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Highlights:

Different double-walled aluminogermanate nanotubes (Ge-DWINTSs) were synthesized.
The nature of the aluminum salt alters the structural properties of Ge-DWINTs.
Ge-DWINTs obtained from aluminum perchlorate precursor form a columnar phase.
The use of chloride or nitrate salts induces only nematic or isotropic liquid.

The different phase behaviors are due to structural defects in the nanotube walls.
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Abstract

Hypothesis: Synthetic imogolite nanotubes form stable colloidal dispersions that may also
exhibit a rich liquid-crystalline phase behavior according to the nanotube length to diameter
ratio. Anisometric double-walled aluminogermanate nanotubes are now readily available
through hydrothermal treatment of germanium and aluminum precursors. This work aims to
assess how the self-organization behavior of these nanotubes is influenced by the nature of the
precursors.

Experiments: Five different samples were synthesized by changing the precursors involved
in the formation of either inner or outer walls, then fully characterized. From series of aqueous
dispersions prepared by osmotic stress, we evaluated the phase behavior by coupling polarized
optical observations and small-angle X-ray scattering.

Findings: The formation of anisometric nanotubes is achieved whatever the initial
conditions. Their structural properties are however affected by the nature of the aluminum salt.
For nanotubes synthesized with aluminum perchlorate, the dispersions present an isotropic-to-
columnar phase transition with a self-organization of the nanotubes over large distances. By
contrast, nanotubes synthesized with chloride and nitrate salts form only nematic or isotropic
liquids and tend to group together in bi-dimensional rafts. We suggest that the different phase
behaviors are related at the first order to the presence of structural vacancies in the nanotube

walls.

Keywords: Imogolite, nanotube, liquid-crystal, columnar phase, SAXS



54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

1. Introduction

Liquid crystals (LC) form a wide class of materials that have found nowadays, numerous
applications, from electro-optic devices to detergents or energy applications to name a few
(Kato et al., 2018). They are also increasingly used in the “bottom-up” approach to nano-
structuring. A liquid-crystalline phase is an intermediate state of condensed matter combining
the fluidity of a liquid and the organization of its constituents as in a crystal (De Gennes and
Prost, 1993). The so-called “lyotropic” liquid crystals occur when anisometric (i.e. rod-like or
disk-like) objects are dispersed in a solvent. Therefore, the thermodynamic stability of lyotropic
liquid-crystalline phases can be assessed from the range of their stability domain with the
concentration of particles as a function of the salt concentration, pH or any other relevant
physico-chemical parameter.

Colloidal dispersions of charged clay minerals exhibit various phase transitions, in
particular the transition from a liquid state to an arrested phase (sol-gel transition) when the
concentration of clay particles increases (Abend and Lagaly, 2000; Gabriel et al., 1996; Michot
et al., 2004; Mourchid et al., 1995; Olphen, 1977; Ruzicka et al., 2011). Beyond this well-
known phenomenon, the highly anisometric shape of clay nanoparticles makes them an ideal
system for observing the spontaneous formation of LC phases, driven by excluded-volume
interactions (Onsager, 1949). The formation of LC phases in dispersions of clay particles has
attracted a considerable amount of attention in recent years (Miyamoto and Nakato, 2012;
Paineau et al., 2013), probably because colloidal behavior of clay dispersions act as a key
parameter for coating, thickening and thixotropic additives in industrial purposes (Carretero
and Pozo, 2009; Harvey and Lagaly, 2013). LC phase transition has been observed not only in
aqueous dispersions of exfoliated nontronite (Michot et al., 2006, 2008, 2013), beidellite (Paineau
et al., 2009) or fluorohectorite (Hemmen et al., 2009; Miyamoto et al., 2010; Rosenfeldt et al.,

2016) nanosheets but also in dispersions of clay nanorods or nanotubes, like sepiolite (Woolston
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and van Duijneveldt, 2015; Zhang and van Duijneveldt, 2006), halloysite (Luo et al., 2013) and
imogolite (Amara et al., 2013, p. 201; Kajiwara et al., 1986; Levitz et al., 2008).

Among all these systems, the case of imogolite clay nanotubes (INTs) is particularly
interesting. Initially discovered in weathered volcanic soils (Yoshinaga and Aomine, 1962),
research interest in these objects was greatly enhanced when they could be synthesized with
high purity in laboratory conditions (Farmer et al., 1977; Poncelet, 2002). The structure consists
of a curved dioctahedral Al(OH)s (gibbsite-like) sheet with isolated silicon tetrahedral sites
connected to the octahedral vacancy by sharing basal oxygen atoms (Cradwick et al., 1972;
Paineau and Launois, 2019). The protonation of internal silanol (=Si-OH) but above all external
aluminol groups (=A120H and =Al-OH) contribute to the specific surface charge of INTs with
a positive outer wall and a negative inner cavity (Arancibia-Miranda et al., 2011; Gustafsson,
2001). Their unique porous structure with monodisperse diameter can be easily tuned according
to the synthesis conditions (Amara et al., 2015; Picot et al., 2018). Many studies have focused
on shaping novel synthetic imogolite-like nanotubes (Chemmi et al., 2015; Lee et al., 2014;
Levard et al., 2011; Monet et al., 2018; Paineau, 2018; Yucelen et al., 2012b). Attempts to
synthesize structural analogues of imogolite allowed to obtain INTs in large amounts when
silicon is replaced by germanium precursors (Levard et al., 2008) while controlling their
morphology as single (Ge-SWINTSs) or double-walled nanotubes (Ge-DWINTs, see Fig. 1a)

