(I/a Z/3)|T dl‘/dyg,
wx(0,1)

ie.,
. I
1l L wxr2x(0,1)) <07 1@l () -
2. Observe that, by the definition (30), we can deduce

/ Do (6, 2, o) dalddys <
wx1Y'x(0,1) ek, x(0,1)

As ¢ does not depend on 2/, then we obtain

/ D, [p(2, 2, y3)]|” da'd2 dys < * Z / [B(ek’ + €02, y3)]|" d2'dys,
1y7x(0,1) K ek, Ly’ x(0, 1)

and by the change of variables (38), we have

/ Do [p(a', )l 'y <2572 S [ Dy [k + </ )y
wX Y’X(O 1) ke,
By the change of variables (31), we have

/ Do [p(2), 2 ys)]|" da'dz'dys < e"6"2 Y / / [Dar (G, ys)]I" da'dys
wx 5Y’"x(0,1)

k'eke

IN

< 5/ D (3, 33))|” da’dys,
wx(0,1)

11

Z / / [P(ek’ +e02',y3)]|" da'dz' dys.
Y/

(38)
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ie.,

~ —2 ~ ~
D [80]||Lr(w><§Y/x(o,1))2 <ed o7 Dy [<P]||LT(Q)2 = 0¢ [ Dy [<P]||LT(Q)2 :

Similarly, using definition (30) and the change of variables (38), we have

/ |0ys [(2, 2/, y)]|" da'dz'dys < &% 52 Z /|8y3 (ek' + ey, y3)]|" dy.
xsY’x(0,1) ke,

By the change of variables (31), we obtain
/ 00, 0" ) 'ty <572 [0, [plel I s,
x1Y7%x(0,1) (0,1)

ie.,

10y, [#]]

3. Suposse 1 < r < 2. For ae. (2/,y3) € Q, taking into account the definition of the local average (37), we
proceed as previous statements to obtain

LT (wx 2Y7x( 01))<5 B ||6y (2]

6 — @”Eﬁ(ﬂ;[ﬁ* (R2))

<> / / P(ek' + b2, yg) — 67 / ek’ + o7 ys) dr'| dz dx’ dys
kek. Y Vi X (0.1) \ /Y iy
<e? )] / / Pek’ + 62’ y3) — 6 / Gk + 67 ys)dr!| d2' | dys
ke, %Y’

From the change of variables (38), we have

”‘»5 - @HZT(Q;L?‘* (R2))

<erEE Z/(/Y

kel

p(ek’ + ey, y3) — / ok’ +et’,y3) dr

r* =3
! dy’) dys.
Applying the Sobolev-Poincaré-Wirtinger inequality in W17 (Y”) with 1 <r < 2

(.

we deduce

1

' dy’) §C</ Dyf¢(5k’+€y’,ys)|"dy’)7, VE € K.,

Bk + ey ys) — / Bk + er’,ys) dr
Y/

16 = @l urr @2y < CE67F > / / 1Dy p(ek’ +ey',ys)|" dy' dys.

kel

By using the change of variables (31), we obtain

¢ — (pHLr 0L (R2)) < CemoF Z / / |Dyp(a’, y3)|" da’dys,
K ek. -

which from r* = % and Korn’s inequality gives

()2 = CJ€”DI’ [95]

~ — r—2 ~
¢ — @llrLr m2y) < Ced ™ ||Dar [

12
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Finally, let O be a bounded open set in R2. Then we have

121l L7 (wx0x0,1)) < 1Y = @llLrwxox(0,1)) + 1Pl Lr wxox(©0,1))- (39)

For the first term in the right-hand side of (39), by using Holder’s inequality with ¢ = 2/(2 — r) and ¢’ = 2/r,
and taking into account that rq = r*, we get

T

¢ — @llLrwxox0,1) = lo(a', 2", y3) — @(a', ys)|" da'dz'dys
Ox(0,1)
wxOx(0,

1
< ( / |0|J'( / |¢<w',z’7y3>—@(x',y3>|Wczz’) dm’dy3>
Q (@)
_ =4 N . rq 3.0 va ’
101 ([ ([ 1662 ot plraet ) atae

