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PDE control of heat exchangers by input-output linearization approach

Introduction

Heating or cooling of liquid and gaseous fluids are two operations involved in many engineering applications. These operations are achieved using heat exchangers that transfer heat from a hot fluid to a cooler one [START_REF] Al-Dawery | Dynamic modeling and control of plate heat exchanger[END_REF][START_REF] Kakaş | Heat Exchangers: Selection, Rating, and Thermal Design[END_REF]. Heat exchangers can be classified according to the geometry construction (tubes and plates), to the transfer processes (direct and indirect contacts), to the flow arrangement (counter, parallel and cross-flows) and to the fluid phase (liquid-liquid and gas-liquid) [START_REF] Kakaş | Heat Exchangers: Selection, Rating, and Thermal Design[END_REF]. Tube heat exchangers are widely used in industry due to their ability to ensure a wide range of operating temperatures [START_REF] Al-Dawery | Dynamic modeling and control of plate heat exchanger[END_REF][START_REF] Fratczak | Practical validation of the effective control of liquid-liquid heat exchangers by distributed parameter balance-based adaptive controller[END_REF].

In a heat exchanger, convection is usually the dominant form of heat transfer compared to diffusion, which is negligible [START_REF] Arbaoui | Counter-current tubular heat exchanger: Modeling and adaptive predictive functional control[END_REF][START_REF] Friedly | Dynamic Behaviour of Processes[END_REF][START_REF] Ray | Process Dynamics, Modeling and Control[END_REF]. Thus, the dynamic behavior of a heat exchanger is often captured by two linear partial differential equations (PDEs) of hyperbolic type with one spatial variable. These equations, obtained by writing the energy balances separately for both fluids, are weakly coupled via the source terms (difference of temperatures between the two fluids) [START_REF] Friedly | Dynamic Behaviour of Processes[END_REF][START_REF] Ray | Process Dynamics, Modeling and Control[END_REF]. Each PDE describes the spatio-temporal evolution of the temperature of the related fluid. Thus, a heat exchanger is typically an example of a 2 × 2 (2 equations with 2 dependent variables, i.e. time and space) hyperbolic system issued from balance laws [START_REF] Bartecki | Modeling and Analysis of Linear Hyperbolic Systems of Balance Laws[END_REF].

Heat exchangers are characterized by two flow rates and two inlet temperatures of fluids. These variables can be used as manipulated variables to control the fluid temperatures at the outlet [START_REF] Maidi | Boundary geometric control of a counter-current heat exchanger[END_REF]. Note that the fundamental control-theoretic properties (controllability, observability and stability) depend on the choice of manipulated variables [START_REF] Alotaibi | Controllability of cross-flow heat exchangers[END_REF]. By manipulating the inlet temperatures, the heat exchanger is a linear distributed parameter system (DPS), consequently control-theoretic properties can be easily analyzed using the powerful semi-group theory [START_REF] Grabowski | Stability of a heat exchanger feedback control system using the circle criterion[END_REF][START_REF] Kunimatsu | Stability analysis of heat-exchanger equations with boundary feedbacks[END_REF][START_REF] Sano | Observability and reachability for parallel-flow heat exchanger equations[END_REF]. In the case of flow rate manipulation, the heat exchanger is a nonlinear (bilinear) DPS [START_REF] Bühler | Topics in Identification and Distributed Parameter Systems[END_REF] and both control design and control-theoretic properties analysis are difficult tasks.

Essentially, to deal with control design for heat exchangers, two main approaches [START_REF] Christofides | Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes[END_REF][START_REF] Ray | Advanced Process Control[END_REF], indirect or direct, are possible. The indirect approach (early lumping) consists in reducing the PDEs to a set of ordinary differential equations (ODEs) by approximating either the PDEs themselves (by discretization) or their solutions [START_REF] Li | Modeling of distributed parameter systems for applications-A synthesized review from time-space separation[END_REF]. This approach allows to exploit various well established linear control theories of lumped parameter systems (LPSs). Nevertheless, the indirect approach masks the distributed nature of the heat exchanger and often the fundamental controltheoretic properties are lost due to the approximation process [START_REF] Christofides | Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes[END_REF][START_REF] Ray | Advanced Process Control[END_REF][START_REF] Singh | Effect of finite-dimensional approximation on observability analysis of distributed parameter models[END_REF]. In addition, this approach leads to a high dimensional controller with limited performance and difficult practical implementation issues [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF]. The direct approach (late lumping) consists in using directly the PDEs model to design the controller without any previous approximation. The direct approach preserves control-theoretic properties of the heat exchanger and leads to an infinite dimensional controller that is of distributed nature, which enhances the control quality [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF][START_REF] Maidi | Boundary geometric control of a counter-current heat exchanger[END_REF][START_REF] Maidi | Boundary control of a parallel-flow heat exchanger by input-output linearization[END_REF]. Nevertheless, the practical implementation needs the use of an observer to reconstruct the whole state from the accessible measurements [START_REF] Maidi | Boundary geometric control of a counter-current heat exchanger[END_REF][START_REF] Maidi | Boundary control of a parallel-flow heat exchanger by input-output linearization[END_REF].

