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Abstract
Genotoxicity testing is an important component of toxicity assessment. As illustrated by the

European registration, evaluation, authorization, and restriction of chemicals (REACH) direc-

tive, it concerns all the chemicals used in industry. The commonly used in vivomammalian

tests appear to be ill adapted to tackle the large compound sets involved, due to throughput,

cost, and ethical issues. The somatic mutation and recombination test (SMART) represents

a more scalable alternative, since it usesDrosophila, which develops faster and requires

less infrastructure. Despite these advantages, the manual scoring of the hairs on Drosophila
wings required for the SMART limits its usage. To overcome this limitation, we have devel-

oped an automated SMART readout. It consists of automated imaging, followed by an image

analysis pipeline that measures individual wing genotoxicity scores. Finally, we have devel-

oped a wing score-based dose-dependency approach that can provide genotoxicity profiles.

We have validated our method using 6 compounds, obtaining profiles almost identical to

those obtained frommanual measures, even for low-genotoxicity compounds such as ure-

thane. The automated SMART, with its faster and more reliable readout, fulfills the need for a

high-throughput in vivo test. The flexible imaging strategy we describe and the analysis tools

we provide should facilitate the optimization and dissemination of our methods.

Introduction
Genotoxicity can occur from a chemical compound causing damage to the genetic material, ul-
timately resulting in disease and/or death. Testing for genotoxicity represents an important
part of meeting the toxicity regulations and recommendations, which are becoming more and
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more common across various industries [1–3] including pharmaceutical, cosmetic, and auto-
mobile manufacturing industries, among others. These regulations were created to ensure the
safety of the public as well as workers exposed to various chemical agents involved in the
manufacturing process of different products. Toxic side effects, including genotoxic ones, are a
major reason for the delay or termination of drug development [4–5]. Consequently, com-
pounds undergo a number of complementary in vitro and in vivo tests to enable the prediction
of such effects [6]. The latter class of tests involves small animals such as rodents. In addition
to the ethical problems associated with research in mammals, these tests can be quite costly
and time consuming [7]. For this reason, in vivo tests are usually carried out after or just before
the selection of the lead compound.

Introducing a faster, more scalable test that can be performed early in drug development is a
major focus of interest, as it would help allocate resources to the most promising candidate
compounds. Due to their quick reproductive cycles, greater ethical acceptance, and smaller
need for infrastructure, small, non-mammalian animals, such as round worms (Caenorhabditis
elegans), zebrafish (Daniorerio), and flies (Drosophila melanogaster) are good candidates for
the development of high-throughput genotoxicity tests. In particular, the Somatic Mutation
and Recombination Test (SMART), also known as the wing-spot test, assesses the loss of het-
erozygosity (LOH) resulting from genotoxicity [8–10].In this test, flies carrying heterozygous
recessive mutations for the multiple wing hair (mwh) and flare (flr) phenotypes are exposed to
a test compound. Visual inspection of wing hair phenotypes in adult flies allows characteriza-
tion of LOH (Fig 1). SMART has also been shown to detect genotoxicity associated with metab-
olized chemicals [11–12], as well as anti-genotoxic effects [13–14].

Thus far, the use of SMART has involved small compound sets due to throughput limita-
tions that restrict the size of the studied cohorts. The visual inspection of hair phenotypes is a
time-consuming and tedious task, prone to fatigue error and inter-expert variability. Providing
an automated method for examining wing hair phenotypes would allow us to increase the
throughput of SMART while improving its reliability, facilitating the study of dose-
response relationships.

The Drosophila wing is organized into seven regular sectors, delineated by veins. As ob-
served using bright-field microscopy, a wild-type hair presents as an elongated structure,
which is thinner at the root than at its tip, laying at an acute angle to the wing surface. Hairs
cover the entire upper and lower surfaces of the wing, with locally uniform orientation, size,
and inter-hair distance. In the SMART, genetic recombination can create cells homozygous for
themwh or flrmutations, resulting in specific phenotypes, i.e.mwh, flr, or more generally mu-
tant phenotypes. Anmwh cell is characterized by close-growing multiple hairs, typically two to
four, of various lengths. The flr phenotype involves a single shortened and amorphous hair.
Due to the cell division, which occurs during the development of the fly, mutant cells often
form a cluster of clones that display similar phenotypes, termed as a mutant spot. The SMART
exploits the increased rate of mutant spots, which occurs in the presence of a genotoxic com-
pound, to identify genotoxicity.

Automated scoring is common for many genotoxicity tests, including the micronucleus [15]
and comet tests [16]. However, the automation of the SMART has not yet been reported. Auto-
mated detection of hair phenotypes has not been studied, despite its potential applications in
genotoxicity tests, developmental research, and cell polarity studies [17–19]. However, many
well-established methods exist for systematically detecting biological objects, such as nuclei
[20–22], constituting potential approaches for wing hair detection and SMART analysis. Meth-
ods to detect entangled rod-like structures in low signal environments [23] and various tubular
shapes [24]have also been demonstrated. No method has been described for detectingmwh
or flr phenotypes or identifying mutant spots thus far. Moreover, the sensitivity of any method
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Fig 1. SMART automated image and data acquisition. To test chemical-induced genotoxicity, fly larvae
(A) were exposed to increasing doses (B; c0, ci, for instance) of a test compound and their wings (C), along
with those of other flies from their treatment group, were collected on a slide. A single wing is shown in the red
rectangle. (D) Wing position and orientation (orange arrow) were detected automatically, and acquisition
regions were defined (green rectangles, each corresponding to a microscope field of view). All acquisition
positions defined were compiled in a single file used by the microscope to perform multipoint acquisitions. (E)
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will have to be evaluated against the spontaneous rate of incidence of mutant hairs in control
wings, which has been reported as 0.2mwh hairs per fly [8].Omitting one of the mutations
from the SMART could help improve its accuracy by simplifying the analysis required, since a
single mutation may be sufficient for assessing the genotoxicity, although we lost the function
to deduce what kind of recombination is happened through analyzing of twin spots.