1. _
=012(|¢ — @l Lr (L (r2))-

1
T

r

For the second one, since @ does not depend on z’, we have

_ 1, _
121l L7 (wxox0,1)) = 1017 |8l Lr(0)-

By using Holder’s inequality and (32), we have

Q) = < /Q dw’dy3>
2 1 15 ~ !/ r / /
) </|5Y|w (/ |o(x’, 7', ys3)| dT)dxdy;;)
Q lyr

2 A
=677 |||l L (wxR2x(0,1))

Il

52/ @', 7' ys) dr’
1y

3

<12l ),

which implies

Lr(wxox(0,1) < [0]7 ]

el Lr(Q)-

Then, we have that (39) reads

~ PRTIN _ ET
||<P||Lr(wxox(o,1)) <[0JZ]|¢ - ‘pHLr(Q;LT* (R2)) T O]~ H‘PHLT(Q)y

which together with (35) gives (36). O

Now, from extensions (@es,pes), we define (ics, Pes) by using (30). Below, we get the estimates for this
sequence.

Lemma 4.4 (Estimates of the unfolded velocity and pressure). Suppose 1 < r < 2, let 0. be given by (1) and
O be a bounded open set in R%. Then, there exists a constant C independent of €, such that ({ics, pes), defined
by (30), satisfies

r

Lr(wxOx(0,1))8 = Col™", (40)

[ es]

N = . T 2
HDZ’[u&s]||LT(w><%Y’><(O,1))3><2 <Coc™", ||ay3[uaé]HLr(wx%Y/x(o@))S <Col™' 67T, (41)

13



Marfa Anguiano and Francisco J. Suédrez-Grau

“ = N I 2
||D2'u€5HL'f(w><%Y’x(071))3><2SCUE ', ||ay3u€§HLr(w><%Y/X(071))3 <Col™' o7, (42)
H'&aé - ﬂEéHLr(Q;LT* (R2)3) SCUﬁv (43)
A _ 2=l
1Pesll Lo (wxrzx 0,1y m S C67 7 (44)

Proof. Taking into account the first estimate in (27) and estimate (28) in (36), we deduce (40). We remark that

if we had used (27) and (32), we would have obtained estimate ||ics|| - (wx®2 % (0,1))3 < Col 6~ 7, which is not
as sharp a (40). Also, taking into account the second estimate in (27) and (33), we get the first estimate in (41).
And using the second estimate in (27) and (34), we get the second estimate in (41). Consequently, from Korn’s
inequality (12), we also have (42). Estimate (35) together with the second estimate in (27) gives (43). Finally,
taking into account the estimate (29) in (32), and 7/ = r/(r — 1), we can deduce (44). O

5 Some compactness results

In this section, we obtain some compactness results about the behavior of the extension of the sequence (s, Des)
and the sequence .5 satisfying the a priori estimates given in Lemmas 3.6 and 4.4, respectively.

Lemma 5.1 (Compactness results for extension of dilated velocity and pressure). Suppose 1 < r < 2 and let
oe be given by (1) satisfying (2). Then, for a subsequence of €, still denoted by e, there exist p € L™ (2)/R
independent of y3 and u € Wy (0,1; L"(w)?) with uz = 0, such that

__r

oc " Nies — (u/,0)  weakly in WHT(0,1; L7 (w)?), (45)
1 1
div,, </ u' (2, y3) dyg) =0 inw, </ u' (2, y3) dy3> n=0 on Jdw, (46)
0 0
Pes —p  strongly in L™ (Q)/R. (47)

Proof. First, we focus on the convergence of the extension of the velocity. The first estimate given in (27) and
estimate (28) imply the existence of u € W17 (0, 1; L"(w)?) such that, up to a subsequence, it holds

T

oc e —u  weakly in WT(0,1; L™ (w)?), (48)
which implies
0. " divgdily — divgw  weakly in W0, 1; WL (w)). (49)
Since div,, e = 0 in ©, multiplying by o w1 we obtain
__r_ _2r—1
o: " divgals + 0o T Dylicss =0 in Q, (50)

2r—

_2r—1 ’
which combined with (49) implies that 0. "' 0y, ii=s,3 is bounded in L"(0,1; W17 (w)). Using then that .53 =
2r—1

0 on wx {1}, we deduce that oc " @3 is bounded in W7 (0,1; W17 (w)), and therefore, up to a subsequence,
there exists w € W (0,1; W1 (w)) with w(1) = 0 in W~ (w), such that

_2r—1

e "' lies3 — w  weakly in whr(0,1; W_l’r,(w)).