(Maillet et al., 2010; Thill et al., 2012).
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Fig. 1. (a) Structure and dimensions of a synthetic double-walled aluminogermanate imogolite nanotube
(Ge-DWINT). (b) Initial precursors of the inner and outer walls: TMOG: tetramethoxygermane; TEOG:
tetracthoxygermane; TIPOG: tetraisopropoxygermane. Color code: aluminum (blue); germanium
(orange); oxygen (red); hydrogen (pink); chloride (green); nitrogen (grey). (c) Flowchart of the synthesis
and sample preparation protocol. R corresponds to the alkyl chain of the alkoxide while X represents the
anion of the aluminum salt.

Aluminogermanate nanotubes form stable colloidal dispersions through repulsive
electrostatic interactions (Paineau et al., 2017, 2019) that may also display LC phases when the
aspect ratio (nanotube length to diameter ratio) is large enough (Amara et al., 2013). Although
aqueous dispersions of imogolite have been known to form a nematic phase for a long time
(Kajiwara et al., 1986), recent studies have revealed the presence of an additional liquid-
crystalline phase in dispersions of anisometric imogolite-like nanotubes (Paineau et al., 2016;

Suetal., 2019). Small-angle X-ray scattering (SAXS) experiments demonstrated the hexagonal
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columnar nature of this new phase that readily responds to high-frequency electric fields thanks
to its very low concentration (~ 10 g.L") (Paineau et al., 2016).

As shown previously (Amara et al., 2013; Paineau et al., 2016), Ge-DWINTs of 4.3 nm in
diameter (D) and average length (L) higher than 100 nm can be synthesized using the
homogeneous hydrolysis of precursors through thermal decomposition of urea CO(NH2)2,
according to equation 1:

Ge(OR), + 2AlX; + 2CO(NH,), + 9H,0 - (0H),Al,05Ge + 4 ROH + 2C0, + 2H" +
4NH,” + 6X~ (1)

Until now, only tetracthoxygermane (TEOG, R = C2Hs) and aluminum perchlorate (X =
CIO+") have been employed to synthesize anisometric Ge-DWINTSs according to equation 1.
This single-step hydrothermal synthesis represents a straightforward approach for studying the
role of initial precursors on the self-organization behavior of Ge-DWINTSs. In this work, five
different Ge-DWINT batches were synthesized following equation 1 to assess how the alkyl
chain R or the anion species X of the aluminum salt (see Fig. 1b), preluding respectively to the
formation of either inner or outer walls, may impact the LC phase behavior of anisometric Ge-
DWINTSs. The characterization of the different Ge-DWINTSs were carried out by combining
wide-angle X-ray scattering (WAXS), transmission electron microscopy (TEM), infrared (IR),
electrophoretic mobility, nuclear magnetic resonance (NMR) and UV-vis spectroscopies,
revealing that Ge-DWINTs are obtained whatever the synthesis conditions. Conversely,
structural vacancies seem to occur depending on the nature of the anion. For each Ge-DWINTs
batch, series of aqueous dispersions were prepared by osmotic stress at a fixed ionic strength to
cover a wide range of concentration. Polarized optical observations and synchrotron-based
SAXS experiments reveal that Ge-DWINTSs synthesized from aluminum precursors other than
perchlorate do not form the hexagonal columnar phase. Instead, samples synthesized from

AICIs display only a nematic phase, i.e. only a long-range orientational order of the nanotubes,
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while Ge-DWINTs prepared from AI(NO3)3 do not form any LC phases. The impact of initial
precursors is also reflected in the structural organization of Ge-DWINTSs since the slope of the
SAXS curves does not follow the same trends. Altogether, these results demonstrate that the
initial anion species X is a preponderant parameter, which should be considered in all

applications requiring the use of the colloidal properties of these peculiar nanotubes.

2. Materials and methods
2.1. Materials

Tetraethoxygermane (TEOG, >99.95%), tetraisopropoxygermane (TIPOG, >97%),
aluminum nitrate nonahydrate (Al(NO3)3.9H20, >98%), aluminum chloride hexahydrate
(AIClI3.6H20, >99%), urea (CO(NH2)2, >99%), NaCl (= 99%), polyethylene glycol (M = 20000
g.mol!) and ethanol solution (96%) were purchased from Sigma Aldrich. Aluminum
perchlorate nonahydrate (Al(ClO4)3.9H20, Reagent grade) was purchased from Alfa Aesar.
Tetramethoxygermane (TMOG, >98%) was purchased from ABCR GmbH. All products were
used as received.
2.2. Preparation of double-walled aluminogermanate Ge-DWINTS dispersions