Bright-field microscopy allows researchers to obtain an image of hairs with good contrast.
Though it is possible to visualize an entire Drosophila wing using a low-magnification lens, the
resolution obtained is not sufficient to detect individual mutant phenotypes at the hair level.
The resolution of micron-wide hairs necessitates the splitting of the wing image acquisition
into several parts. Furthermore, the fact that the wing is not flat and has hairs on both sides
suggests that the acquisition of focus stacks is the correct approach. Focus stacks would simpli-
fy hair analysis by providing images without overlapping objects, as well as providing a natural
separation of upper and lower wing hairs. If necessary, bright-field confocal imaging could be
used to improve the axial resolution.

Finally, to prevent image acquisition from becoming a bottleneck, the wing image acquisi-
tion should be automated. While automatic whole slide imaging solutions exist [25], the time
and storage demands associated with these methods limit their potential. In addition, it is nec-
essary to detect the wing position on the slide images following the image acquisition. Within
our proposed method, the acquisition positions are predetermined using a low-resolution
image of the slide, allowing the researchers to automate slide acquisition using a microscope
equipped with a motorized stage. This approach could save precious time and minimize data
storage requirements. To the best of our knowledge, such a method has not yet been demon-
strated for this application.

In this paper, we propose an automated SMART, a four-step process for characterizing a
compound’s genotoxicity (Fig 2). First, fly larvae carrying one copy of themwhmutation are
exposed to a range of doses of the test compound. Second, each slide is automatically processed
to determine the positions at which the microscope will acquire the images. Focus stacks are
then acquired, with no human intervention required outside of individual slide acquisition ini-
tialization. Third, each focus stack is analyzed with a dedicated image-processing algorithm to
detectmwh hairs. Finally, a genotoxicity score is calculated for each wing and the dose-depen-
dency of scores is analyzed to characterize a compound’s genotoxicity. This automated process
has been applied to six compounds with known genotoxicity profiles to compare its perfor-
mance relative to manual scoring.

Results

Automated imaging performance
Automated imaging encompassed both slide preprocessing and image acquisition (Fig 1C–1E).
Using this method, images of more than 3,000wingswere acquired, with an average of more
than five focus stacks per wing.

Automated acquisition quality is assessed by (1) specificity, or a method’s ability to image a
region of interest, and (2) coverage, or its ability to image all of a region of interest. Specificity

At each point, a focus stack showing wing hairs and their spatial organization was acquired. (F) A close-up of
a focus stack maxima projection along the focus axis, showing hair organization. Hairs from the upper and
lower sides of the wing overlap in this view. (G) For illustrative purposes, lower wing hairs have been
separated by manually selecting a set of z-slices before projection. Focusing on a single wing side, one can
distinguish the regular position and orientation of the hairs. Hairs with anmwh phenotype are visible (white
dashed circle).

doi:10.1371/journal.pone.0121287.g001
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decreases when a region outside of the wing is imaged. We calculated a specificity level of 97%
and a coverage level of66%. These numbers do not take into consideration for the area ac-
counted for by veins, since this cannot be analyzed after slide preprocessing. The manual cor-
rection of wing segmentation, requiring only5 minutes per slide, played an important role in
attaining the high specificity. Nevertheless, the definition of some images was compromised
due to suboptimal detection of slide orientation, though this effect was limited.

Identification of regions of interest during slide preprocessing allows a researcher to effi-
ciently navigate these areas under the microscope. We found that the determination of relative
position of the predefined regions was very accurate. Absolute position, however, can be cor-
rected manually by moving the XY stage to the initial position, after which acquisition proceeds
automatically. The entire acquisition process, including slide preprocessing, required 1 hour
and 25 minutes, with only 10 minutes involving manual manipulation. This process provided
images with good contrast. In particular, the axial resolution appeared to be sufficiently high to
separate hairs without the need for confocal microscopy.