T

From this convergence and (48), we get that o "' Ues,3 tends to zero and so, by uniqueness of the limit, ug = 0
which finishes the proof of (45). Moreover, s = 0 on y3 = {0,1} and the continuity of the trace applications
from the space of functions u such that ||u||z- and ||Oy,u||z- to L™ (w x {y3}) with y3 = {0,1} imply that u =0
on y3 = {0,1} and so u € Wy (0,1; L" (w)?) with uz = 0.

14
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Next, we prove the divergence condition (46). To do this, we consider ¢ € C'(w) as test function in
div,_t.s = 0 in Q and taking into account that @.s = 0 on OS2, we get

— T _2r—1 __r_
0 z/ <O’s divpaly +oe T 8y31185,3) o(x') da'dys = —/ o "MLy - Verp(x') d'dys.
Q Q

From convergence (45), we get
/ u - Vyo(z')da'dys = 0,
Q

which implies (46).

Last, we focus on the extension of the pressure by proving (47). From estimate (29) we deduce that there
exists p € L™ () /R such that, up to a subsequence, it holds

Pes — p weakly in L (Q)/R. (51)

To prove that p is independent of y3, we multiply system (6) by 0. ¢ with ¢ € C§°(£2). Integrating by parts and
taking into account estimates of the extension of the velocity (27), assumption of force f and convergence (51),
we pass to the limit and obtain

/p8y3<pdx'dy3 =0.
Q

This implies that p does not depend on y3. Moreover, if we argue similarly as in [8, Lemma 4.4], we have that
the convergence of the pressure p.s is in fact strong, which concludes the proof. O

Next, we give a compactness result for the unfolded function .s. To do this, following [11, Chapters 9 and
10], we consider the homogeneous Sobolev space of weakly differentiable functions defined locally on R? having
a gradient in L"(R?)? and zero value on the obstacle Y/, which is given by

Ky, = {8() € W (B) : V@ € I(R?)® and #=0 on ¥}, (52)

We remark that if & € Ky: then it has a limit at infinity denoted @, i.e. there exists @, € R such that
lim| .| oo P(2') = Poo. In addition, to relate the value at infinity of the limit of @5 with the limit of .5, we
consider a more general space

Ly, = {@(x’,z’,yg) € L' (% Kyy) : Pog = D(-,00,-) € Wy (0, 1;Lr(w))} . (53)
Lemma 5.2 (Compactness results for unfolded velocity). Suppose 1 < r < 2, let 0. be given by (1) satisfying

(2) and u € Wol’r(O, 1; L"(w)?3) be given in Lemma 5.1. Then, for a subsequence of €, still denoted by €, there
exists U € L?{/., where Uy = u and Us is independent of y3, such that

U;ﬁﬁsg —~ U  weakly in L" (S L], (R?)?), (54)
U;TZIDZ/QE(;I%Y, — DU weakly in L"(w x R? x (0,1))**2 (55)
1
div, (/ U, dy3> =0 inw, (56)
0
div,U' =0 inwxR?x (0,1). (57)

Proof. For the sake of completeness, we give a sketch of a proof, following, for instance, the proof of [11,
Proposition 10.1].

15
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By estimate (40), there exists U € L"(Q; L7, .(R?)3) such that, up to a subsequence, convergence (54) holds.
Using the continuous embedding of W17 (0,1; L"(w)) into L"(£2), the definition of the local average (37) and
according to [11, Proposition 1.25(ii)], we deduce from (45) the following convergence
U;ﬁﬁﬂg —u  weakly in L"(Q)3,

so that L

oe " Micslyy —u weakly in L7 (); L, (R?)?). (58)
From the first estimate in (42) and estimate (43), there exists W € L7(Q; L™ (R?)?) with D, W in L"(w x R? x
(0,1))3*2 such that

__r

0 " (fley — Ues) Ly, = W weakly in L™(Q; L7 (R?)?), (59)

and
0e " Dyrlieslyys — Do W weakly in L7 (w x R? x (0,1))%2 (60)

From (54), (58) and (59), one concludes
U=W+wu and D,U=D,W, (61)

and so, from convergence (60), we have that (55) holds. Since .5 = 0 in .5, we have Gi.s = 0 in w x Y5 and
then, using convergence (54), we deduce
U=0 inwxY,. (62)

Due to (59)-(62) and [11, Proposition 9.2], we have that U € L3, and Uy, = u.