Heat exchanger control has been extensively investigated in the literature and many control design techniques are proposed. The heat exchanger control literature reveals that most contributions deal with the control of heat exchanger by the indirect approach whereas the direct approach is less addressed. This can be explained by the fact that designing the controller by using directly the PDEs model is a difficult task.

In the following, different control methods of heat exchangers using both indirect and direct approaches are briefly reviewed. First, consider control methods based on the approximate or reduced model. [START_REF] Malleswararao | Non-linear controllers of a heat exchanger[END_REF] proposed a model reference non-linear controller with PID actions. [START_REF] Fischer | Adaptive predictive control of a heat exchanger based on a fuzzy model[END_REF] and Mazinan and Sadati (2010) developed fuzzy predictive controllers.

Fuzzy control and neural network approaches have been adopted by [START_REF] Al-Dawery | Dynamic modeling and control of plate heat exchanger[END_REF] and [START_REF] Bittanti | Nonlinear identification and control of a heat exchanger: A neural network approach[END_REF]Vasičkaninová et al. (2011), respectively. Based on the convexity property, [START_REF] Abdelghani-Idrissi | Predictive functional control of a counter current heat exchanger using convexity property[END_REF] developed a predictive functional controller. Using an approximate first order model, an adaptive version of a predictive functional controller is implemented by [START_REF] Arbaoui | Counter-current tubular heat exchanger: Modeling and adaptive predictive functional control[END_REF]. A control strategy combining neural network predictive and fuzzy controllers is proposed by Vasičkaninová and Bakošová (2015). A sliding mode controller is developed in [START_REF] Almutairi | Control of a plate heat exchanger using the terminal sliding mode technique[END_REF]. Other advanced robust control methods has also proposed by [START_REF] Dulǎu | Conventional control vs. robust control on heat-exchangers[END_REF]; [START_REF] Gauthier | H ∞ control of a distributed parameter system with non-minimum phase[END_REF]; [START_REF] Kanoh | Nonlinear H ∞ control for heat exchangers controlled by the manipulation of flow rate[END_REF]Vasičkaninová andBakošová (2016) andVasičkaninová et al. (2018).

Considering the direct approach, few contributions have been reported in the literature. [START_REF] Hanczyc | Nonlinear control of a distributed parameter process: the case of multiple caracteristics[END_REF] designed a sliding mode control based on the equivalent LPS model obtained using the method of characteristics. Robust control theory has been generalized to DPSs by [START_REF] Pohjolainen | Robust controller for boundary control systems[END_REF], thanks to the operators theory, and a flow adaptive robust controller is developed. Using semigroup theory, [START_REF] Sano | Boundary control of a parallel-flow heat exchange process with boundary observation[END_REF] proposed a residual mode filter-based controller to enhance the stability under a boundary actuation and boundary sensing. In [START_REF] Aulisa | Velocity control of a counter-flow heat exchanger[END_REF], the nonlinear tracking problem is solved using velocity control configuration. [START_REF] Fratczak | Practical validation of the effective control of liquid-liquid heat exchangers by distributed parameter balance-based adaptive controller[END_REF] developed a distributed parameter balance-based adaptive controller and performed a practical validation on a laboratory heat exchanger. Boundary control based on the input-output linearization approach has been solved by [START_REF] Maidi | Boundary geometric control of a counter-current heat exchanger[END_REF][START_REF] Maidi | Boundary control of a parallel-flow heat exchanger by input-output linearization[END_REF].

Geometric control is an interesting late lumping approach that is well adapted for control problem of DPSs [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF]Maidi andCorriou, 2011b, 2014a,b;[START_REF] Shang | Feedback control of hyperbolic distributed parameter systems[END_REF]Wu and Liou, 2001). The present chapter is devoted to the direct control design of geometric control laws for counter-current and co-current heat exchangers. The chapter starts with the control problem formulation. Then, the design approaches based on the PDEs model are presented. The stability and practical implementation issues of the developed control laws are also discussed. Finally, the performance of the presented control laws are evaluated via numerical simulation. The chapter ends with a conclusion.

Heat exchanger control problem

The considered heat exchanger is a double pipe used to heat the cold fluid circulating in the internal tube by means of the hot fluid circulating in the external tube as depicted in Figure 1. In the counter-current heat exchanger, the hot and cold fluids flow in opposite directions (Fig. 1a) while in the case of a co-current heat exchanger (Fig. 1b), both fluids flow in the same direction. Under some reasonable assumptions [START_REF] Arbaoui | Counter-current tubular heat exchanger: Modeling and adaptive predictive functional control[END_REF][START_REF] Friedly | Dynamic Behaviour of Processes[END_REF][START_REF] Ray | Process Dynamics, Modeling and Control[END_REF], the dynamical behavior of this double pipe heat exchanger is described by the following 2 × 2 hyperbolic of balance laws [START_REF] Friedly | Dynamic Behaviour of Processes[END_REF]:

∂T h (z, t) ∂t = -ϑ h ∂T h (z, t) ∂z + α h (T c (z, t) -T h (z, t)) (1) ∂T c (z, t) ∂t = β ϑ c ∂T c (z, t) ∂z + α c (T h (z, t) -T c (z, t)) (2) 
T h (1 + β) 2 l, t = (1 -β) 2 T h 0 (t) + (1 + β) 2 T h l (t) (3) 
T c (0, t) = T c 0 (t) (4) T h (z, 0) = T * h (z) (5) T c (z, 0) = T * c (z) (6) 
In the heat exchanger model ( 1)-( 6), t ∈ R + and z ∈ Ω are the time and space independent variables, respectively. l is the length of the heat exchanger and Ω = [0, l] is the space domain. T h and T c denote the temperatures of the hot and cold fluids, respectively, and T * h and T * c are their initial temperature profiles. T c 0 is the inlet temperature of the cold fluid. T h 0 and T h l denote the inlet temperatures of the hot fluid for the co-current and counter-current heat exchangers, respectively. α h and α c are the heat transfer coefficients, ϑ h and ϑ c are the flow rates of the fluids. β is a constant parameter that depends on the directions of the fluids, that is, β = 1 for a counter-current heat exchanger whereas for a co-current one, β = -1. Equation (3) means that T h (l, t) = T h l (t) for a counter-current heat exchanger and T h (0, t) = T h 0 (t) for a co-current one. Thus, it allows to use a single model for both counter-current and co-current heat exchangers.

In the sequel, L 2 (Ω) denotes the space of square-integrable functions [START_REF] Atkinson | Theoretical Numerical Analysis. A Functional Analysis Framework[END_REF], defined on the domain Ω, and we assume that the state vector T (z, t) = [T h (z, t) T c (z, t)] T ∈ H with the state space H = L 2 (Ω) ⊕ L 2 (Ω) endowed with the inner product

f (z), g(z) H = l 0 f T (z) g(z) dz, ∀f (z) =         f 1 (z) f 2 (z)         , g(z) =         g 1 (z) g 2 (z)         ∈ H (7)
and the norm

f (z) 2 H = f (z), f (z) H (8)
The control problem of the heat exchanger consists in regulating the outlet temperature of the cold fluid towards a desired value. This objective can be achieved by manipulating either the inlet temperature or the flow rate of the hot fluid [START_REF] Maidi | Boundary geometric control of a counter-current heat exchanger[END_REF]. Nevertheless, controllability is a crucial question to be addressed before designing a controller for a heat exchanger because the reachable temperature depends on the inlet temperature and the flow rate, which are practically constrained [START_REF] Alotaibi | Controllability of cross-flow heat exchangers[END_REF][START_REF] Sano | Observability and reachability for parallel-flow heat exchanger equations[END_REF]. As mentioned above, by manipulating the inlet temperature, the heat exchanger is a linear DPS and the controllability property can be assessed using some tools from the powerful semi-group theory [START_REF] Sano | Observability and reachability for parallel-flow heat exchanger equations[END_REF]. On other hand, by manipulating the flow rate, the heat exchanger is a bilinear DPS (a particular class of nonlinear systems) and the controllability analysis constitutes an open problem. The controllability of heat exchangers is less investigated in the literature. The conducted studies have shown that heat exchangers are controllable with the inlet temperatures and less controllable with flow rates [START_REF] Alotaibi | Controllability of cross-flow heat exchangers[END_REF].

In the following, the studied problem is the control of the output T c l (t) defined as the outlet temperature of the cold fluid, that is,

T c l (t) = T c (l, t) (9) 
by manipulating the inlet temperature of the hot fluid, that is, by manipulating either T h 0 (t) (case of the co-current) or T h l (t) (case of the counter-current). Thus, the inlet temperature of the cold fluid T c 0 (t) and both flow rates ϑ h and ϑ c are assumed to be disturbances.

Note that, according to the studied control problem, it follows that the actuator and the sensor are collocated (placed at the same boundary z = 0) in the case of co-current heat exchanger whereas for the counter-current heat exchanger they are anti-collocated (placed at opposite boundaries, i.e. z = 0 and z = l). In both cases, the heat exchanger is a linear DPS and the control problem can be tackled easily in the framework of geometric control. A summary of these characteristics is given in Table 1.

Geometric control of heat exchanger

Design of geometric control laws for DPSs is based on the concept of the characteristic index, which constitutes a generalization of the concept of relative order [START_REF] Isidori | Nonlinear control systems[END_REF]Kravaris and Kantor, 1990a) of a LPS. The characteristic index characterizes the spatio-temporal interactions between input and output variables of DPS [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF]. Mathematically, the characteristic index is the smallest order of the time derivative of the controlled variable which explicitly depends on the manipulated variable. A control geometric law can be designed if the characteristic index is finite. For DPSs, the characteristic index is finite if the manipulated variable (actuator) and the controlled variable (sensor) are collocated and is infinite if they are anti-collocated. This can be explained by the number of spatial points, assuming the idea of a spatial discretization, that the manipulated variable has to go through in order to observe its effect on the controlled output.

In this section, the geometric control laws that solve the formulated control problem in Section 2 for both counter-current and co-current heat exchangers are derived.