Hair detection and characterization
Automated analysis of focus stacks allowed the detection and characterization of more than13
million hairs (an average of 4,246 hairs per wing). Of these, 0.15% expressed themwh

Fig 2. Automated SMART process. The methods used to automate the SMART are depicted with a flow
diagram. The general flow of the method is described in (A). Each step in the process is depicted by a
rectangle, with data inputs and outputs depicted using elliptical shapes. (B) Steps in automated acquisition.
(C) Steps in focus stack analysis and the extraction of data onmwh hairs, cells, and spots. Discard error (1–
3) refers to detection of (1) abnormal hair shape, (2) abnormal hair orientation, and/or (3) abnormal position
relative to the wing surface. (D) Steps in the construction of the genotoxicity wing score dose-response curve
and the characterization of compound genotoxicity.

doi:10.1371/journal.pone.0121287.g002
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phenotype (an average of 6.37mwh hairs per wing), with the prevalence on a single wing vary-
ing from 0 to 8.9%. The number of hairs that were incorrectly identified asmwh (false positives,
or FPs) was greater than the number ofmwh hairs that were not detected (false negatives, or
FNs). FPs were measured in a subset of slides: those from larvae exposed to methyl methane-
sulfonate (MMS) and those from control larvae (see S1 File). An average of 0.43±0.23 FPs were
detected per control wing, a number significantly below the average number ofmwh hairs de-
tected. Moreover, the number of FPs observed was not significantly different between different
MMS concentrations (P = 0.06), suggesting that the FP rate is not dose-dependent. In control
wings, variation in the number of FPs accounted for only 10% of the variance inmwh hair
counts among the samples. Measurement error therefore does not appear to be masking geno-
toxic effects (see S1 File). FNs were assessed qualitatively, by visual inspection. We found that
our method performed very well in detecting isolatedmwh phenotypes. The number of FNs in-
creased in large clusters ofmwh cells, however, due to the higher complexity of the
patterns observed.

The image analysis process is illustrated in Fig 3. Discarding veins and background areas ap-
pears to be a very important task, since failing to do so resulted in a 12-fold increase inmwh de-
tection, whereas the total number of hairs analyzed increased by only 34%. This suggests high
detection of FPs in removed regions, an observation verified by visual inspection. The discard
mask we defined was very effective, only rarely missing small sections of veins or wing borders.
Although this could lead to detection of FPs, it appeared to be only a minor source of error in
our data. Furthermore, the discard mask was usually wider than the region discarded, implying
a limited rejection of areas that could have been analyzed.

Hair segmentation did not prove to be particularly problematic, thanks to good contrast
and well-separated hairs. The filtering process we used was simple and computationally effi-
cient, while providing a uniform background for segmentation. Deconvolution filter was not
needed, since individual hairs were well separated in the axial direction. The use of h-maxima
efficiently dispatched multiple local maxima in hair structures, avoiding over-segmentation.
Under-segmentation can occur when hairs have roots that are very close to one another. In the
final steps of the analysis, 7.3% of segmented objects with unusual shape descriptor values were
discarded (see Methods). However, their effect onmwh hair counts was low; failing to discard
them changed the average number ofmwh hairs detected per control wing from 1.44 to 1.84.
Feature-based segmentation [26–27] or region grouping could potentially improve segmenta-
tion quality by automatically eliminating objects with unusual shapes.

The principles of hair characterization are illustrated in Fig 4. Detecting hair origin, orienta-
tion, wing side, and phenotype proved to be straightforward. Positioning the hair root at the
highest intensity point of each segmented region was very reliable, and the rare mispositioned
hair could be discarded by verifying that adjacent hairs had dissimilar orientations. In practice,
0.3% of the hairs were discarded in this way. The distribution of hair angles (Fig 4D) and hair
root altitudes (Fig 4E) relative to the wing surface exhibited two distinct modes, corresponding
to hairs on the top and bottom side of the wing. The best separation was obtained using the
angle of individual hairs; however, the addition of altitude allowed inconsistent patterns to be
detected and discarded (see Methods). Finally, the detection of anmwh hair was based on the
distance between that hair and its nearest neighbor. The threshold distance used was an accu-
rate mean of discrimination, as can be seen from the distribution of the relative positions of ad-
jacent hairs (Fig 4F–4I). In general, all parameters used in the analysis could be deduced from
the images or hair characteristics. This should allow the presented results to be
easily reproduced.

Automated SMART for Genotoxicity
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Application of SMART automation
Our automated SMART approach was applied to the analysis of six test compounds. Three of
them, mitomycin C (MMC), MMS, and urethane (Ur), are known genotoxins with high, mod-
erate, and low-level genotoxic effects (MMC>MMS>Ur). The three other tested chemicals are
non-genotoxic compounds isoniazid (Iz), antipyrin (AP), and atenolol (At). Each compound
was analyzed across a range of doses. Our automated method was used to calculate the wing
genotoxicity scores. Manual wing scores were also calculated, to aid in assessing the results
from the automated SMART. Additionally, if a compound displayed excessive toxicity at a cer-
tain dose, a lower concentration was substituted (see S1 File). For this reason, the original test-
ed concentrations of MMC (2.5, 5, and 10 mM) were replaced with 0.04, 0.08, and 0.16
mM concentrations.

Fig 3. Wing hair segmentation. Data on wing hairs were extracted from each focus stack, which covers a
subsection of the wing. (A) Focus stack volume is shown in green, with one z-slice displayed. (B) Unwanted
regions (veins, wing borders) are detected and discarded prior to hair analysis. A typical selection is shown,
with a blue overlay on top of the z-stack projection. A close-up of a z-slice (A, red rectangle) is used to
illustrate (C) the original image details, (D) filtered image details, and (E) a segmented hair region with a
random color overlaid on top of the filtered image. A selection [red, dashed rectangle in (C)] is shown in lateral
view (maximum projection of the sub-volume against the y-axis) in (F, G, and H), illustrating the original,
filtered, and segmented data, respectively. The white scale in (C) indicates the dimensions along the x and y-
axes in images (C–H).

