
HAL Id: hal-02902005
https://hal.science/hal-02902005

Submitted on 17 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IM.Grid, a Grid Computing Approach for Image Mining
of High Throughput-High Content Screening

Hongkee Moon, Auguste Genovesio

To cite this version:
Hongkee Moon, Auguste Genovesio. IM.Grid, a Grid Computing Approach for Image Mining of
High Throughput-High Content Screening. 2008 9th IEEE/ACM International Conference on Grid
Computing (GRID), Sep 2008, Tsukuba, France. pp.334-339, �10.1109/GRID.2008.4662818�. �hal-
02902005�

https://hal.science/hal-02902005
https://hal.archives-ouvertes.fr

IM.Grid, a Grid Computing Approach for Image Mining of High
Throughput-High Content Screening

HongKee Moon and Auguste Genovesio
Image Mining Group
Institut Pasteur Korea

39-1, Hawolgok-dong, Seongbuk-gu, 136-791, Seoul, South Korea
moon@ip-korea.org, agenoves@ip-korea.org

Abstract

Image processing and analysis has become essential for
both cell biology research and drug discovery since the ad-
vent of High Content Screening (HCS) technologies. In this
context, the Grid technology is a good opportunity to solve
intensive computing problems with large data set. In ad-
dition, the exploitation of the Grid is not a simple task for
many users because it is difficult to use the Grid in practi-
cal fields. Another important issue is to provide a simple
way to use of Grid resources. In this paper, we present
IM.Grid, a grid computing extension of our in-house im-
age analysis software called IM (Image Mining) providing
capabilities to simultaneously access visual data located
on NAS (Network-Attached Storage) and extract knowledge
from the raw information by customizable image process-
ing pipeline in a parallel way. A user makes a plug-in de-
signing own image mining pipeline using specific built-in
image processing libraries. Then, the plug-in becomes an
actual processing unit when Grid starts to analyze multiple
images retrieving them from the NAS at a time. The user
receives output results as fast as numbers of computational
grids are available. We apply this method to reduce the
image processing and analysis time of cell biological im-
ages for drug discovery within High Throughput-High Con-
tent Screening (HT-HCS) context. Because the processing
time grows dramatically as the image size becomes huge
due to many factors like multi-channel, high resolution and
so on. To deal with these constraints, we propose a high-
performance computing environment on .NET framework
that helps to improve productivity not only in developing
phases but also in HT-HCS platforms.

1 Introduction

The HCS consists of running a microscopy experiment
under thousands different conditions (drugs, siRNA, con-
centration, etc) in a fully automated manner. The automa-
tion of an experiment is made possible during a phase called
assay development where the biological assay and the im-
age analysis algorithms are set up jointly by biologists and
image analysts. Since crucial phase must provide strong
evidences, the biological model and the image analysis
taken together should be robust enough to produce higher
throughput where visual inspection is impossible.
According to our knowledge, in practice, very few HCS

have been successful in achieving more than a few tens of
thousands experiments. In general, there are four important
bottlenecks in the HCS context, which are the acquisition
time, the storage space, the image analysis and the process-
ing time. Therefore, we focused on making it feasible in
practical HT-HCS. We have setup efficient fully-automated
microscope acquisition platforms in a Bio Safety Level 3
environment, a centralized NAS server with the storage ca-
pacity of 60 Terabytes, and an image analysis research lab
of about ten people. Therefore, the remaining issue turns
out to be the performance of image analysis.
Basically, the large amount of high quality images pro-

duced from various kinds of microscope are to be analyzed
in a rapid way for many reasons such as searching for new
drugs, finding out optimal combination of chemical com-
pounds, and experiments validation especially in the HT-
HCS environment. It is highly demanding to handle high
definition images which comprise multi-channel and 3D
stack information along with time series. As the collected
visual information becomes significant, the processing time
increases dramatically due to newly developed microscopy
technologies.
In this respect, Image Mining Group (IMG) is dedicated

to develop high performance image processing software

978-1-4244-2579-2/08/$20.00 © 2008 IEEE 9th Grid Computing Conference334

called IM (Image Mining). IM is a client-based application
written in C#, which enables biologists to discover seman-
tically significant information from the microscopic images
with help of plug-ins.