Control law design

Using the characteristic index, a control law that yields a linear DPS between an external input and the controlled output can be obtained. When the characteristic index is finite, two kinds of control law are possible: the input-output linearizing and the output stabilizing control laws, which yields an unstable (chain of integrators) and a stable linear LPS, respectively. These control laws are determined separately for the counter-current and co-current heat exchangers.

Counter-current heat exchanger

The characteristic index of a linear system is obtained by considering the successive time derivatives of the controlled output until the manipulated input appears explicitly. By setting β = 1 in the state equation ( 2) and evaluating the first time derivative of the controlled output (9), we obtain

dT c l (t) dt = ∂T c (z, t) ∂t z=l (10) = ϑ c ∂T c (z, t) ∂z z=l + α c (T h (l, t) -T c (l, t)) (11) = ϑ c ∂T c (z, t) ∂z z=l + α c (T h l (t) -T c l (t)) (12) 
As the manipulated variable T h l (t) appears explicitly in the first derivative of T c l (t), the characteristic index is σ = 1. Note that, in the counter-current case, the manipulated and controlled variables are collocated. Solving the following equation

v(t) = ϑ c ∂T c (z, t) ∂z z=l + α c (T h l (t) -T c l (t)) ( 13 
)
with respect to the manipulated variable T h l (t) yields the following input-output linearizing control law

T h l (t) = v(t) + α c T c l (t) -ϑ c ∂T c (z, t) ∂z z=l α c (14) 
where v(t) is introduced as the external input.

Thus, in closed loop, the following linear LPS results Tc l (s)

V (s) = 1 s ( 15 
)
where s is the Laplace variable, Tc l (s) and V (s) are the Laplace transforms of T c l (t) and v(t), respectively.

To obtain an output stabilizing control law, consider the following feedback control

v(t) = T c l (t) + γ 1 dT c l (t) dt (16)
where γ 1 is a time parameter chosen so that the resulting closed loop system is stable. The composition of Equations ( 9), ( 12) and ( 16) yields the following equation

v(t) = T c l (t) + γ 1 ϑ c ∂T c (z, t) ∂z z=l + γ 1 α c (T h l (t) -T c l (t)) (17)
and by solving the resulting equation with respect to the manipulated variable T h l (t), the following output stabilizing feedback results

T h l (t) = v(t) + (γ 1 α c -1) T c l (t) -γ 1 ϑ c ∂T c (z, t) ∂z z=l γ 1 α c (18)
which yields the following closed loop first order transfer function Tc l (s)

V (s) = 1 γ 1 s + 1 (19)

Co-current heat exchanger

In the case of the co-current heat exchanger, the manipulated and controlled variables are non-collocated, opposite to the counter-current heat exchanger where they were collocated, thus the characteristic index is infinite [START_REF] Maidi | Boundary control of a parallel-flow heat exchanger by input-output linearization[END_REF]. To design the geometric control law, we use the approach proposed by Maidi and Corriou (2011a) that consists in the following three steps:

1. Define an auxiliary controlled output T m c (t) as the spatial weighed average temperature of the cold fluid, that is,

T m c (t) = C T (z, t) (20) = l 0 0 c(z) T (z, t) dz (21) = l 0 c(z) T c (z, t) dz ( 22 
)
where C is a linear bounded operator and c(z) is a smooth shaping function that satisfies c(0) = 0.

2. Insert the manipulated variable T h 0 (t) in the state equation (1) using the notion of the extended operator [START_REF] Stafford | Applications of extended operator to diffusive systems[END_REF]. It allows to convert the boundary control problem into a punctual one.

3. Derive the geometric feedback to control the auxiliary controlled output T m c (t) using the equivalent punctual control model obtained at Step 2.

4. Define the desired reference v(t) of the auxiliary controlled output T m c (t) using either a controller or the steady-state mapping between the controlled variable T c l (t) and the auxiliary output T m c (t).

Hence, in the case of the co-current heat exchanger, the following equivalent distributed control model can be obtained using the Laplace transform as proposed by Maidi and Corriou (2011a):

∂T h (z, t) ∂t = -ϑ h ∂T h (z, t) ∂z + α h (T c (z, t) -T h (z, t)) + ϑ h δ ε (z) T h 0 (t) (23) ∂T c (z, t) ∂t = -ϑ c ∂T c (z, t) ∂z + α c (T h (z, t) -T c (z, t)) (24) 
with the following new boundary conditions

T h (0, t) = 0 (25) T c (0, t) = T c 0 (t) ( 26 
)
where T h 0 (t) is assumed to be spanned over a small portion of the spatial domain Ω (close to the boundary z = 0), that is,