doi:10.1371/journal.pone.0121287.g003

Automated SMART for Genotoxicity

PLOS ONE | DOI:10.1371/journal.pone.0121287 April 1, 2015 7 / 18



Fig 4. mwh hair detection. All segmented hairs are characterized by vectors prior to the detection ofmwh
phenotypes. (A) A schematic side view of the wing illustrates hair organization, with hairs on each side of the
wing surface (dashed gray line): top (green) and bottom (blue). A close-up of this schematic (A, orange circle)
illustrates that (B) locally, the wing can be considered flat. Its altitude (z0) can be estimated from local hair
roots. Hair root altitude relative to the surface (zs = z-z0) and angle relative to the surface (φ)are used to
determine the wing side. Indeed, both the φ distribution (D) and the zs distribution (E, green curve) present

Automated SMART for Genotoxicity

PLOS ONE | DOI:10.1371/journal.pone.0121287 April 1, 2015 8 / 18



Genotoxicity characterization
Our genotoxicity measure is based on dose-dependent wing genotoxicity scores. It differs from
the classical SMART characterization of genotoxicity [8]in terms of the types of scores mea-
sured and the statistical tests employed [28].

The sensitivity of different genotoxicity scoring methods was investigated (see S1 File).
Scores based onmwh cell counts were best suited for the assessment of genotoxicity, since they
were less prone to FPs than spot counts. Indeed, we found the spot count score to be less sensi-
tive to compounds that cause the formation of few large spots rather than many small spots. In
our analysis, the genotoxic wing score refers to a number ofmwh cells per wing.

We subsequently tested whether the average score at each concentration differed from the
control score (see S1 File). This two-sample test is less stringent than the doubling effect test,
but its success is a prerequisite for the success of the doubling effect test. Additionally, we as-
sessed whether the effect of each compound on the wing scores was dose-dependent (see S3
Table). MMC, MMS, and Ur were identified as genotoxic, while the other three compounds
tested negative. These results are in accordance with the known genotoxicity profiles of the
tested compounds.

In the original SMART, genotoxicity was assessed using a doubling of the genotoxic effect
relative to the control as a criterion. However, this method has a number of limitations: possi-
ble inconclusive tests, low sensitivity in the presence of an offset in the genotoxicity wing score,
and sensitivity to outliers. The dose-dependency test is a good candidate for addressing these
issues. It operates independently from the score offset and is more robust to outliers, as it com-
bines all dose data. We found the dose-dependency test to be more sensitive at detecting geno-
toxic compounds than the two-sample test. Notably, Ur, a compound with low genotoxicity,
was not identified as genotoxic using the two-sample test at the concentration range initially
tested (0.3–10 mM) with both manual and automated measures. Conversely, the dose-
dependency test was positive at that range. The results of the two tests were in agreement for
other tested compounds.

Genotoxic compounds were further analyzed by fitting the sigmoidal curve to the data. The
fitting parameters described experimental and genotoxic compound characteristics. Range pa-
rameters accounted for the scaling between different measures on a same wing, while bottom
parameters described the offset between the two measures. The remaining parameters, EC50

and slope, were related to the concentration at which 50%of the maximal effect occurred and
to the magnitude with which the effect was increased by increasing dose, respectively. These
two parameters provide a simple characterization of genotoxicity that makes use of all dose-
dependent measures to yield information not provided by the original SMART. Average wing
score values and curve fittings are shown in Fig 5 and Table 1. Fitting of the sigmoidal curve
was performed for MMC, MMS, and Ur by enforcing an adequate range of concentrations

two modes corresponding to top and bottom hairs. Absolute hair root altitude (z) distribution (E, red curve)
does not show such a separation. (C) presents a bird’s eye view of hair organization on the top side of the
wing. Detection ofmwh hairs relies on their small inter-hair distance (red circle and arrow). The distribution of
relative positions of adjacent hairs illustrates this characteristic. (F–G) show distributions built from control
and total samples, respectively. (H–I) show details of these distributions. These distributions adhere to the
color map in (K). Only their left or right side is shown, due to distribution symmetry, and their highest density is
set to one in each image, allowing more details to be seen in (H–I). Distributions may look similar, but their
close-ups are distinct; the distribution determined in total samples has a specific mode that corresponds to
themwh hair phenotype. A distance threshold (green circle) allows us to selectmwh hairs using that mode.
(J) An example of hair wing side detection (bottom hairs in blue, top hairs in green) is overlaid on a focus
stack detail. (L) A side view of the section of (J) is presented in the red, dashed rectangle. (M) An example of
mwh hair detection (red arrows) is overlaid on a manually constructed image of wing bottom hairs.

doi:10.1371/journal.pone.0121287.g004
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(choice of concentrations is explained in S1 File). The EC50 and slope values obtained from
both manual and automated measures were in accordance with the known genotoxic charac-
teristics of the compounds(MMC>MMS>Ur). EC50 confidence intervals did not overlap be-
tween the compounds. Conversely, slope confidence measures were less accurate
discriminators. Since the genotoxic effect of Ur appeared to be low, two additional concentra-
tions (20 and 40 mM) were tested to obtain its genotoxicity profile. However, it still exhibited
greater EC50 and slope variability than MMC or MMS.