In this paper, we first review some related works in sec-
tion 2 and describe our software environment in section 3.
Then, in section 4, we present IM.Grid exploitation in a
practical way and the implementation details of IM.Grid
follows in section 5. In section 6, we provide an evalua-
tion based on two different tests. Finally, we conclude this
paper mentioning summary and future works.

2 Related works

A lot of examples of frameworks, tools and middlewares
with the purpose of sharing and management of specific bi-
ological information are presented in literature.

Globus Toolkit, gLite and Unicore are well-known grid
middlewares [2, 6, 1]. Globus Toolkit supports Java and
Unix platforms including Linux with C components. gLite
is implemented in C on Scientific Linux while Unicore is
based on Java.

caGrid is a grid infrastructure on which the cancer
Biomedical Informatics Grid (caBIGTM) project depends.
The project links all contributors together in the cancer
community to share data and knowledge from various data
sources [7]. It provides the workflow design for scientists
to develop their own application based on grids. BIRN-CC
based on the Globus Toolkit provides infrastructure neces-
sary to achieve distributed collaborations and data sharing
in wide area networking [4]. Health-e-Child project de-
veloped on EGEE middleware which provides the virtual
foundation for flexible, secure, coordinated sharing of dis-
tributed resource [3]. They are suitable for composing grid-
enabled applications for image analysis. However, there
is a limitation that decreases the scalability to extend im-
age analysis algorithms with specific tools provided in Mi-
crosoft Windows based products.

None of the previous projects concerns the management
of various commercial microscopic visual data and their
processing in a parallel way. The middlewares provide ro-
bust grid computing environment. However, many com-
mercial microscopic systems support Windows platforms.
None of the open source middlewares has capability to use
Dynamic-Link Library (DLL) files in order to access the
Windows-based microscopic systems. We cope with these
drawbacks by adding IM.Grid module to the image mining
software.

����������

�������
� 	 � ��

�������
������ ����	�� �������� �����

� �

������
������������	

������������
���

�������
�������
����	�� ��������

����������

�����

�������������
����

����	�� �����������

	

������������

 ���� !��"�����"� �� �����!��"���

����
��"�#��
�������

������!��"���

�������

Figure 1. IM software core structure

3 The application environment

3.1 The Image Mining environment

IM is a 64-bit image analysis software developed by the
Image Mining Group at Institut Pasteur Korea. IM helps
biologists to find interesting and important factors from im-
ages taken in various microscopic imaging systems. Fun-
damentally, IM consists of core module, library part, and
plug-ins implemented by computer scientists for use in di-
verse applications. The library enables the developers to
implement plug-ins easily and accurately due to state-of-
the-art techniques of image processing approaches and so-
phisticated computer algorithms. The core structure of the
software follows the MVC (Model-View-Controller) model
[5] and is maintained by engineers. Figure 1. shows IM
software core structure where we can access any well-plate
of biological experiments due to a generic well-plate repre-
sentation called an ExperimentGrid.
Because of the large amount of projects, we adopted the

plug-in based approach letting people develop plug-ins ac-
cording to specific projects. This method gives a possibility
to solve many problems in distributed computing environ-
ment because plug-ins are dynamically loaded in multiple
processing units during runtime. Previously, a plug-in used
to be a single instance where users had to analyze exper-
iments in sequential mode even though the computer had
multiple CPU cores with a large amount of memory. This
means that the utilization of computer resources was much
lower. Eventually, IM.Grid project started along with multi-
threads support.
In addition, IM can access several microscope file format

as Zeiss LSM or LeicaTMLEI but is also adapted to many
screening platforms. That is, during a screening campaign,