δ ε (z) =                1 ε for 0 ≤ z ≤ ε 0 Otherwise (27)
Thus, the evaluation of the first time derivative of the auxiliary output ( 22) gives

dT m c (t) dt = l 0 c(z) ∂T c (z, t) ∂t dz (28) = l 0 c(z) -ϑ c ∂T c (z, t) ∂z + α c (T h (z, t) -T c (z, t)) dz (29) 
The first time derivative (29) does not depend explicitly on the manipulated variable T h 0 (t), conse-quently the characteristic index σ is greater than one. Performing a second time derivative, we obtain

d 2 T m c (t) dt 2 = l 0 c(z) ∂ ∂t -ϑ c ∂T c (z, t) ∂z + α c (T h (z, t) -T c (z, t)) dz (30) = l 0 c(z) ϑ 2 c ∂ 2 T c (z, t) ∂z 2 + 2 ϑ c α c ∂T c (z, t) ∂z -α c (ϑ c + ϑ h ) ∂T h (z, t) ∂z + α c (α h + α c ) (T c (z, t) -T h (z, t)) + α c ϑ h δ ε (z) T h 0 (t) dz (31) 
We have

l 0 c(z) δ ε (z) dz = c(0) = 0 (32) hence d 2 T m c (t) dt 2 = l 0 c(z) ϑ 2 c ∂ 2 T c (z, t) ∂z 2 + 2 ϑ c α c ∂T c (z, t) ∂z -α c (ϑ c + ϑ h ) ∂T h (z, t) ∂z + α c (α h + α c ) (T c (z, t) -T h (z, t)) dz + α c ϑ h c(0) T h 0 (t) (33) 
Notice that the manipulated variable appears explicitly in the second derivative of T m c (t), consequently the characteristic index is σ = 2. By solving the following equation expressing the external input

v(t) = l 0 c(z) ϑ 2 c ∂ 2 T c (z, t) ∂z 2 + 2 ϑ c α c ∂T c (z, t) ∂z -α c (ϑ c + ϑ h ) ∂T h (z, t) ∂z + α c (α h + α c ) (T c (z, t) -T h (z, t)) dz + α c ϑ h c(0) T h 0 (t) (34) 
with respect to the manipulated variable T h 0 (t), we obtain the following input-output linearizing feedback

T h 0 (t) = v(t) - l 0 c(z) a ∂ 2 T c (z, t) ∂z 2 + b ∂T c (z, t) ∂z -c ∂T h (z, t) ∂z + d ∆T (z, t) dz α c ϑ h c(0) (35) with a = ϑ 2 c , b = 2 ϑ c α c , c = α c (ϑ c + ϑ h ), d = α c (α h + α c ) and ∆T (z, t) = T c (z, t) -T h (z, t).
The state feedback (35) yields the following closed loop system:

T m c (s) V (s) = 1 s 2 (36)
To obtain the output stabilizing feedback, as the characteristic index σ = 2, we consider the following feedback

v(t) = T m c (t) + γ 1 dT m c (t) dt + γ 2 d 2 T m c (t) dt 2 (37) 
Combining Equations ( 29), ( 33) and ( 37), the following output stabilizing feedback follows

T h 0 (t) = v(t) -T m c (t) - l 0 c(z) a ∂ 2 T c (z, t) ∂z 2 + b ∂T c (z, t) ∂z -c ∂T h (z, t) ∂z + d ∆T (z, t) dz γ 2 α c ϑ h c(0) (38) with a = γ 2 ϑ 2 c , b = ϑ c (2 γ 2 α c -γ 1 ), c = γ 2 α c (ϑ c + ϑ h ) and d = α c (γ 2 (α h + α c ) -γ 1
). The state feedback (38) yields the following closed loop second order transfer function

T m c (s) V (s) = 1 γ 2 s 2 + γ 1 s + 1 (39) 
In the following, we focus on the output stabilizing state feedbacks, which are more practical because they yield a closed loop system, which is externally stable.

Stability of the closed loop

The stability of transfer functions ( 19) and ( 39), by an adequate choice of the tuning parameters γ 1 and γ 2 , is not sufficient to ensure the stability of the resulting closed loop system because there is an internal dynamics related to the unobservable part of the controlled outputs. In the following, we demonstrate that, as the heat exchanger is a minimum-phase system, the internal dynamics of the resulting closed loop system is exponentially stable. In the following, we denote by u(t) and y(t) the manipulated and controlled variables, respectively. Thus, in the case of counter-current heat exchanger, u(t) = T h l (t) and y(t) = T c l (t) while in the case of co-current heat exchanger u(t) = T h 0 (t) and y(t) = T m c (t).

T (z, t) =         T h (z, t) T c (z, t)         (40)
the models of counter-current and co-current heat exchangers can be written under the following abstract form [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF])

∂T (z, t) ∂t = A T (z, t) + B u(t) (41) 
where the state operator A is defined as follows

A =         -ϑ h 0 0 β ϑ c         ∂ ∂z +         -α h α h α c -α c         (42) 
and the control operator B is given as

B =         ϑ h (1 -β) 2 δ ε (z) - (1 + β) 2 δ ε (l -z) 0         (43) 
with

δ ε (l -z) =                1 ε for l -ε ≤ z ≤ l 0 Otherwise (44)
and δ ε (z) is given by ( 27).

Both state feedbacks ( 18) and ( 38) can be written under the following form

u(t) = K T (z, t) + L e(t) (45) 
where K and L are spatial operators that can be easily identified from the state feedback, and e(t)

denotes the tracking error, that is, e(t) = v(t) -y(t).