Since Uy = u, then (56) holds from the divergence condition (46). Next, from divergence condition div,_ti.s =
0 in Q.5 and the change of variables (31) and (38), we deduce

(€8) M divarals 1ays + 02 '0ylies3 1y =0 inw x R? x (0, 1). (63)
Multiplying by o """ (4), we get
or T diva il s iy, 4+ 0500 T 0, iesa iy =0 inw x R2 x (0,1). 64
e ~5Y Y3 s 5Y

From the second estimate in (42) and convergence (54), we deduce that 67 0% "1 Oy, lles,3 tends to zero, and so
passing to the limit in (64) we get (57).

Finally, we prove that Us is independent of y3. To do this, consider ¢ € C}(2) as test function in (63), which
gives

/ Oy, lics 3 (@, ys)da'dz' dys = 0.
wx $Y’x(0,1)

”

Multiplying by o. "', we have
/ o " s 3 Oy p(a, y3)da'd2' dys = 0,
wx2Y’x(0,1)

and from convergence (54), we get Us is independent of ys. O
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6 Homogenized model: proof of the main Theorem

In this section, we use previous compactness results to prove the main result of the paper. To do this, we
need the following version of [11, Lemma 10.4] in order to choose an appropriate test function in the variational
formulation of system (6) and then pass to the limit.

Lemma 6.1. Suppose 1 <r < +o00. Let ¢ be in D(; Wﬁ)’r(RZ)) such that V1 is in D(Q; L™(R?)?) and has a

C
compact support. We set

12/ —er(Z)
ves(2',y3) = ¢ (w’,dg

c ay3> in (iC/, y3) € Q. (65)

By [11, Proposition 9.2], it has a limit at infinity denoted by poo € D(N). If 6 is small enough, the function @.s
belongs to D(0,1; Wh(w)) and
Vo5 = Yoo Strongly in L"(Q). (66)

Remark 6.2 (Properties of test function). From the definition of @.s5 given in (65), we have
12/ —en(%) _ 12/ —en(Z)
Varpes(a',ys) = Varp | @, s ———545 | +(20) "' Vo (2, s ———y3 |,
0 € o €
, (67)
12 —er(%)
aySSDE(s(w/v y3) = 8y3¢ (xl7 5787 Y3 .
€
Moreover, applying the unfolding operator (30), we have
QD(.’E/, Z/7 y3) + @Eﬁ(m/a Zl7 y3)7 Zf (.’L'/, 2/7 y&) cwX %YI X (07 1)7

8565(‘7;/7 Zla yS) =
0 otherwise,

with Ogs(x’, 2’ y3) = go(sm(%/) +e02', 2 y3) — (2,2 ys3). Consequently

1
vz’@e(S(xlv Z/, y3) = vz’@(xla Zl7 93) + vz’eaé(x/a Z/, Z/3) mnw X SY/ X (07 1)a (68)

where, from the mean value theorem applied to V. Os, the fact that |5/€(%’) +e0z —a'| < e fora' €Y,
k' € K., and V., p € D(Q; L™ (R?)?), it holds

HVZ’@E5|

Lr(wxR2x(0,1))2 < Ce. (69)

Proof of Theorem 2.1. The proof of the main result will be divided in two steps.