All samples were prepared following the procedure described in Fig. 1c. First, Ge-DWINTs
were synthesized using a simple one-pot method described earlier by Amara et al. (Amara et
al., 2013). Germanium alkoxide was mixed at room temperature and under stirring with an
aluminum salt solution (Cai = 0.2 mol.L!) and a urea solution with a molar ratio
[Ge]:[Al]:[CO(NH2)2] = 1:2:2 (see equation 1). The choice of hydrated aluminum perchlorate
instead of anhydrous salt has been made to minimize any risk of exothermic reactions when
mixed with water. Hydrothermal treatment was then performed under autogenous pressure at
140°C for 5 days in a PFTE-lined acid digestion bomb (Zeoclave, Maximator, France). After
cooling to room temperature, the resulting dispersions were dialyzed using semi-permeable

membranes (Spectra/Por®, cut-off = 10 kDa) against ultrapure water (conductivity G = 5.5 x
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10 mS.m™) until the conductivity of bath drops below 0.5 mS.m™! (Paineau et al., 2013). As
indicated above, Ge-DWINTs are usually obtained by using TEOG and aluminum perchlorate
precursors. In this work, we followed two strategies (see Fig. 1b) either by using hydrated
aluminium perchlorate precursors (Al(ClO4)3.9H20) and varying the length of the alkoxide
chain (C1, C2 or C3*°), or by using TEOG and changing the anion species of the hydrated
aluminum salt (ClO4", CI', NO3"). A total of five different Ge-DWINTs were synthesized and
characterized (Table 1).

2.3. Characterization of Ge-DWINTSs

Infrared (IR) spectroscopy was carried out in transmission mode using a Nicolet iS50 with
a KBr beamsplitter and a DTGS/KBr detector. The samples were prepared in KBr pressed
pellets (1 wt% of dry Ge-DWINTs powder). IR measurements with KBr pellet are preferred
because they allow a better resolution on the structure of the nanotubes compared to the ATR
mode (Liao et al., 2018). Spectra were acquired by averaging 64 scans at a resolution of 4 cm’
!in the mid-IR region (1300-400 cm™).

Wide-Angle X-ray scattering (WAXS) measurements on powder samples were performed
on a rotating anode (Acuke = 0.15418 nm) of the MORPHEUS platform of Laboratoire de
Physique des Solides. Two-dimensional WAXS diagrams were collected on a MAR research
X-ray-sensitive 345 mm plate detector with 150 um pixel size, placed at a sample-to-detector
distance of 250 mm. Powder samples were held in sealed 1 mm diameter borosilicate capillary
tubes (WJMGlas/Miiller GmbH, DE). Curves of scattered intensity | as a function of the
scattering vector modulus Q (Q = 4m/Asin(0) with 26 the scattering angle) were obtained
from the azimuthal angular integration of the scattering patterns using homemade software.

Transmission electron microscopy (TEM) observations were made on a JEOL 1400
microscope operating at 80 kV. Highly dilute dispersions of Ge-DWINTSs were prepared at 1

mg.L! in ethanol and then a drop was laid on a carbon-coated copper grid. The length
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distribution for each Ge-DWINTs batch was determined from the analysis of more than 300
nanotubes using Fiji software (Schindelin et al., 2012).

Solid-state 2’Al magic-angle spinning (MAS) NMR experiments were performed on a
Bruker AVANCE III 700 spectrometer based on a 16.4T superconducting solenoid operating
at vo =182.47 MHz using commercial triple resonance Bruker MAS probe. Powder samples
were transferred to ZrO: rotors with an outer diameter of 2.5 mm and spun at a MAS rate of 25
kHz. All 2’Al (spin | = 5/2) MAS NMR spectra were obtained by using short pulses (< /8) for
quantitative purposes. Nutation curves were first established by using a reference solution of
IM AI(NOs3)s. All decomposition of spectra were performed using the DMfit software (Massiot
et al., 2002).

Electrophoretic mobility was carried out on a Zetasizer Nano ZS (Malvern) operating at a
fixed wavelength of 632 nm. Dilute aqueous dispersions of Ge-DWINTs (~ 2 mg.L™") flowed
through a folded capillary polycarbonate cell. A potential of 150 V was applied between the
gold electrodes of the cell. The electrophoretic mobility was determined as a function of pH by
stepwise addition of a 0.1 mol.L"! NaOH solution (ApH ~ 0.5) under stirring.

UV-vis experiments were performed on a Cary 5000 spectrophotometer (Agilent) operating
in dual beam mode and by using high precision quartz cell (Hellma, 10 mm light path).

2.4. Investigation of the phase diagram

For each synthesis, series of samples were prepared by osmotic stress (Fig. 1c) to obtain
homogenous dispersions with varying concentration (Paineau et al., 2019). Dialysis membranes
(Spectra/Por®, cut-off = 10 kDa) were filled with the initial stock dispersion of Ge-DWINTs
and placed in 1L reservoirs. Simultaneously, the reservoirs were filled with solutions of
different osmotic pressures prepared by dilution of PEG20000 in NaCl solution at fixed ionic
strength (ISpvacy = 107 mol.L") for all samples. After two weeks, the dispersions were

recovered and their volume fractions ¢ were determined as ¢ = C/p;nr, Where C is the solid
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concentration of Ge-DWINTs determined by weight loss upon drying and p;yr the density of
a nanotube (~3.6 g.cm™) (Lee et al., 2020).