Substituting the state feedback ( 45) into (41), the following closed loop system results

∂T (z, t) ∂t = A T (z, t) + B (K T (z, t) + L e(t)) (46) T h (1 + β) 2 l, t = 0 (47) T c (0, t) = T c 0 (t) (48) T h (z, 0) = T * h (z) (49) T c (z, 0) = T * c (z) ( 50 
)
and can be written as the interconnection of two subsystems as follows

dy(t) dt = - 1 γ 1 y(t) + 1 γ 1 v(t) (51) ∂T (z, t) ∂t = (A + B K) T (z, t) + B L e(t) (52) 
T h (1 + β) 2 l, t = 0 (53) T c (0, t) = T c 0 (t) (54) T h (z, 0) = T * h (z) (55) T c (z, 0) = T * c (z) (56)
By zeroing the auxiliary output (T m c (t) = 0) [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF], the following zero dynamics results

∂T (z, t) ∂t = (A + B K) T (z, t) (57) T h (1 + β) 2 l, t = 0 (58) T c (0, t) = T c 0 (t) (59) T h (z, 0) = T * h (z) (60) T c (z, 0) = T * c (z) (61)
Now, as the counter-current heat exchanger is a minimum-phase system, we conclude that the operator A + B K generates a stable C 0 -semigroup U(t) [START_REF] Christofides | Feedback control of hyperbolic PDE systems[END_REF], consequently [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF])

U(t) H ≤ M T e -ω T t , M T ≥ 1, ω T > 0 (62)
As the state feedback (45) yields a stable v(t)-y(t) system, hence for a bounded external input v(t),

we have

|e(t)| ≤ M e e -ωe t , M e ≥ 1, ω e > 0 ( 63 
)
where | . | is the Euclidean norm.

Thus, from the C 0 -semigroup theory, as the tracking error e(t) ∈ L 1 (R + ), the internal dynamics admits the following mild solution [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF])

T (z, t) = U(t) T (z, 0) + t 0 U(t -ζ) B L e(ζ) dζ (64) 
Thereafter

T (z, t) H = U(t) T (z, 0) + t 0 U(t -ζ) B L e(ζ) dζ H (65) ≤ T (z, 0) U(t) H + t 0 U(t -ζ) B L e(ζ) dζ H (66) ≤ T (z, 0) H M T e -ω T t + t 0 M T e -ω T (t-ζ) B L H M e e -ωe ζ dζ (67) ≤ T (z, 0) H M T e -ω T t + M T M e B L H e -ω T t t 0 e (ω T -ωe) ζ dζ (68)
Now, in the case of ω x = ω e , it follows that

T (z, t) H ≤ M T T (z, 0) H + M e B L H t e -ω T t (69)
and if ω x = ω e , we have

T (z, t) H ≤ T (z, 0) H M T e -ω T t + M T M e B L H ω T -ω e e -ωe t -e -ω T t (70) ≤ M T T (z, 0) H + M e B L H |ω T -ω e | e -ω t (71) 
where ω = min{ω T , ω e }.

Hence, from relations ( 69) and ( 71), it can be concluded that the internal dynamics of the closed loop system is exponentially stable.

Practical implementation issues

State estimation

The control laws presented in Subsection 3.1 are of distributed nature (infinite dimensional), that is, for practical implementation, the whole state must be available. Practically, due to its infinite dimension, the whole state cannot be measured. Consequently, an observer must be designed to reconstruct the entire state from the accessible measurements [START_REF] Hidayat | Observers for linear distributed parameter systems: A survey[END_REF]. Before attempting to design an observer for a heat exchanger, the analysis of the observability property is the primary question.

This property depends on the number of sensors and their locations [START_REF] Ray | Advanced Process Control[END_REF]Waldraff et al., 1998).

Observability can be analyzed using either the approximate model (indirect method) or the PDEs model (direct method) [START_REF] Ray | Advanced Process Control[END_REF][START_REF] Sano | Observability and reachability for parallel-flow heat exchanger equations[END_REF][START_REF] Singh | Effect of finite-dimensional approximation on observability analysis of distributed parameter models[END_REF]. Note that indirect methods can mask this property and must be applied with care because they may lead to erroneous conclusions [START_REF] Ray | Advanced Process Control[END_REF][START_REF] Singh | Effect of finite-dimensional approximation on observability analysis of distributed parameter models[END_REF]. For the counter-current and co-current heat exchangers, both inlet and outlet temperatures are accessible for measurement. According to the studies conducted in the literature, using the PDEs model (direct approach), it is shown that, by sensing these temperatures, the observability condition is satisfied [START_REF] Sano | Observability and reachability for parallel-flow heat exchanger equations[END_REF].

For observer design, both direct and indirect approaches can be used [START_REF] Hidayat | Observers for linear distributed parameter systems: A survey[END_REF]. Note that even if the direct approach using the PDE model is recommended, an approximation method must be used for practical implementation. Nevertheless, attention must be paid to the approximation method used so that the observability condition must be preserved [START_REF] Ray | Advanced Process Control[END_REF][START_REF] Singh | Effect of finite-dimensional approximation on observability analysis of distributed parameter models[END_REF]. In this chapter, the Kalman observer is used to reconstruct the entire temperatures of both cold and hot fluids.