335

a platform as Evotec OperaTMor Molecular Device Imag-
eXpress ULTRATMacquires and stores a massive amount
of pictures from a given number of well-plates in their own
database format on a centralized server. IM has the ability
to load any well-plate of experimentswhatever the platform.
Therefore, it is possible to navigate with IM through exper-
iments of any platform exactly in the same way. The for-
mat conversion is instantaneous and transparent to the end
users. This was made possible owing to a generic concep-
tion of abstract loaders which enable to add a new platform
DB decoder at any time. Multiple well-plates are handled
in such a way that a screen of hundreds of well-plates can
be sequentially processed.

3.2 A brief overview of the IM.Library

IM.Library provides an efficient implementation of the
most common image processing and analysis methods. The
library covers from basic filtering operations to sophisti-
cated machine learning techniques. It has been imple-
mented in C# and growing as the scientists validate state-of-
the-art algorithms concerning specific projects. The library
consists of classification, descriptor, filtering, mathematics,
morphology and transforms. Thus, we can design an im-
age mining pipeline by selecting components at a certain
level of the analysis. They allows the development of image
processing workflow simply by adding necessary modules.
These algorithms are performed in sequential and in paral-
lel according to the complexity of the problem domains and
the size of visual information.

4 IM.Grid exploitation

The IM.Grid is implemented as an extension module to
the conventional image mining software, achieving high
performance values and flexible scalability. Firstly, we
tried to tackle performance issues with multi-threadsmodel.
However, the multithreading has drawbacks when a number
of high quality images are simultaneously loaded, which not
only gives out-of-memory exceptions frequently, but con-
sumes high network bandwidth. So, there was idle time if
we try to open the images even in gigabit network environ-
ment.
In order to overcome these drawbacks, it was inevitable

to develop a grid framework which takes into account the
factors related to execute efficient image processing appli-
cations. The framework handles such large resources as the
automated microscopic imaging systems produce high res-
olution images at great speed. IM.Grid has a crucial role to
manage all the parallel operations communicating compu-
tational grids, and access the selected image data from the
centralized storage from each grid through a gigabit net-
work channel. In Figure 2 shows how IM.Grid is exploited

in our context.

�$����������
��"�#��

�$������	 	$�!��"���$

%$�������
��������

����

Figure 2. IM.Grid exploitation process

4.1 Image mining pipeline design and
plug-in implementation

In terms of an actual image processing logic performed
in the grid workers, developers can design an image mining
pipeline, choosing some functions at each step of the flow,
and define appropriate threshold values for the steps (see
Fig. 2.a). For instance, if we want to make a procedure for
finding statistical descriptor information from an image, we
can design a pipeline including some steps as below.

1. Apply a segmentation algorithm

2. Construct graphs

3. Label 3D objects from the graph image

4. Get feature descriptors

5. Print the result

During the design phase, the users can check every out-
put result at each step if they want to see them(see Figure 3).
However, it is impossible to check the output of each step
while grid operations are executed on a huge amount of in-
put images in parallel. Therefore, it is necessary to validate
the pipeline process before running them in the grids. In
the plug-in implementation, the users make a grid-enabled
plug-in DLL file embedding the process logic of the de-
signed pipeline and IM.Grid APIs.
Sometimes, image analysts are involved in some special

cases such as microscopic images are distorted according
to unintentional artifacts. They can handle these problems
making elaborate plug-ins adopting effective algorithms in
IM.Library through this process.