Fig 5. Genotoxicity analysis. DRCs for 6 test compounds. Manual measures (blue crosses) and automated
measures (green triangles) were obtained, allowing us to detect genotoxic (A, B, and C) and non-genotoxic
(D, E, and F) compounds. Known genotoxins (first row) all exhibited increasing genotoxic effects with
increasing concentration. Further analyses with fitting a sigmoidal curve to the data (A, B, and C; solid lines)
and 95% confidence envelopes (dashed lines) allowed the EC50 and slope parameters to be determined,
facilitating characterization of compound genotoxicity. Findings frommanual and automated measurements
were highly correlated after scaling. Non-genotoxic compounds (second row) showed no significant dose-
dependence (linear fit shown as a solid line) in either manual or automated measures.

doi:10.1371/journal.pone.0121287.g005

Table 1. Genotoxicity data for six test compounds.

Compound Measure type Dose dependency sign(P-value) EC50(mM) EC5095% CI (mM) Slope Slope 95% CI

MMC Auto + (1 × 10-3) 0.75 [0.51, 1.11] 1.15 [0.69, 1,91]

MMS Auto + (4 × 10-3) 24 [23, 26] 1.03 [0.97, 1.10]

Urethane Auto + (3 ×10-3) 1.1 × 104 [23, 5.5 × 106] 0.17 [0.01, 2.39]

Isoniazid Auto - (0.66) _ _ _ _

Antipyrine Auto - (0.35) _ _ _ _

Atenolol Auto - (0.89) _ _ _ _

MMC Manual + (3 × 10-3) 0.76 [0.67, 0.85] 1.74 [1.37, 2.20]

MMS Manual + (6 × 10-3) 21 [20, 22] 1.28 [1.21, 1.35]

Urethane Manual + (3 × 10-3) 6.8 × 102 [3102, 1.3 × 103] 0.68 [0.54, 0.86]

Isoniazid Manual - (0.36) _ _ _ _

Antipyrine Manual - (0.78) _ _ _ _

Atenolol Manual - (0.69) _ _ _ _

Data were obtained using both automated and manual measurements. Presented findings are based on the number of mwh cells per wing.

doi:10.1371/journal.pone.0121287.t001
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Comparison of automated and manual measures
Excluding sample preparation time, analysis of a single slide took 2 hours and 10 minutes
using our automated process, including 10 minutes for manual imaging manipulation, 75 min-
utes for acquisition, and45 minutes for the detection ofmwh hairs. Since each compound tested
required a total of 28 slides, less than 5 hours of manual work was required. This is an eight-
fold reduction in operating time, compared to the length of time required for equivalent manu-
al genotoxicity analysis.

The results of the dose-dependency tests were the same for manual and automated measure-
ments and matched our knowledge of the genotoxicity of the tested compounds. In particular,
low-genotoxicity of Ur was easily detected using the initial range of concentrations tested (0.3–
10 mM).

Manual and automated wing scores could not be directly compared due to protocol differ-
ences involving the analyzed wing surface area and error rates. However, sigmoid range and
bottom parameters were used to account for these differences, allowing us to compare theEC50

and slope parameters obtained from both methods (see S1 File). EC50and slope values from the
fitted curves obtained using this scaling process are presented in Table 1. These values were ob-
tained using wing scores based onmwh cell counts. Slope values obtained using automated
measurements had a tendency to be smaller than the values based on manual measurements.
This could be explained by the relatively higher number of FNs observed using the automated
analysis under the most genotoxic conditions. EC50valuescalculated using either automated or
manual measurements were almost identical for MMC and MMS. Those calculated for Ur
were also similar, despite the relatively larger confidence intervals in the data obtained using
automated measurements. The difference observed between manual and automated Ur wing
scores seems to reflect the heterogeneous spatial distribution ofmwhcells. In particular, mutant
cells apparently occurred closer to the base of the wing, which was not analyzed using the
automated process.

Discussion
Genotoxicity is an important consideration in toxicity regulations. Introducing a faster, more
scalable, in vivo test would benefit public and worker safety in all sectors of industry, as it
would allow more systematic and reliable testing of the chemicals with which we come into
contact daily. With that aim, we propose a method to automate the SMART. In addition to
simplifying the genetic basis of the test, we have introduced an automated imaging process,
thus eliminating the image acquisition bottleneck. We have also developed an image analysis
pipeline that detectsmwh hairs in wing focus stacks, generating genotoxicity scores for each
wing. Finally, we propose a dose-dependency analysis that yields an informative genotoxicity
profile for each tested compound.

We validated the proposed automated methods by comparing automated and manual mea-
surements for six test compounds, obtaining almost identical genotoxicity profiles using the
two methods. Automated measurements proved to be sensitive enough to identify compounds
with low genotoxicity, such as Ur. Additionally, the genotoxicity profiles we obtained with au-
tomated measurements perfectly matched the expected toxicity for all test compounds. More-
over, the results were obtained much faster. The time required was reduced eight-fold relative
to the time required for manual analysis, from one week to five hours, resulting in the increase
of the SMART throughput. We also found thatmwh hair and cell counts provided a reasonable
alternative tomwh spot counts for the SMART. Finally, the dose-dependency analysis devel-
oped here allows more sensitive and detailed characterization of genotoxicity than the two-fold
increase test commonly used.
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This method provides an elegant and promising solution that meets the need for a fast and
accurate in vivo technique for assessing genotoxicity, one that is ethically acceptable and easy
to carry out. Automation allows analysis of a larger cohort of compounds and avoids the high
variability inherent to manual measurements, ensuring more reliable results than those ob-
tained by manual methods. We provide a MATLAB toolbox with custom code for each step of
the analysis (slide preprocessing,mwh hair detection, and genotoxicity characterization).
Image acquisition can easily be adapted to any microscope equipped with a computer-con-
trolled stage. Overall, the proposed method requires only standard, affordable instruments. We
believe that the materials provided and methods described will provide a starting point for an
automated SMART. Improvements may emerge over time, including faster and more exhaus-
tive wing image acquisition, more sensitive hair phenotype detection, and the ability to recog-
nize additional hair phenotypes.