The birefringence of these samples was assessed first by naked-eye observations. For this
purpose, the aqueous dispersions were transferred in 2 cm?® glass vials (10 mm in diameter) and
placed between crossed polarizers in a home-made setup. Macroscopic phases separations were
observed using a Panasonic DMC-FZ18 camera. Optical textures were evidenced with a
polarizing microscope (BX51-P, Olympus) equipped with a CCD camera. In this case, samples
were introduced into flat optical glass capillaries (VitroCom, 0.2 x 2 mm), which were flame-
sealed and stored vertically.

Small-Angle X-ray Scattering (SAXS) experiments on all series of samples have been
realized on D2AM beamline at European Synchrotron Radiation Facility (Grenoble, France)
at a fixed wavelength of 0.138 nm, using an ImXPAD (d5-S540) detector placed at a sample-
to-detector distance of 2 m. The beamsize at the sample position was 200 um?. All dispersions
were held in 1 mm diameter borosilicate capillary tubes (WJMGlas/Miiller GmbH, DE) that
were flame-sealed and stored vertically prior to experiments. As for WAXS experiments,
angular integration of the scattering patterns giving the dependence of the scattered intensity
versus Q was processed, using the PyFAI (Python Fast Azimuthal Integration) suite (Kieffer

and Karkoulis, 2013).

3. Results and Discussion
3.1 Impact of the precursors on the structure of Ge-DWINTSs

The synthesis of anisometric Ge-DWINTs by the urea method is a recent development
(Amara et al., 2013), which has been achieved only in presence of TEOG and aluminum
perchlorate precursors (sample 3). Using this sample as a reference, we tested the robustness of
the chemical reaction depicted in equation 1 by changing either the alkyl chain of germanium

alkoxide (samples 1-3) or the anion species of aluminum salt (samples 3-5) (Table 1).
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Table 1. Structural characteristics of the different synthetic Ge-DWINTs.

Sampl Averag Averag
Ge Al Minimu  Maximu Proportio
e e PDIL e PDIp
precurs precurso mlength m length n of AI'Y
numbe length ?(%) diamet (%)
or r (nm) (nm) (%)°
r (nm) er (nm)
Al(ClO4
1 T™OG 16 590 99 80 4.41 11 0.2
)3
Al(C104
2 TIPOG 15 1227 116 81 4.41 12 0.7
)3
Al(C104
3 TEOG 14 870 88 85 4.38 11 0.6
)3
4 TEOG AlCl3 10 578 100 81 4.35 11 0.7
AI(NO3)
5 TEOG 12 363 66 62 4.44 13 0.3

* Polydispersity index PDI = \/(X2) — (X)2/(X) with (X) being the average length L or diameter D of
the nanotube. ® Proportion of four-fold coordinated aluminum determined from the fit of NMR spectra
at 70 ppm.

Fig. 2a presents IR measurements for the different samples. All samples display similar IR
curves, whatever the synthesis conditions, with a peak at 915 cm™ and a doublet at 830/805 cm
! (Ge-O stretching modes) and several absorption bands at 690/555 cm™ (Al-O stretching
modes) and 468/420 cm™' (O-Ge-O and O-Al-O bending modes), characteristics of the local
structure in aluminogermanate imogolite nanotubes (Amara et al., 2013; Liao et al., 2019;
Paineau et al., 2019; Thill et al., 2012; Wada and Wada, 1982). The peaks around 1100 cm'!
correspond to the presence of residual ClO4™ ions, commonly observed for imogolite samples
synthesized from aluminum perchlorate (Farmer et al., 1979; Paineau et al., 2017; Zanzottera

etal., 2012).
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Fig. 2. (a) Infrared spectra and (b) WAXS diagrams for samples 1 to 5. The red curve corresponds to
the reference Ge-DWINTs sample synthesized with TEOG and Al(CIO4);. All curves have been

translated for the sake of clarity.

WAXS diagrams of all samples are rather similar (Fig. 2b). The scattered intensity below
10 nm! consists of oscillations, whose intensity is enhanced above 5 nm™, in the Q-range
characteristic of the mean inter-wall distance (Cambedouzou et al., 2009; Maillet et al., 2010).
As with IR experiments, WAXS results show that the synthesis of Ge-DWINTs is successful
either by changing the anion species, as also studied previously for synthetic Si-SWINT
(Arancibia-Miranda et al., 2017; Bishop et al., 2013; Chemmi et al., 2015), or by using other
Ge alkoxides (TMOG or TIPOG), which had never been attempted before. Furthermore, the
presence of by-products such as boehmite AIO(OH) or gibbsite AI(OH)3, commonly
encountered in the synthesis of aluminosilicate imogolite nanotubes (Barrett et al., 1991;
Chemmi et al., 2015; Picot et al., 2018; Tani et al., 2004; Thomas et al., 2012), are not detected.
Interestingly, the positions of the minima below 10 nm! are not modified with respect to sample
3, indicating that the nanotubes walls have similar diameters and densities (Amara et al., 2013)
regardless of the nature of the precursors (Fig. 1a,b). The sawtooth peak around 15 nm™ is