4.2 Image data selection

All the image data are stored in centralized NAS server
through a trunk of multiple gigabit lines providing high

336

 �����������
	��������

&��'�(�)��
 �����������

*�������	*�������� �� +�,-

�

�
.���� "�/��� +�0102�34,
.����*���5� +�1,
&������6 7�+�7�7-88423,
&������6 ,-�+�7�7,402708
&������6 47�+�7�7-8237,3

�� 6 1 7 7 88 14

�%9�����
(�%�����

����"��
����������

&������6 01-�+�7�7,880,14

Figure 3. Pipeline design and output diagram

speed access and better reliability. Therefore, every client
computer in our intranet can easily open the necessary im-
ages by specifying uniform naming convention(UNC) for-
mat after the microscopic imaging systems produce pic-
tures. This is a key idea how to handle a large number of
images over the network especially in the grid environment.
Users can just browse experiment folders having specific

well plates or micro arrays, and select them just by several
steps, since the framework provides a general and consistent
way to access all the heterogeneous types of data sources
(see Fig. 2.b). We developed an abstract concept for them.
ExperimentGrid provides generic functions of accessing ac-
tual items in well plate and micro array, which has just UNC
information of the remote images. Each item is correspond-
ing to Experiment class. In the case of Evotec OperaTM, a
well-plate information can be retrieved by parsing the par-
ticular XML data file and making an ExperimentGrid in-
stance, sending the meta information of the well-plate to
grids in order to load actual pictures before image mining
operations.

4.3 IM.Grid execution

To execute image mining exploiting IM.Grid, there are
two requirements. One is to make a plug-in pipeline module
and the other is to define input objects to be processed (see
Fig. 2.c).
Regarding the first requirement, we made a plug-in by

designing an image mining pipeline mentioned in section
4.1. When the grid operations start, each grid automatically
checks if there are the latest version of dependencies of the
plug-in module. If local version is different, IM.Grid dis-
tributes the plug-in DLL across the grids. The overall flow
of process is shown in Figure 4.
In terms of the second condition, the selected image data

is provided for parallel operations. In this respect, we have
to consider task granularity. Basically, IM.Grid allows user-
defined ways of selecting input types which can be an image
or a set of images. If a plug-in takes heavy computational
time for processing a single image, image based input type
is recommended. But, image set based input method can be

effective when fast processing plug-ins are used, removing
overheads of loading images stored in a single file as a stack
of pictures.
The following actions are sequentially performed when

the grid operation begins.

1. Make specific number of threads of the plug-in

2. Create IM.Grid client instance in each thread

3. Send the plug-in binary and UNC of image data to the
workers

4. Grid workers execute the tasks by loading images from
the NAS

5. Received the final output results from the grid

4.4 Result manipulation

In the grid pipeline module, task completion event han-
dlers should be implemented since output results are asyn-
chronously delivered from the grids when parallel opera-
tions are finished (see Fig. 2.d). The defined event handlers
are fired at the point of receiving the results successfully.
The output type can be any kind of data which should be
serializable or primitive. Once all the results are collected,
table type results are stored in IM database which allows
users to retrieve it at any time.

5 Behind the IM.Grid

Both screening platform independence and plug-in ori-
ented architecture are the strengths of IM, allowing to de-
crease the development time of IM.Grid. Each plug-inmod-
ule can be multiple instances when we create multi threads
to run on different images. To make the screening platform
independent, IM gives a dynamic binding method for ac-
cessing actual image data. This is a basic requirement for
the implementation of distributed system to load the images
on remote machines.
Given this context, the two next sections describe two ap-

proaches we implemented to increase the speed of a screen.

5.1 Multithreading model

As a natural way to increase the performance, IM was
designed as a multithreaded program where a plug-in de-
veloped is able to run for several different experiments in
parallel without any further modification of the plug-in. A
thread pool with waiting slots is implemented for schedul-
ing multiple threads as each thread manages the life-cycle
of a plug-in instance, allowing a FCFS(First Come, First
Served) manner by control of the number of active threads.

337

Although this method has proved good performances, it was
still mainly insufficient to handle the huge size of image
data and long processing time required by the computation
of a large screening assay.
We extended this principle to a grid of computers located

on the network. In this respect, multi threads are responsi-
ble for processing jobs with communication of the grid in
a parallel way, allowing an efficient method to manage the
network I/O idle time.