Methods

Fly and sample preparation
This study was conducted with Drosophilamwh1 (mwh1/mwh1) and w1118 fly strains obtained
from the Bloomington Drosophila stock center, prepared according to the following procedure:
virgin w1118 females andmwh1 males were mated in a culture bottle for 8 hours at 25°C,with
yeast cornmeal food. We obtained 200–300 fertilized eggs carrying the heterozygous marker
(mwh1 /+), which were kept in the same media for 72hours, after which larvae were washed
with distilled water and treated with different concentrations of the test compounds (0, 0.3, 0.6,
1.25. 2.5, 5, or 10 mM). Test compounds were mixed with 10% dimethyl sulfoxide (DMSO)
medium and previously washed larvae. After 6 hours of exposure, roughly70–100 larvae per
compound/dose were transferred to yeast cornmeal food. Experiments were carried out at 25°C
with 60% humidity and a 12-hour light/dark cycle. The ratio of hatched flies was measured, and
hatched male flies were collected and stored in 70% ethanol. More than 60 wings per com-
pound/dose, one per fly, were mounted on slides (about 15 wings per slide) in Faure’s solution
[10], andmwhmutant wing hairs were analyzed manually under 200× magnification [8].

Details on DMSO toxicity and genotoxicity are provided in the S1 File.

Software and computation tools
All data analyses were performed using customMATLAB R2013a (Mathworks) software on a
computer with an Intel core i7 3970X processor, 24 GB RAM, and a Windows 8 64-bit Profes-
sional operating system. The hair segmentation analysis, in particular, was performed with a
custom-made watershed algorithm implemented in C# and compiled to a dll file accessed
inMATLAB. Alternatively, MATLAB watershed function (in the image processing toolbox)
can be used at the expense of longer processing time. We provide the MATLAB scripts and al-
gorithms developed for the SMART automated readout, with further description of its contents
provided in the S1 File. The ND2 file generated by our Nikon software is read using Nikon
ND2 SDK library, distributed by Nikon upon request.

Slide preprocessing for image acquisition
Each sample slide was preprocessed to determine a list of acquisition positions. We determined
multiple positions for each wing on a slide as follows: A low-resolution, full image of the slide
was acquired with a standard desktop scanner (Epson perfection V33), using Epson Scan soft-
ware at 300 dpi, 8 bit grayscale. A threshold of 15% of the intensity range was applied to the in-
verted image to select the wing regions. In an optional step, the mask obtained was filtered to
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regularize its contours and improve the separation of wing area. A labeling filter was then ap-
plied to the filtered mask to identify the distinct regions. Regions that did not conform to nor-
mal wing parameter ranges were discarded. The parameters considered included region aspect
ratio, area, and average position. Normal wing position was defined by manual selection of the
lamella region. Other parameter ranges were defined as parameter averages± 2× their standard
deviation, as determined from manual measurements in test images. In particular, the region

aspect ratio was calculated from an individual region’s pixel position covariance, as
ffiffiffiffiffiffiffiffiffiffiffi
l1=l2

p
,

where λ1 and λ2represent the first and second eigenvalues of the covariance matrix and a re-
gion’s area was defined by the number of pixels it encompassed.

In the second step, a wing‘s origin region was removed, since no images needed to be ac-
quired there. The origin was defined as the position of maximum intensity. Prior to maximum
detection, a local blurring inside the wing region improved the robustness of detection. An axis
was subsequently defined with an origin at the wing origin and orientation determined by a
vector going from the origin of the wing to the center of mass of the wing. Regions (1) with a

distance to origin length shorter than 400 mm, i.e. roughly 20% of average wing length (
ffiffiffiffiffi
l1

p
)

or (2) on the negative side of the wing axis, were not analyzed in the steps that follow. In cases
in which wing detection and characterization were problematic, wing segmentation and origin
were checked manually and, if necessary, updated using a custom-made MATLAB interface.

Each of the wing regions was then partitioned with a k-mean classifier [29] using the wing’s
pixel positions as input. The average position of each class defined an acquisition position for
the microscope. The number of classes was optimized to limit the overlap between regions of
acquisition. To account for wing area variability, the number of acquisitions decreased in pro-
portion to the wing area. For instance, defining a maximum of six partitions would lead to cov-
erage of 67% of the wing surface.

Next, the positions defined using the slide image had to be translated into microscope coor-
dinates. Using a fixed sample holder, the slide’s edges were aligned to the microscope XY stage
displacement axes. Automated detection of the slide center (Xc) and orientation (ϑ) allowed us
to determine the microscope referential from the slide image (see S1 File). Image acquisition
position X could thus be translated to the microscope coordinates X' using the following for-
mula:

X 0 ¼ rmic

rimg

:RWðX � XcÞ;

where Rϑ is a rotation transformation of angle ϑ and rmic
rimg

is the ratio of microscope planar sam-

pling to slide image sampling.