Thus, using the method of lines (Van de [START_REF] Van De Wouwer | Simulation of distributed parameter systems using a Matlab-based method of lines toolbox: Chemical engineering applications[END_REF], based on the finite difference scheme, and by considering N discretization points, the infinite dimensional state equations ( 1) and (2) of the heat exchanger can be approximated by the following finite dimensional state equation

Ṫ∆ (t) = A T ∆ (t) + B u(t) + E T c 0 (t) (72) y(t) = C x(t) (73) 
where the state vector is defined according to the type of the heat exchanger as follows:

• For the counter-current heat exchanger:

T ∆ (t) = T h 0 (t) T h 2 (t) . . . T h N-1 (t) T c 1 (t) T c 2 (t) . . . T c N (t) T (74) 
• For the co-current heat exchanger:

T ∆ (t) = [T h 1 (t) T h 2 (t) . . . T h N (t) T c 1 (t) T c 2 (t) . . . T c N (t)] T (75) 
where T h i (t) and T c i (t) (i = 1, . . . , N) are the temperatures of the hot and cold fluids temperatures at the position z = i ∆z with ∆z = l/N the discretization step.

A ∈ R 2N ×2N , B ∈ R 2N ×1 , E ∈ R 2N ×1 and
C ∈ R 1×2N are the state, control, disturbance and observation matrices, respectively. These matrices depend both on the used finite difference scheme and the type of the heat exchanger. More details about the discretization of both heat exchangers can be found in [START_REF] Corriou | Process control -Theory and applications[END_REF].

In the presence of both process and measurement noises, the approximate model of the heat exchanger is given as follows

Ṫ∆ (t) = A T ∆ (t) + B u(t) + E T c 0 (t) + ζ(t) (76) 
y(t) = C T ∆ (t) + η(t) (77) 
where ζ(t) is the process noise and η(t) is the measurement noises with zero mean. Q and R are the covariance of ζ(t) and η(t), respectively.

As the heat exchanger is continuous and the measurements are in discrete form, we use the discrete-continuous [START_REF] Corriou | Process control -Theory and applications[END_REF] formulation of the Kalman filter

Ṫ∆ (t) = A T∆ (t) + B u(t) + E T c 0 (t) (78) Ṗ (t) = A P (t) + P (t) A T + Q (79)
where P (t) is the covariance matrix.

The estimate T∆ (t) of the state T ∆ (t) from the available measurements T c 0 (t) (measured disturbance) and y(t) is provided by the Kalman filter in two phases [START_REF] Corriou | Process control -Theory and applications[END_REF]:

Prediction phase: The equations ( 78) and ( 79) are integrated from time t = k -1 to t = k to obtain the estimate T∆ (k|k -1) and P (k|k -1). T∆ (k|k -1) being the estimate of T ∆ (t) at t = k from the measurement at t = k -1.

Correction phase: The estimate obtained in the prediction phase for t = k is corrected and the covariance matrix P (t) is updated as follows:

T∆ (k|k) = T∆ (k|k -1) + P (k|k -1) C T C P (k|k -1) C T + R -1 y(k) -C T∆ (k|k -1) ( 80)

P (k|k) = (I -K k C) P (k|k -1) (81) 
Note that, in the case of co-current heat exchanger, the auxiliary controlled output T m c (t), given by Equation ( 22), can be evaluated at t = k as follows

T m c (t) = C ∆ T∆ (t) (82) 
with T∆ (t) ≡ T∆ (k|k) and the row vector C ∆ depends on the quadrature used to approximate the integral operator C according to (Equation (22).

Robustness

The control laws designed in Subsection 3.1 for both heat exchangers are sensitive to modeling errors and parameter uncertainties. For robustness and for stabilization, in the case of input-output linearizing control laws ( 14) and ( 35), we use the global linearizing control structure [START_REF] Corriou | Process control -Theory and applications[END_REF]; Kravaris and

• Case of the counter-current heat exchanger:

v(t) = t 0 G c (t -ξ) T d c l (ξ) -T c l (ξ) dξ (83) 
• Case of the co-current heat exchanger:

v(t) = t 0 G c (t -ξ) T m d c (ξ) -T m c (ξ) ds (84) 
where T d c l (t) and T m d c (t) are desired references for T c l (t) and T m c (t), respectively, and the kernel G c (t) characterizes the desirable dynamical behavior for the overall control system.

Recall that, in the case of the co-current heat exchanger, the developed control laws ( 35) and ( 38) force the auxiliary output to track the desired reference T m d c (t). To solve the initial control problem formulated in Section 2, we propose to define the desired reference T m d c (t) by an external robust controller as follows

T m d c (t) = t 0 G c (t -ξ) T d c l (ξ) -T c l (ξ) dξ (85) 
The control strategies for the counter-current and co-current heat exchangers are summarized in Figures 2 and3.