Step 1. Suppose 1 < r < 2. We set

(v, V") € WLr(0,1; L" (w)?) x L%,S, 2 V(2 ys) =0 (2, y3) ae in (2/,y3) € Q,

1 1
div, V' =0 in w x R? x (0,1), divg (/ v dy3> =0in w, (/ v dyg) -n =0 on Ow,
0 0

To simplify the notation, we define the operator S : R3 _— R2 by

sym Sym

S(&) =1[¢]"7%¢, VEEeRYE,

and denote by O, a generic real sequence, which tends to zero with ¢ and ¢ and can change from line to line.
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In this step, we prove that the pair of functions (u,U) € W given in Lemma 5.2 satisfies the homogenized
problem

u/ S(Dys[u']) : By, [v'] da’ dys + u/ S(D,/[U']) : Dy [V'] da'd2' dys
Q wx (R2\Y/) % (0,1) (70)
70

= [ fJdd'dys, V', V')eW.
Q

To prove this, we consider p(z/, 2, y3) € D(Q; K3-,) such that D,/ has a compact support, ¢3 is independent of
y3 and we define .5 by (65). From Lemma 6.1, if § is small enough the function ¢.s belongs to D(0,1; W17 (w)?3)
and it has a limit at infinity ¢, € D(Q)? satisfying convergence (66).

Multiplying (6) by @es, taking into account the extensions of the velocity and pressure, integrating by parts
and using (67), we have

H / S (Do, [tes]) : (Dx’ o] + 021Dy [90]) da'dys + p(e6) ™ / S (Dy, [tes]) : D[] da'dys
Q Q

- / ﬁg(s divxl(pl dl‘ldyg — (65)71 / [)85 divz/(p/ dg;'/dys — / f’ . (Pl dI/dyg .
@ Q ﬁsé
To simplify, from now on we use the following notation:
o v =, %%,y‘g) in the integrals in €,

e o = p(a',2,y3) in the integrals in w x $Y” x (0,1) obtained after applying the changes of variables (31)
and (38).

First, we analyze the first term in (71). Thus,

H / S (Dw’ [tes] + Ua_lays [1]55]) : (Dw’ [sp] + Us_laya [‘P]) da’dys
Q
e e (72)
=pu / S (UEDQC/ [Ug "’lﬂa;} + Oy, |:O'a "711155}) (0D [0] + Oy, [¢]) da’dys.
Q

Next, we analyze the second term in (71). By the changes of variables (31) and (38) and taking into account
(68), we deduce

1 (£6)~ / S (Do [iies] + 0228y [ies]) : D[] d’dys
Q
=1 (56)_1(52/ S ((56)_1Dzz [es] + 01Oy, [7155]) : (D, [@] + D, [Ocs)) da'd2' dys (73)
wx Y’ x(0,1)
=1 / S (]Dz/ {O;ﬁﬂag] + 6%8?,3 {U;ﬁﬁﬂsb : (D, [¢] + D, [Ocs)) da'd2' dys.
wx2Y7x(0,1)

By Hélder’s inequality, estimates given in (41) and taking into account (69), we have

/ S (DZ, [a; fué} +6%0,, [a; *utg}) . D, [O.s] da'd2'dys| < Cee,
wx $Y’x(0,1)
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and then, (73) reads

p(8) ! /Q S Dy [fics] + 0 2By, liics)) : D [i9] da’dys

|
=

/ Dz’ [Ugﬁﬁsé} + 5%8313 [UE jﬁs&}) 2D, [QD] dx'dz’dyg + OE
wx $Y"x(0,1)

: /wx Y% (0,1) S DZ’ [0;77‘17:666] +070, [ Oc 71@55}) : (Dz’ (o] + 870y, [go]) dr'dz'dys  (74)

—nd? /wx Ly’ (0,1) 5 (DZ, {J‘;y lasé} + 5%8% [agﬁaa;}) Oy L] da'dz'dys + O,

Since ¢ belongs to D(€; WL (R?)3), by Hélder’s inequality and estimates in (41), we have

loc

o / § (s o™ Tites| + 070y, o0 e ]) < Oyl da'ddys | < €57
wX Y’ x(0,1)
Then, (74) reads
M(Eé)il/ S (Dx’ [aeé} + Uglayg [ﬂaé]) : ]D)z’ [4,0] d'r/dyi% (75)
Q

_y /le/ o S (]DZ/ {as ‘lasts} +5%a,, [g;f’"laeé}) : (DZ, o] + 630, [w]) 42 d' dys + O..