characteristic of the nanotube period (Monet et al., 2018), which is found to be equal to ~0.856
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nm. Given the full width at half-maximum of the experimental resolution (FWHM ~ 0.13 nm"
1), X-ray scattering experiments can only be used to determine the nanotube length for tubes
with length below 50 nm (Bousige et al., 2012). In the present case, sawtooth peaks are found
to be similar in all samples, indicating average INT lengths larger than 50 nm.

Direct evaluation of the nanotubes length and diameter is achieved by using TEM

observations. Fig. 3 and Fig. S1 (Supporting Information) display representative images for

each Ge-DWINTs batch.
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Fig. 3. Representative TEM images of Ge-DWINTs grids prepared from dilute dispersions in ethanol of
as-synthesized batches. (a) Sample 1 (TMOG, AI(ClO4)3); (b) Sample 2 (TIPOG, Al(C104)3); (c) Sample

4 (TEOG, AICl3); (d) Sample 5 (TEOG, AI(NOs)s3).

The associated length and diameter distribution histograms in Fig. S2 and S3 (Supporting
Information) result from the analysis of at least 300 nanotubes per sample. Whatever the
synthesis conditions, the length of Ge-DWINTs are extremely polydisperse, with polydispersity
index (PDI) values of the same order as their average length (Table 1). Average lengths range
from ~70 nm for sample 5 to ~120 nm for sample 2. Conversely, the average nanotube diameter
remains mostly unchanged (~ 4.4 nm) and monodisperse (PDI < 13%) regardless the samples
(Table 1) in agreement with the WAXS results. It has been proposed that the presence of CI°
and NOs™ anions may inhibit the formation of silicon-based imogolite nanotubes (Farmer et al.,
1983; Farmer and Fraser, 1979; Wilson et al., 2001). We show here that nanotube lengths are
similar in all studied samples but well-dispersed individual nanotubes are observed only in
TEM images from samples 1-3. For samples synthesized with Al sources other than perchlorate,
Ge-DWINTs tend to bunch up in clusters of roughly parallel nanotubes (Fig. 3c¢,d). Such
bunching may be induced by structural defects, which should modify electrostatic interactions
(Teobaldi et al., 2009).

To test this hypothesis, we investigated the coordination environment of aluminum by 2’Al

MAS NMR spectroscopy (Fig. 4a).
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Fig. 4. (a) Solid-state >’Al MAS NMR spectra of the different Ge-DWINT samples. The inset displays
a magnification highlighting the peak at 70 ppm related to tetrahedrally coordinated aluminum. All
curves have been translated for the sake of clarity. (b) UV-visible curves obtained on aqueous
dispersions of Ge-DWINTSs (~10 g.L™"). In both cases, the red curve corresponds to the reference Ge-

DWINTs synthesized with TEOG and Al(ClO4); (sample 3).

NMR spectra display a very sharp contribution located at 9.2 = 0.1 ppm attributed to Al
atoms in octahedral coordination (A1Y") as expected for the binding environment of Al in the
outer wall of imogolite nanotubes. This is consistent with previous studies on Si-SWINT
(Ildefonse et al., 1994; Yucelen et al., 2012b) and Ge-SWINT samples (Levard et al., 2010).
We could also detect an additional feature at ~70 ppm corresponding to tetrahedral aluminum
(AI"Y). This weak resonance feature may originate from a slightly disordered environment of
Al sites at the nanotube tip (Yucelen et al., 2012a). However, the tetrahedral Al defects
contribute here to less than 1% of the total signal and do not appear correlated with the nature
of the precursors (Table 1). In addition, structural defects arising from vacancies in the nanotube
walls can be present without drastically altering the peak related to A1Y! as shown for single-
walled imogolite nanotubes (Levard et al., 2010; Yucelen et al., 2012a). It is reasonable to