Closed-loop performance evaluation

In this Section, the performances of the global linearizing control structures based on the output stabilizing state feedback are evaluated through numerical simulation for both counter-current and co-current heat exchangers. Both the external input v(t) and the desired reference T m d c (t) are defined by means of a PI controller, that is,

G c (s) = k c 1 + 1 τ i s (86) 
and their parameters k c and τ i are tuned using the Graham and Lathrop method that minimizes the integral of time-weighted absolute error (ITAE) criterion [START_REF] Corriou | Process control -Theory and applications[END_REF].

The closed loop system is simulated using the method of lines (Van de [START_REF] Van De Wouwer | Simulation of distributed parameter systems using a Matlab-based method of lines toolbox: Chemical engineering applications[END_REF], based on the finite difference scheme, by considering N = 100 discretization points. For state estimation, the Kalman filter is designed using the approximate LPS model obtained by the method of lines. The integral terms involved in the control laws are evaluated using the trapezoidal quadrature. The different parameters used in simulation runs are summarized in Table 2.

The initial conditions T * h (z) and T * c (z) are the steady-state spatial temperature profiles obtained for an inlet cold fluid temperature equal to 25 • C and inlet hot fluid temperature equal to 50 • C. The used measurements T c 0 (t) and y(t) are assumed to be corrupted with Gaussian white noise signals of standard deviation equal to 0.2 • C.

Both output tracking and disturbance rejection performances have been evaluated. The inlet temperature of the cold fluid T c 0 (t) is assumed as a disturbance. The simulation test consists in applying two step changes T d c (t) = 120 • s and T d c (t) = 60 • C at t = 1 s and t = 10 s, respectively for the countercurrent heat exchanger while for the co-current heat exchanger they are applied at t = 1 s and t = 40 s, respectively. Between these steps changes, a step of 100% and of -10% of the temperature of the inlet cold fluid T c 0 (t) is imposed as an external disturbance at t = 5 s and at t = 20 s for the counter-current and co-current heat exchangers, respectively. To avoid sudden fluctuations of the manipulated variable due to the brutal set points change, the imposed set point is smoothed by a first order filter with a time constant equal to 0.2 s.

In the simulation runs, the effect of the measurements errors on the quality of the estimation is minimized by a simple filtering using a moving average filter with a forgetting factor equal to 0.96 [START_REF] Corriou | Process control -Theory and applications[END_REF]. Also, the manipulated variable is held constant over a sampling period ∆t = 0.02 s.

The obtained results are depicted in Figures 4-5 andFigures 6-7 for the counter-current and cocurrent heat exchangers, respectively. It can be seen that the output tracking is achieved in a satisfactory manner. But in the case of co-current heat exchanger, the controlled output T c l (t) presents slight fluctuations around the imposed set points. This is due of course to the effect of the noise measurements. Indeed, by comparing the quality of the control moves given by Figures 5 and7, it follows that in the case of the co-current heat exchanger, the quality of the control is more sensitive to noisy measurements. This is expected because the state feedback ( 38) is more sensitive to the measurement noise since it involves more spatial derivatives compared to the state feedback (18). Note that without noise measurements, perfect tracking is achieved for both heat exchangers. Also, from the results obtained, it can be observed that the disturbance effect is damped, which demonstrates the disturbance rejection capability of both control strategies. Notice that, in the case of the counter-current heat exchanger (collocated case), the effect of the disturbance can be observed on the controlled output only if the disturbance is important. On another side, the disturbance effect is attenuated as the observation position moves and the effect becomes nearly invisible at the outlet of the heat exchanger [START_REF] Maidi | Boundary geometric control of a counter-current heat exchanger[END_REF].

Conclusion

Based on the geometric control theory, a state feedback of infinite dimensional nature is designed both for counter-current and co-current heat exchangers to control the outlet temperature of the cold fluid by manipulating the inlet temperature of the hot fluid. The design approach is based on the PDE model. Two kinds of state feedback are developed: input-output linearizing and output stabilizing control laws.

In the case of the counter-current heat exchanger, it is shown that, as the actuator and the sensor are collocated, the characteristic index is finite and the control laws can be designed easily by evaluating the first time derivative of the outlet. In the case of the co-current heat exchanger, the characteristic index is infinite because the sensor and the actuator are non-collocated, so that a different design approach consisting in four steps is presented. The idea consists in introducing the manipulated variable in the state equation using the notion of the extended operator, and then a control law is designed by assuming an auxiliary output, defined as the spatial average temperature of the cold temperature, instead of its outlet temperature. To achieve the original control problem, a control strategy is presented where the desired reference for the auxiliary output is defined by means of an external controller. The robustness, the stability of the resulting closed loop systems and the implementation of the developed control laws issues are discussed. The tracking and disturbance rejection performances are evaluated via numerical simulation for both counter-current and co-current heat exchangers.

Notice that the direct design approaches, presented in this chapter, can be adopted to design infinite dimensional boundary controllers for 2 × 2 hyperbolic systems of balance laws. 
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Table 1 :

 1 Manipulated variable Controlled variable Actuator and sensor location Manipulated and controlled variables for the heat exchangers.

	Counter-current	T h l (t)	T c l (t)	Collocation
	Co-current	T h 0 (t)	T c l (t)	Anti-collocation
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