Now, we analyze the terms which involve the pressure. By the changes of variables (31) and (38) in the third
and fourth terms in (71) and taking into account (68), we deduce

— / Pes diver ' da'dys — (e6) 7! / Pes div,r @’ da'dys
Q Q

(76)
— / Pes divayr ' da'dys — 6%(e6) ™" / Pes (divrp’ + div,OLs) da'dz'dys.
Q wxR2x(0,1)
By Holder’s inequality, estimate (44) and taking into account (69), we have
52(65)71/ Pes div, OLs da' d2'dys| < 052%,
wxR2x(0,1)
and then, we have that (76) reads
—/ﬁﬂ; divy ' do'dys — (£6) ! / Pes divs ¢’ da’dys
Q Q
(77)
- / Pes divyr ' da'dys — 6%(e6) ™! / Pes div, ' da'dz' dyz + O..
Q wxR2x(0,1)
Then, taking into account (72), (75) and (77) in (71), we obtain
2 / S (Uer’ [U;ﬁaeé} + 8@/3 |:U€_ﬁ71561|) : (OEDw’ [4,0] + ay3 [4,0]) dl‘/dyg
Q
+u/ " 1)S( e T s | + 670y, [or T i) ) (Do 6] + 670, [¢]) da'dzdyy
wX !X
(78)
/pa; divy ' da'dys — 62(£) 1/ Pes div.s o' da'dz dys
wxR2x(0,1)

= /~ o dx'dys + O,.
Qsé
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Now, we consider v = (v/,0) € D(Q2)? which satisfies the divergence condition div, fol v'dys = 0 in w. Also,
we consider V' € D(;K§3.,) such that D,/V has a compact support, V3 is independent of y3 and div,/ V' = 0

in wx R? x (0,1). We define Vs by (65), which has a limit at infinity denoted by V. € D(Q)3, and suppose
Voo(2',y3) = v(2,y3) a.e. in Q. Then, we choose as test function ¢ in (78) the following functions

€

o p.s=V <x’, éw,yg) — 0. "' in the integrals in Q and (NZE(;,

o po5 =V (2,7, y3) — 0c " 'les in the integrals in w x 3V’ x (0,1) and w x R? x (0,1).

Taking into account (63), applying Holder’s inequality and using the second estimate in (42) and estimate (44),
the fourth term in (78) satisfies

52(e6)7t / Pes divy oLy dr'dz' dys
wxR2x(0,1)

52(e0)~t / Pes divy Ly da'dz' dys
wxR2x(0,1)

1
L
<Col™,

8ot / Des Oy lics 3 d'd2' dys
wxR2x(0,1)

and so (78) reads

Y / S (Ust/ [U;ﬁﬁeé] + Oy, {Uﬁ_ﬁﬂdb D (0eDyr [pes] + Oy, [pes]) dx'dys

Q
+p /w v S (Dor |02 ™ Faies| + 670y, [00 T Tates ] ) + (Do [pes] + 67 0y [p2]) da'd2dyg
- / Pes divy @ls da'dys = /~ I olsda'dys + O..

Q Qes

From this, we deduce

r

— 1 /Q (S (orelD)x/ [a;ﬁﬂg(s} + Oy, [ag_ﬁﬂg(;}) — S (0:Dyr [V]+ Oy, [V])) : (0eDyr [pes) + Oy, [pes)) da’dys
iy /Q S (0. Dy [V] 48y, [V]) : (0D [0es] + By [i02s]) da’dys
S P IO e RET N el BT R RRNT)
: (Dt [pes) + 8% Dyalpes]) da'de’dys
—p /w o S (DZ/ V] + 670, [V]) : (DZ, [pes] + 67Dy, [%5]) da'd2 dys
4 [ posdivaplgditdy = - [ 1ol ditdys + ..
Q Qes

Since the operator S is monotone, i.e. (S(¢) —S(¢)): (€ —¢) > 0 for every &,¢ € R3, we have

u /Q S (0:Dar [V] 4 By, [V]) = (0Dt [pe] + By [is]) da’dys
S (D, [V]+670,. V1) : (Do [pes] + 570, [pes]) da'dz'd
W[ o S (B 148200 1) (B ol 4 6% 0l o' -

