
HAL Id: hal-02901879
https://hal.science/hal-02901879

Submitted on 17 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an ontology of HTTP interactions
Mathieu Lirzin, Béatrice Markhoff

To cite this version:
Mathieu Lirzin, Béatrice Markhoff. Towards an ontology of HTTP interactions. [Research Report]
Université de Tours - LIFAT. 2020. �hal-02901879�

https://hal.science/hal-02901879
https://hal.archives-ouvertes.fr

Towards an ontology of HTTP interactions

Mathieu Lirzin1,2[0000−0002−8366−1861] and
Béatrice Markhoff2[0000−0002−5171−8499]

1 Néréide, 8 rue des déportés, 37000 Tours, France
mathieu.lirzin@nereide.fr

2 LIFAT EA 6300, Université de Tours, Tours, France
beatrice.markhoff@univ-tours.fr

Abstract. Enterprise information systems have adopted Web-based foun-
dations for exchanges between heterogeneous programmes. These programs
provide and consume via Web APIs some resources identified by URIs,
whose representations are transmitted via HTTP. Furthermore HTTP re-
mains at the heart of all Web developments (Semantic Web, linked data,
IoT...). Thus, situations where a program must be able to reason about
HTTP interactions (request-response) are multiplying. This requires an
explicit formal specification of a shared conceptualization of those inter-
actions. A proposal for an RDF vocabulary exists, developed with a view
to carrying out web application conformity tests and record the tests out-
puts. This vocabulary has already been reused. In this report we propose
to adapt and extend it for making it more reusable.

The content of this report has been published in French [16]3 at
IC 2020.

Keywords: HTTP interaction, Description Logic, Ontology, RDF, OWL,
SPARQL, Competency Questions

1 Introduction

The Hypertext Transfer Protocol (HTTP) is, together with the logical addressing
(URI) and HTML, the basic building block of the Web. While HTTP remains
at the heart of Web development, current enterprise information systems use it
routinely for exchanges between heterogeneous programs: to this aim, all is needed
is an HTTP server on the one side and an HTTP client on the other. Despite its
apparent simplicity the HTTP protocol is quite large, it covers all aspects of client-
server communications, while keeping it open for potential evolutions. The size of
the HTTP 1.1 specification which consists currently in 8 IETF RFCs, refined and
extended by other RFCs, demonstrates that fact. This specification defines con-
straints that impact not only the implementers of Web Servers but also application
developers that are implementing request handlers: they need to ensure that their
request handlers conform to the semantics of HTTP. Our goal is to formalize the

3 https://hal.archives-ouvertes.fr/hal-02888065

https://hal.archives-ouvertes.fr/hal-02888065

2 M. Lirzin and B. Markhoff

HTTP specification to be able to describe Web interactions in a sufficiently pre-
cise way for enabling a mechanized verification of protocol conformance. Since the
beginning of the Web various proposals have been made to describe interactions
between Web clients and a Web server, with different means and objectives. Many
of them are ”machine-readable” but are limited to the syntactic level and do not
rely on an ontological description of HTTP interactions. The main difficulty when
describing Web interactions consists in taking into account the presence of hyper-
media links in the representation of the Web resources. The point is that HTTP
mixes the data and the control over that data. This makes things easy for humans
(developers) to interact with. However it is hard to describe it formally, and it
is still difficult for machines to interact robustly when using it. In this paper we
propose an ontology specified in Description Logic for describing Web interactions,
with the following contributions:

– We use the SROIQ(D) Description Logic to describe the proposed ontology,
which refines the initial W3C draft RDF Vocabulary for HTTP [12]. In this
way we characterize more precisely the properties between already identified
elements and we properly introduce the new ones.

– HTTP message headers represent an associative array with heterogeneous
value types: we provide a way to describe headers in a generic manner while en-
abling to express more precisions for specific ones such as the Location header
whose value is linked to a new resource (Section 4.5).

– HTTP allows the usage of various representation formats in the body payload
by making use of Media Type declarations. This variability is required for
HTTP genericity, but it makes it difficult to formalize the interaction aspect
of the protocol regarding the exchanged content: we propose a way to describe
uniformly both the data and meta-data of messages for a subset of the allowed
content types (Section 4.6).