assume that such defect sites are formed during the synthesis of Ge-DWINTs.
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Electrophoretic mobility of Ge-DWINTSs samples synthesized with different aluminum salts
was also investigated (Fig. S4, Supporting Information). All samples display a positive surface
charge over a wide range of pH, a characteristic behavior of imogolite nanotubes (Gustafsson,
2001). The isoelectric point occurs at pH around 12, suggesting the nanotubes have only few
external defects (Arancibia-Miranda et al., 2011). It is worth to note that the electrophoretic
mobility measures the electric potential at the hydrodynamic slipping place and probes only the
outer surface of the nanotubes (Bhattacharjee, 2016). We can thus conclude here that the
structural defects do not imply modification of the outer surface properties with respect to
electrophoresis. Finally, based on Levard et al. and Yucelen et al. publications (Levard et al.,
2010; Yucelen et al., 2012a), the presence of defects on the internal part of the nanotubes walls,
made of GeO4 tetrahedra, cannot be ruled out. On the grounds of the recent simulation
investigations of Poli and co-workers (Poli et al., 2019), showing that structural vacancies in
Si-SWINTSs impact the low-energy tail in UV-vis spectra, we have thus measured the UV-vis
spectra of all samples in liquid phase (Fig. 4b). We show in Fig. 4b that light absorbance is
considerably increased, especially at low energy, by replacing perchlorate anions with chloride
or nitrate anions, while the curves remain mainly unchanged when the length of the alkyl chain
R is modified (samples 1-3). It can be inferred from the modifications of the spectra in the UV
part that Ge-DWINTSs present a larger amount of defects when synthesized from aluminum
sources other than perchlorate. The resulting changes in the nanotubes electronic structure and
in electrostatic interactions between nanotubes (Poli et al., 2019; Teobaldi et al., 2009) should
lead to significant changes on the liquid-crystalline phase behavior expected for anisometric
Ge-DWINTs.

3.2 Liquid-crystalline phase behavior
The different types of LC phases (nematic, lamellar, columnar or cubic) can be

differentiated by combining polarized optical observations and SAXS experiments (Davidson
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et al., 2018). Investigation of the phase behavior was conducted, for each Ge-DWINTs sample,
on aqueous dispersions prepared by osmotic stress at a fixed ionic strength (IS = 10~ mol.L™).
This ionic strength allows for repulsive electrostatic interactions without aggregation
phenomena between the nanotubes in dispersions (Paineau et al., 2017, 2019). Glass vials filled
with Ge-DWINTSs dispersions at different volume fractions were examined after one month,
after which we no longer observed any evolution on the optical properties of the samples. Fig.
5 presents the birefringence of these samples assessed by naked-eye observations between

crossed-polarizers.

0.37% 0.52% 0.66% 0.87% 1.28% 0.31% 0.40%

C
031%  0.37% 53% 071%  0.93% 27% 035%. - 0.53%

Fig. 5. Optical observations between crossed-polarizers of aqueous dispersions (IS = 10° mol.L™") of
Ge-DWINTSs as a function of the volume fraction ¢ (%). Syntheses using Al(ClO4); with (a) TMOG
(sample 1), (b) TIPOG (sample 2), (c) TEOG (sample 3). (d) Synthesis using TEOG with AICI; (sample

4).

Dispersions of Ge-DWINTSs exhibit isotropic liquid phases at very low concentration (¢ <
0.3%). Beyond a given volume fraction, we observe a spontaneous phase separation between a
birefringent bottom phase and an isotropic (I) upper one delimited by a sharp interface. The
isotropic phase exhibits flow birefringence when the vial is slightly shaken, indicating that
nanotubes are not present exclusively in the birefringent bottom phase. The interface separating
the two phases moves once the samples are tilted. This finding is a clear evidence that

thermodynamic equilibrium is reached in the dispersions. As observed in other LC systems
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(Kleshchanok et al., 2010; Woolston and van Duijneveldt, 2015), the amount of birefringent
phase increases with the overall volume fraction, reflecting a first-order isotropic-to-liquid-
crystalline phase transition. The visual phase observations also reveal that the range of the
biphasic domain is not affected for Ge-DWINTSs synthesized with different alkoxides (Fig. Sa-
¢), unlike when aluminum chloride or nitrate precursors were used. Indeed, the occurrence of a
phase transition is shifted at higher volume fraction for sample 4 (Fig. 5d), while dispersions
prepared from sample 5 remain isotropic over the entire concentration range studied.

To identify the nature of the birefringent phases, optical textures have been acquired by
polarized optical microscopy (POM, Fig. 6 and Fig. S5 & S6, Supporting information). The
insertion of a retardation filter allows identifying the preferred orientation of INT directors
(nanotube axes) in the LC domains, ranging from parallel to perpendicular to the slow axis of

the A-plate with a change of the interference colors from blue to red, respectively.

Fig. 6. Optical textures in polarized light microscopy of aqueous dispersions (IS = 10 mol.L™") of Ge-
DWINTs without (top) and with (bottom) a retardation filter (A-plate, 530 nm). The orientation of the
polarizer and analyzer are indicated by labels p and a, respectively, while the red line represents the
slow axis of the retardation filter r. (a-c) Case of sample 3 (TEOG, Al(ClOs);) at different volume

fractions: (a) ¢ = 0.37%, (b) ¢ = 0.53%, (c) ¢ = 1.27%. (d) Nematic Schlieren texture after phase
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separation at the bottom of a flat capillary for sample 4 (TEOG, AICl;, ¢ = 0.79%). The scale bar
represents 500 pm. The white arrow in (a) denotes the separation between the isotropic (top) and the

liquid-crystal (bottom) phases.