— / Pes divyrpls da'dys > /~ I epls da'dys + O..
Q Qes
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Then, passing to the limit by taking into account that o. and 6+ tend to 0 and using convergences (45), (47),
(55) and (66), we obtain

U / S (Oys (Vo)) = (O, [V, —u']) da'dys + / S (D, [V]) : Dy [V = U] da'dz'dys
Q wx (R2\Y/)x(0,1)

— / pdivy (VL —u') dx'dys > / (Ve — ') da' dys.
Q Q
Since p does not depend on ys, according to V., =’ in 2 and div, fol v’ dyz = 0 in w, we have

1
/ pdivy (VL —u')da'dys = / pdivy (v —u') da'dys = / pdiv, (/ (v — u')dy3> dr' =0,
Q w 0

Q

so we get

,u/ S By, [VL]) : 0y, [V — u']) da'dys + ,u/ S (D, [V]) : D, [V — U] da'dz'dys
Q wx (R2\Y?) % (0,1)

> / (VL — ') da' dys,
Q
which, due to Minty Lemma [17, Chapter 3, Lemma 1.2], is equivalent to

w / S (Oy, [U']) : Oy [Vao] da'dys + 1 / S (D, [U)) : D,/ [V] dz'dZ'dys = / VL dd'dys. (80)
Q wx (R2\Y/)x(0,1) Q

Taking in the previous variational equation W = (0,0, Us) as test function, we have
/ D [U]]" D, [U] : Dy [W]de' =0, a.e. in Q,
R2\Y/
and since Us € Ly, from [11, Proposition 9.2], we have

||U3 — Uoo,S”Zr* (]Rz) S CH]DZ/ [Ug]”ET(Rz)z a.e. iIl Q

From Lemma 5.2, we know that U 3 = 0 in €2 and so, we deduce

10l gy < CID U] gaye < € -0,

/ D, [U]|" 2D,/ [U] : D,.[W]d2
R2\Y!

which implies Us = 0. Then, the variational equation (80) reads

p [ SO0, 1) d'dn+u [

S (D, [U']) : D, [V'] da'd2'dys = / v da' dys,
wx (R2\Y) x(0,1) Q

which by density gives (70) for every (v/, V') € W.

Step 2. Let us obtain a problem for ' identifying U’ in (70). For this purpose, for every ¢’ € R? we consider
the unique solution of the auxiliary problem (9) denoted by (w® , %) € DV (R?\ Y/)2 x L™ (R?\ Y/)/R and the
drag force function G(¢') given by (8). We remark that then w® € WZIO’CT(R2 \ Y/)?, see [16, Lemma I11.6.1].

Thus, we can take in (70) the pairs of functions (u/,U’), (v/, V') € W in the following way

U’(x’7z',y3) _ wu/(a:/,ys)(zl)7 V’(x’,z’,yg) _ wv'(w',m)(zl) ae. w X (R2 \ Ys/) « (0, 1)7
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and then, we deduce

M/ S(Dyy[u']) : Oy, [v'] da' dys + ,u/ G- v dr'dys = / v da'dys, Yo' eV, (81)
) Q Q

where

1 1
V= {v’ e Wh™(0,1; L7 (w)?) : divy (/ V(2! y3) dyg) =0 in w, (/ V(2 y3) dyg) ‘n =0 on (%J} :
0 0

From the properties of G given in Remark 2.3 and following [15, Lemma 4.4], the variational formulation (81)
has a unique solution v’ € V. Finally, taking into account that

|8y3 [u/] |T_2 = |TT(ay3 [u/]ayt;g [ul})ﬁ_l’

which implies

S(ays [ul]) = 27%3(8213“/)’

we deduce that there exists ¢ € L" (w)/R such that the variational formulation (81) is equivalent to system (7).
It remains to prove that such function ¢ coincides with the pressure p given in Lemma 5.1. This can be easily
done by proceeding as in Step 1 but considering test functions without satisfying the divergence condition div,,
and identifying limits. Since problem (7) has a unique solution, then the entire sequence (ugs,pes) converges to
(u,p). This finishes the proof. O
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