5.2 Grid computing model

The method of making copies of the plug-in instance for
multithreading is also useful for developing a grid comput-
ing approach, which makes more efficient collaboration be-
tween a client PC and the computational grids.
There are three parts with different roles in IM.Grid. The

Grid Entity represents an available CPU located on the net-
work. It simply receives and performs a computational tasks
and returns results. It also updates its status to the Grid Ser-
vice. The status consists of current computational workload
and availability on the network.
The Grid Service is a web service which centralizes the

status of all registered Grid Entity on the network. It can
be interrogated at any time by the IM core and return a fast
answer giving the status of all the network. The Grid Entity
sends its status to the Grid Service every 1 minute.
TheGrid Client sends a plug-in copy to an availableGrid

Entity along with a UNC information of the image to be
processed and receives the processed result.

�����
�����

������������������
����� ��	�.��6����	

����������

�!(���
)����%�����	�(���
:;�($

 ��������"���	���

*�������!��"���
��	�*�����

:*<$
��"�#��

 ��	�.��6����	
*�������!��"���
: ��������	��%9���$

:;�($

��	� ��)���
:*<�5�.$

����

������������

!������� = ������	�������

����

!��������=�����
:&..�$

�����������

:*<$

������'��'���������������
�'��"�'�,�0���%�����'�����

5

Figure 4. IM.Grid architecture

A Grid Client is initialized with the number of available
Grid Entities and submits successively all queued jobs to its
Grid Entities until completion of all jobs. A job is made of a
serialized stream object of the plug-in instance and option-
ally the UNC information of the pictures to be processed.
The Grid Entity receives the job, de-serializes the instance,

processes the pictures with it, and sends back the results to
the Grid Client.

6 Performance evaluation

To evaluate the performance of our methods, we carry
out two different tests in batch and grid computing modes.
The first test is a computation test which requires high pro-
cessing power whereas the second focuses on heavy net-
work usage with a simple processing of image data in dif-
ferent environments of 1Gbps and 54Mbps wireless. Both
tests in this section were successively performed on the two
following conditions:

• in batch processing on two 3.0GHz Intel Xeon proces-
sors with Hyper-Threading enabled, 2GB of memory
and a gigabit Ethernet connection.

• on a cluster of 10 machines of the same specifications
above. Totally, 40 worker nodes are activated since
each machine has two CPUs with Hyper-Threading.

6.1 Computation test

We tested the plug-in that is implemented in Figure 3.
Each well has 15 pictures(one picture has 3 channels with
649x506 pixels). A benchmark is performed from 10 to 90
wells. In batch process mode, the image mining process
takes a picture at a time. Thus, it takes much longer time
compared with the grid computing approach, which takes
advantages of 40 worker nodes controlled by the 40-threads.
40 worker nodes load different images and analyze them
in parallel. Figure 5. shows the performance gap between
batch and grid mode.

6.2 Data transfer test

In HT-HCS context, it is also important to emphasize the
efficacy of a grid computing approach regarding the data
transfer. A screening campaign is about 500 Gb of pictures
which, in the grid computing approach, do not have to flow
through the client computer, but are directly accessed by the
computers of the grid. To illustrate this, we created a very
simple plug-in computing the mean intensity of a picture.
Figure 6 shows the result when running this plug-in on a 384
well-plate in which a well has 4 images and one image has
2 channels with 672x507 pixels. The actual size of a well
is about 2.6MB. The mean intensity plug-in is simply made
for accessing every pixel of input images. Thus, the pro-
cessing time is trivial whereas the loading time is more sig-
nificant. We have almost same performance results on grid
mode regardless of network types. However, in batch mode,
the image loading time affected the processing time, which

338

takes 25 times longer on wireless network and 3 times more
even on gigabit network. Consequently, we do not have to
take care of network bandwidth when we process HT-HCS
screening assay in the grid environment. Because the grid
provides high computation power and fast network access
no matter that a client computer is located in.