POM images obtained for syntheses using Al(ClO4)3 precursors, i.e. samples 1-3, do not
show the typical Schlieren texture related to the presence of topological defects in the nematic
phase (N) like the one found for sample 4 in Fig. 6d-d’. Instead, pleated-ribbon-like domains
are observed (Fig. 6b and Fig. S5 & S6) (Watanabe et al., 2001), in which the nanotubes are
fully aligned as revealed by the modification of the optical path difference (white arrows in Fig.
6b’). This kind of texture suggests the presence of a columnar (Col) ordering as anticipated for
dispersions of anisometric imogolite nanotubes at low volume fraction (¢ < 1%) (Paineau et al.,
2016; Su et al., 2019). At higher concentration, Ge-DWINTs dispersions form strong
birefringent gels that display typical flow-alignment textures (Fig. 6¢-c” and Fig. S5c-c’). The
direct isotropic-to-columnar (I/Col) transition is somewhat puzzling. We assume this could be
related to an intricate combination of polydispersity in length and effective electrostatic
repulsions that can destabilize the nematic phase in favor of the columnar one (De Braaf et al.,
2017; Hentschke and Herzfeld, 1991; Wensink, 2007). We also evidenced for biphasic samples
close to the I/Col transition that spontaneous homeotropic alignment may occur in the columnar
phase, i.e. the nanotubes are aligned with their long axis parallel to the optical axis of the
microscope (Fig. 6a). As mentioned previously, the replacement of Al(ClO4)3 by AICI3
drastically affects the liquid-crystalline phase behavior by shifting the transition to higher
volume fraction (¢ > 0.79%, Fig. 5d). Moreover, the nature of the birefringent phase is also
impaired since it is a nematic phase (Fig. 6d), i.e. exhibiting only a long-range orientational
ordering of the nanotubes without positional ordering.

3.3 Self-organization of Ge-DWINTs
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Small-angle X-ray scattering experiments were undertaken to assess in more details the
structure of the different phases (Fig. 7a and Fig. S7 & S8 Supporting information). For samples
1-3, scattering intensity profiles in the isotropic phase show only broad modulations due to a
short-range positional ordering of the nanotubes. By contrast, SAXS profiles in the birefringent
phase display at least four sharp reflections, which shift to higher Q-values with increasing
volume fractions as expected for a lyotropic LC (Fig. 7a and Fig. S7a,b). The relative Q-values
of these peaks follow the ratio 1:4/3:+/4:/7 that originates from the two-dimensional (2D)

hexagonal reciprocal lattice peaks in the columnar phase (Camerel et al., 2002; Kleshchanok et

al., 2012; Paineau et al., 2016).
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Fig. 7. (a) SAXS profiles of sample 1 (TMOG, Al(Cl0O4)3) at different volume fractions. The hk indices
refer to the indexation of the Bragg reflections with a 2D hexagonal lattice of Ge-DWINTSs in the
columnar phase. (b) Corresponding plots of the Q vectors of the Bragg reflections vs. (h>+k>+hk)">. (c)
Evolution of the interparticle distance deduced from SAXS curves as a function of ¢*°. Dot curve

corresponds to the model described in eq. 3 (see text for details).

Indexation of the SAXS reflections according to a hexagonal lattice was performed by

plotting the Q vectors of the hk reflections at different volume fractions vs. \/ (h? 4+ k? + hk)
(Fig. 7b) (Holmgqvist et al., 1997). The straight lines illustrate the good agreement of the peak
positions with the 2D hexagonal arrangement of the nanotubes. The hexagonal lattice parameter

a is determined from the slope y of these curves as:
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The obtained values vary from 50 to 30 nm with increasing the volume fraction from 0.35
to 1.3 %, respectively, i.e. a minimum of 7 times the diameter of Ge-DWINTSs. Such large
center-to-center distances in the hexagonal columnar phase are not surprising for imogolite
nanotubes. Even for an ionic strength of 10~ mol.L!, the Debye screening length remains
sufficient large (~ 10 nm) to prevent nanotubes aggregation (Paineau et al., 2016, 2019; Su et al.,
2019). We also investigated whether the hexagonal columnar phase may undergo compression
upon separation in the bottom of the capillaries. The hexagonal lattice parameter does not
change regardless of the position of the X-ray beam in the sample (on nearly 30 mm), but we
noticed that a broad modulation is always superimposed on the 10 peak of the hexagonal
columnar phase and shift to higher Q-values with increasing ¢. Fig. S7c (Supporting
information) compares the SAXS profiles obtained in the two phases at coexistence for sample
1 at ¢ = 0.52%. The average inter-particle distance d, deduced from the position of the
maximum of the modulation (d = 27/Q,,,4), is 38 and 42 nm in the bottom and upper phases,
respectively. We suggest that this peak is probably related to the contribution of nanotubes with
short lengths (Paineau et al., 2019), whose aspect ratio is not large enough to form a liquid-
crystal phase. Interestingly, for sufficiently high volume fractions (¢ ~ 1%), aqueous
dispersions are no longer liquid but form birefringent gels that retain the signature of the
columnar phase (Fig. 6¢). The persistence of the hexagonal columnar organization in an arrested
phase is counterintuitive since we might have expected a decrease in nanotube ordering due to
frustrated orientational and translational motion in such arrested phases. The comprehension of
the underlying mechanisms is beyond the purpose of this article and will be the subject of
further work. The evolution of the average interparticle distance exhibits a linear dependence

with inverse square root of the volume fraction (Fig. 7¢), typical of individual one-dimensional
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objects (Belamie et al., 2004; Maier et al., 1992; Paineau et al., 2019). Such curve provides
crucial information on the local structure of the dispersions. If we assume a 2D hexagonal
configuration as the packing limit of the nanotubes, which seems reasonable for samples 1-3,

the slope is directly related to the average diameter (D) of the nanotubes:

Interparticle distance = (7 \/§/8)1/2(D)q,’>_°'5 (3)

The experimental interparticle distances are well reproduced assuming an average outer
diameter of ~4.4 nm for Ge-DWINTs as determined from TEM analysis (Table 1). The
discrepancy with the model corresponds to the crossover toward a three-dimensional swelling
of non-interacting nanotubes that should appear at low volume fraction (high ¢%° values).

Unlike samples 1-3, SAXS measurements performed on samples 4 and 5 do not show the
Bragg peaks of the columnar phase but present several broad modulations related to a short-
range positional ordering of the nanotubes (Fig. S8, Supporting information). In addition, the
Q-dependence of the scattered intensity 1(Q) for these samples is different from the first three
samples (Fig. S7d, Supporting information). At sufficiently small wave-vectors, correlations
between particles are negligible and the intensity is proportional to the form factor (Guinier
regime) (Guinier et al., 1955). For samples 1-3, 1(Q) is decreasing with a Q! dependence as
expected for one-dimensional scattered objects while it follows a Q2 slope for samples 4 and
5. The origin of this difference remains unclear but might be linked to the formation of bi-
dimensional rafts of nanotubes as also indicated by TEM images.

Altogether, our results allow establishing a schematic phase diagram summarizing the role
of initial precursors on the phase behavior of anisometric Ge-DWINTs as a function of the

volume fraction (Fig 8).
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The occurrence of a hexagonal columnar phase and its extension remain unaffected regardless
the alkoxide used. This is consistent with the results of the nanotube characterization, which
are not significantly different between samples 1 to 3. It suggests that the length of the alkyl
chain has a limited impact during the synthesis of these nanotubes. By contrast, we have
demonstrated throughout this work that Ge-DWINTs synthesized from AICl3 or AI(NO3)3
solutions do not display the hexagonal columnar phase, but only nematic (sample 4) or isotropic
(sample 5) liquids before the arrested phase. This decrease in structural organization goes
beyond a modification of the aspect, these nanotubes still being anisometric. Furthermore,
electrophoretic measurements suggest comparable charges of the outer surface of the nanotubes
elaborated with different anion precursors (Fig. S4). We conclude that the nature of the anion
leads to significant changes during the co-condensation of Ge and Al precursors by inducing

structural defects occurring within the nanotube. We suggest that these defect-sites are certainly
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at the origin of the formation of bi-dimensional rafts evidenced from TEM (Fig. 3c,d) and
SAXS results (Fig. S7d). The presence of these bi-dimensional rafts hinders Ge-DWINTSs to

self-organize with long-range orientational and positional ordering as in the columnar phase.

4. Summary and conclusions

In summary, we demonstrated the reliability of producing anisometric Ge-DWINTSs using a
single-step hydrothermal synthesis described in eq. 1 by varying the initial precursors. We
evidenced that the use of chloride or nitrate aluminum salts induces structural defects, most
probably during the growth of double-walled aluminogermanate nanotubes. Optical
observations and SAXS experiments confirm that Ge-DWINTs synthesized from aluminum
perchlorate display the expected hexagonal columnar phase with a self-organization of the
nanotubes over large distances. By contrast, nanotubes obtained with chloride and nitrate
aluminum salts tend to group together in bi-dimensional rafts, which prevent them from forming
highly ordered liquid-crystalline phases before the occurrence of the arrested phase. Our
findings confirm that the nature of the initial anion X is a critical parameter, which apparently
alters the structural properties of Ge-DWINTs whereas the length of alkoxy group (Ci, C2 or
C3*°) of Ge precursors does not. This is probably related to the lower complexing ability of
perchlorate anions compared to chloride or nitrate (Chemmi et al., 2015; Farmer and Fraser,
1979). Consequently, the liquid-crystalline properties of anisometric Ge-DWINTs can be
adjusted by changing the initial conditions of the syntheses. Experimental quantification of
structural defects in these complex nanostructures is an issue that needs to be addressed if we
want to better understand and therefore predict the electrostatic interactions between these
nanotubes. Furthermore, these experiments also evidence an intriguing direct I/Col phase
transition, which may open new research directions from a fundamental point of view. In
addition, the large extension of the hexagonal columnar phase domain may provide higher

flexibility for its use as an alternative strategy to design, for instance, hierarchical assemblies
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of 1D nano-objects into innovative nanocomposites (Kang et al., 2012; Lee et al., 2020; Li and

Brant, 2019).
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