Image acquisition
Image acquisition was performed using bright-field microscopy with a Nikon eclipse 90i trans-
mission microscope equipped with a Nikon DS-1QMcooled to -30°C, sensitive black and white
charge-coupled device (CCD), 1280 × 1024 pixel camera, and a Nikon APO Plan 20X, 0.75NA,
DIC N2WD 1.0lens. System planar sampling was performed at 0.32 micron per pixel, while the
axial sampling resolution was 1 micron. Samples were repositioned with a motorized XY stage
and a Z focus. The system was controlled with Nikon NIS Element AR software version 3.2,
which includes a built-in interface for z-stack and multipoint acquisition. Z-stack parameters
and a precalculated list of positions were loaded to the “ND experiment”module of the NIS Ele-
ment software. The microscope was then manually initialized at the first position to be acquired.
The rest of slide acquisition was fully automated; the sample was automatically moved to each
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predefined position, where an automated focus was performed, followed by z-stack acquisition.
The spatial volumes acquired were saved to the Nikon ND2 file format for further analyses.

mwh hair detection
The elongated shape of the hair of the wild-type andmwh phenotypes allowed us to segment
and characterize these hairs in a similar manner.

Top-hat filtering followed by Gaussian blurring enabled us to adjust for a slowly varying
background resulting from an out-of-focus signal or noise in the z-stack, respectively. Parame-
ters were chosen to avoid creating hair structure artifacts. The Gaussian standard deviation
and top hat filtering radius were set to values equal to the fraction of a hair width (2 μm) and a
value larger than a hair width, respectively.

Image intensity local maxima were subsequently used to detect hair positions and initiate
watershed segmentation of the image, allowing the creation of a labeled image of the hair re-
gion. In watershed segmentation, distinct labels are given to each maximum. The pixels neigh-
boring a label are progressively invaded, beginning with the pixels of highest intensity, until a
threshold has been reached. The watershed algorithm allows one to distinguish between the ad-
jacent regions, as long as they present distinct maxima. In our current study, h-maxima were
used to avoid over-segmentation of hair regions due to multiple local maxima. Local maxima
are separated from each other by saddles, with h-maxima in particular representing a subset of
local maxima with saddle intensity of at least h. The implementation efficiently integrates the
identification of h-maxima and watershed segmentation into one algorithm [30]. Watershed
stopping criteria and the parameters for selecting h-maxima were determined manually for a
group of test focus stacks. To remove the background regions with low acquisition noise, the
stop criterion was set at the background intensity value+ 2 standard deviations. The h-maxima
parameter was related to the height difference between the intensity maxima. Its value was
therefore a fraction, e.g. 10%, of average maxima height.

Each hair region detected by the segmentation was characterized by a vector. The high in-
tensity of the hair root allowed us to define the hair origin as the position of each region’s in-
tensity maximum. Orientation and length were deduced from each region’s covariance (i.e. the
pixel position covariance). Orientation was given by the first eigenvector of the region’s covari-
ance, and length was defined by the square root of that first eigenvalue. We ensured that the ei-
genvector was oriented from root to tip by making the coordinate sign for the eigenvector’s
scalar product with the vector going from the region’s origin to its center of mass.

Once hairs were characterized, upper and lower wing hairs were separated based on their
angle and root position relative to the wing surface. Both of these features change sign at the
surface crossing. If the surface is considered locally flat, the sign of the hair’s angle to the sur-
face is the same as the sign of the hair vector’s z-coordinate. Although the wing surface is trans-
parent and could not be visualized in the images, its altitude in the z-stack was deduced from
the altitudes of hair roots (i.e. the z-coordinate of the hair origin position) which are attached
to the wing’s surface. Thus, the wing surface altitude at each hair root position was estimated
by averaging the neighboring altitudes in a cylinder with a radius equivalent to 2 × the inter-
hair length (roughly 25 μm). Subtracting this estimate from hair root altitude allowed us to esti-
mate hair distance to the wing surface. Hairs were assigned to the top or bottom side of the
wing if both their angle and distance to the surface were positive or negative, respectively.

Finally, on each side of the wing, hairs were classified as having a wild-type ormwh pheno-
type, depending on the distance to the closest neighbor. Only hairs on the same side of the
wing surface were considered when determining the closest neighbors. If the distance to the
closest neighbor was less than 5 microns, a hair was considered to exhibit themwh phenotype.
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The threshold distance is a fraction of the average distance between individual hairs. The latter
was measured to be 12.5 ± 2.5 μm from the distribution of relative distance between hairs mea-
sures using all detected hairs. This distribution also clearly identifies a second group of hairs,
corresponding tomwh, which was well selected using the 5 μm threshold.