0272
0277

0877

03-0

0377

0,77

��
��

8430777

0377

�
�
��
��
��
�

-18277

877

��
��
��
�
��
��

0>1

1,>

28 07, 013 0,1377

,77

�

37
,1 28 07,

7

7 07 37 17 ,7 -7 27 >7 87 47 077

���������������

����'����������� ��	�����"����

Figure 5. Computation test

>77

2>>�1,

-77

277

,77

-77

��
��
��

�

377

177

84 3,

�

7

077 3-�22 3>�44
84�3,

7

0� ?������� 0� ?�������

������������� ��������������������������
��	#��	�

��������������
����'#��	�

Figure 6. Data transfer test

7 Conclusion & future works

The Grid computing is becoming the focus of attention
in not only scientific fields but commercial entities in order
to take opportunity from highly profitable discovery. How-
ever, it is a difficult task in terms of the integration of a grid
extension on the conventional software as well as the ex-
ploitation. In this paper, we presented IM.Grid which is the
grid computing extension of the imagemining software, and
the exploitation through the customization of image min-
ing pipeline in HT-HCS context. In the evaluation test, we

showed the computation time could be highly reduced on
account of the grid computing approach.
Typically, a sophisticated plug-in detecting hundreds of

objects in a picture and computing a set of descriptors on
each of them, which takes a few seconds per image, is very
slow in batch processing mode. This architecture has of-
fered a high performance computing environment to the sci-
entists of the Image Mining Group developing plug-ins for
biological assays since the time allowed for the analysis of
a single picture was significantly increased.
Furthermore, optimization of tuning between grids and

threads should be investigated as the computational grids
lead to various overheads including client-server commu-
nication and big object transmission. In addition, we con-
tinue to improve the grid architecture for the integration of
conventional grid systems as well as making a GUI based
pipeline design system.

References

[1] D. Erwin et al. UNICORE a Grid computing environment.
Concurrency and Computation: Practice and Experience,
14(13-15):1395–1410, 2002.

[2] I. Foster and C. Kesselman. Globus: a Metacomputing Infras-
tructure Toolkit. International Journal of High Performance
Computing Applications, 11(2):115, 1997.

[3] J. Freund, D. Comaniciu, Y. Ioannis, P. Liu, R. Mc-
Clatchey, E. Morley-Fletcher, X. Pennec, G. Pongiglione, and
X. ZHOU. Health-e-Child: An Integrated Biomedical Plat-
form for Grid-Based Paediatric Applications. 4th Interna-
tional HealthGrid conference, 120:259–272, 2006.

[4] J. Grethe, C. Baru, A. Gupta, M. James, B. Ludaescher,
M. Martone, P. Papadopoulos, S. Peltier, A. Rajasekar, and
S. Santini. Biomedical informatics research network: build-
ing a national collaboratory to hasten the derivation of new
understanding and treatment of disease. Stud Health Technol
Inform, 112:100–9, 2005.

[5] G. Krasner and S. Pope. A cookbook for using the model-
view controller user interface paradigm in Smalltalk-80. Jour-
nal of Object-Oriented Programming, 1(3):26–49, 1988.

[6] E. Laure, S. Fisher, A. Frohner, C. Grandi, P. Kunszt,
A. Krenek, O. Mulmo, F. Pacini, F. Prelz, J. White, et al.
Programming the Grid with gLite. Computational Methods
in Science and Technology, 12(1):33–45, 2006.

[7] J. Saltz, S. Oster, S. Hastings, S. Langella, T. Kurc,
W. Sanchez, M. Kher, A. Manisundaram, K. Shanbhag, and
P. Covitz. caGrid: design and implementation of the core
architecture of the cancer biomedical informatics grid. Bioin-
formatics, 22(15):1910, 2006.

339