Discarding regions where proper hair detection could not be conducted
In parallel to the hair region identification, we performed a second image analysis, aimed at de-
tecting regions where no proper hair analysis could be conducted. Sometimes a wing’s border
and veins display hairs, but their morphology and density differ from those observed on the
rest of the wing and should be omitted from the analysis. Similarly, regions outside of the wing
should not be analyzed. An analysis based on the density of structures in the image was devel-
oped to distinguish areas of interest (medium-density) from veins (high-density) and outer
wing regions (low-density). The original z-stack was first reduced to a 2D image with a maxima
projection in which only the maximum intensity along each z-column of the image was kept to
build the projection image. A threshold was applied to the projection to remove the back-
ground and define a structure mask. The local density of structures in the mask was measured
by applying a Gaussian convolution with a standard deviation equivalent to 2 × the inter-hair
distance to the mask. Low-density and high-density region masks were created by applying
thresholds to define a discard mask. Additionally, detecting high-intensity regions required an
initial normalization of the intensity range in the projection image, to correct for local hetero-
geneity in structure intensity. Hairs obtained from watershed segmentation with at least one
pixel in the discard mask were discarded. Although the method was initially intended to detect
veins and regions outside of the wing, it also coped well with partially folded or torn wings that
were not detected or discarded in the earlier acquisition step.

Discarding hairs with inconsistent parameters
Isolated errors in segmentation and hair characterization can significantly decrease the quality
ofmwh detection. Three complementary analyses were performed to discard errors in areas of
interest. First, we assumed a common local orientation of hairs and discarded hairs for which
the orientation was too dissimilar. To do so, we computed the scalar product of the target
hair’s vector and that of its average neighbor and rejected hairs that yielded a negative value.
Using the second approach, we estimated the distribution of simple hair shape descriptors and
discarded hairs with abnormal descriptors. This method helped detect under-segmented ob-
jects, as described in detail in the S1 File. Finally, determining a hair’s position relative to the
wing allowed us to detect hairs with an abnormal relative position or orientation to the wing
surface. We discarded hairs with (1) a root distance to the surface greater than the average root
altitude + 2 standard deviations;(2)ambiguous angles relative to the surface of the wing (i.e., an-
gles less than10% of the average angle); or(3)an altitude and orientation to the surface with dif-
ferent signs (Fig 4B).

Wing genotoxicity score calculation
A genotoxicity score was calculated for each wing with at least one focus stack. Scores can be
calculated as (1) the number ofmwh hairs per wing, normalized by the wing surface area ana-
lyzed; (2) the number ofmwh cells per wing; (3) the number ofmwh spots per wing; and (4) a
dichotomous variable, indicating whether the wing displayed more than 2mwh hairs. In this
study, we used the number ofmwh cells per wing to assess the genotoxic effects.

Automated SMART for Genotoxicity

PLOS ONE | DOI:10.1371/journal.pone.0121287 April 1, 2015 15 / 18



Characterization of test compound genotoxicity
The genotoxicity profile softest compounds were determined using dose-response curve
(DRC) analysis. A DRC for each test compound was constructed by plotting the average wing
scores measured at each dose. The presence of a genotoxic effect was assessed first by fitting a
straight line to the DRC. A Student’s t-test was used to test the null hypothesis that the slope
coefficient of the line of fit was less than or equal to zero. If the hypothesis was rejected
(P<0.05), the slope was most probably positive, and the compound was considered genotoxic.
Otherwise, it was considered non-genotoxic. We call this test the dose-dependency test, as it al-
lows one to detect whether genotoxicity increases with dose, as would be expected. It is not ob-
vious, however, that this assumption holds at toxic doses. Therefore, data points at which
compounds showed toxicity were discarded prior to the analysis.

Compounds identified as genotoxic in the dose-dependency test were further analyzed by
fitting a sigmoidal function to the data. Since genotoxic compounds can become toxic at high
concentrations, our measures did not include the final, saturated section of the sigmoidal
curve. To compensate for this lack of information, a saturation value was enforced during
curve fitting. This allowed us to deduce three parameters: the minimum effect value, the EC50,
and the so-called slope parameter. The fit parameters and their confidence interval were esti-
mated using MATLAB functionsnlinfit and nlparci, available from the statisticstoolbox.
Acurve-fittingenvelopewassubsequentlyestimated using the fit parameter covariance and the
confidence interval. Details on parameter interpretation and choice of the sigmoidal curve
range are provided in the S1 File.

Supporting Information
S1 File. Supplementary information: the file contains additional methodological details de-
scribing the image analysis procedure, the genotoxic scores tested, and the MatLab package
developed for the study.
(DOCX)

S1 Table. Genotoxicity scores per dose: the table contains averaged genotoxicity scores, pre-
sented for each compound, at each tested dose. The results were obtained with the MATLAB
package provided.
(CSV)

S2 Table. Genotoxicity scores per wing for automatic measure: the table contains genotoxi-
city scores of each of the 3,002 wings measured using the automated SMART process.
(CSV)

S3 Table. Genotoxicity scores per wing for manual measure: the table contains genotoxicity
scores measured manually in the slides, which were also analyzed using the automated ap-
proach.
(CSV)

S4 Table. Result of the dose-dependency test: the table contains the results (P-values) of
dose-dependency tests for each compound and for each type of wing score assessed in the
study.
(CSV)

S5 Table. Genotoxicity profile: the table contains the results of the fitting of the sigmoidal
curve for genotoxic test compounds (i.e., P<0.05 in the dose-dependency test) for the dif-
ferent types of wing scores assessed in the study.
(CSV)
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S6 Table. Result of the two-samples test: the table shows the results of two-sample tests
comparing treatment data (for a given compound/dose) to control data.
(CSV)
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