– URIs primary goal is to identify a resource, however in the context of Web
APIs the optional query part of the URI is extensively used to parameterize
the behavior of the server request handler. We define a set of properties that
can be used to represent the various parts of an URI and show how query
parameters can be accessed (Section 4.3).

– Our ontology is implemented4 with Protégé using OWL 2 DL, which corre-
sponds to the SROIQ(D) Description Logic with the specificity of using URIs
as identifiers for both classes and individuals. This facilitates the description
of the hypermedia links present in both the message data and meta-data. We
use the HermiT reasoner to validate its satisfiability and consistency. We also
added some representative sets of individuals, representing real Web interac-
tions, to verify that the SPARQL queries implementing our Competency Ques-
tions (representing our knowledge representation needs) can be performed.

We first provide some background on the HTTP protocol with an overview of the
W3C RDF vocabulary for HTTP in Section 2, we precise our problem require-
ments in Section 3, and we present our ontology in Section 4. Before concluding in

4 https://labs.nereide.fr/mthl/http

https://labs.nereide.fr/mthl/http

Towards an ontology of HTTP interactions 3

Section 7 we situate our proposal with respect to existing solutions that tackled
the issue of describing HTTP interactions in Section 6.

2 Background

HTTP is a standard managed by the Internet Engineering Task Force (IETF).
Starting from the first proposal of Tim Berners-Lee, a way to describe the trans-
mitted data formats (MIME headers) was early integrated, then came many other
efficiency-related features (persistent connection, caching) together with transmis-
sion security considerations (HTTPs, encryption), which result in the power of
expressing rich and diverse information about client-server interactions. The last
HTTP 1.1 specification, produced in 2014, is declined in a serie of 8 RFCs where the
principal ones are RFC 7230 which defines the message syntax and routing aspect
of the protocol and RFC 7231 which defines the semantics and content aspects.
Despite the clarifications contained in these RFC, and the proposed optimisations
in HTTP 2 5, this standard on which a vast majority of current applications are
based today stays voluntarily open to make room for new inventions.

While the consultation of the IETF RFCs is always useful and necessary for
developers, programs also regularly have to deal with elements of this protocol and
would benefit from being able to interpret it, at least partly. An RDF vocabulary
for HTTP was developed to support Web accessibility evaluation tools [12]. It
is used in EARL 6, a format for expressing the evaluation results, and describes
essentially the HTTP headers exchanged between a client and a server. Although
complete for their requirements, the authors left it at the stage of a proposal (W3C
Working Group Note, 2017).

This proposal can be considered as an application ontology [8], whose purpose
is to represent specificities of HTTP interactions on which Web APIs rely, while
a related domain ontology would allow, for instance, to declare and describe any
specific problem, function, or algorithm, whether executed using Web APIs or not.
Figure 1 gives a visual representation of main classes and properties contained
in the HTTP RDF Vocabulary [12]. This vocabulary defines 14 classes and 25
properties in the http namespace, plus 11 classes and many properties (including
those of DCterm vocabulary) in four other namespaces, dedicated to content,
headers, methods and status codes descriptions.

Basically HTTP is a request/response message protocol where a client sends a
request message to a server which then replies with a response message. Architec-
turally things are more complex because there are intermediaries (proxy/gateway)
which intercept messages to provide for example the possibility to forward mes-
sages or to implement some caching mechanism. However from the point of view
of a client agent those details do not impact the simple request/response model.
As illustrated in Figure 1, a message has a header part and a body part and there
is two kinds of messages, the requests and the responses. A request is further char-
acterized by a URI and a method, and a response comes with a status code. Let

5 https://tools.ietf.org/html/rfc7540
6 https://www.w3.org/WAI/standards-guidelines/earl/

https://tools.ietf.org/html/rfc7540
https://www.w3.org/WAI/standards-guidelines/earl/

4 M. Lirzin and B. Markhoff

Parameter HeaderElement

MessageHeader

HeaderName

MessageContent

Request

Method

Response StatusCode

Literal
Literal

paramName

paramValue

Literal

reasonPhrase

Literal
methodName

Literal

Literal

statusCodeValue
(Annotation Property)

requestURI
absoluteURI
absolutePath
authority

Literal
fieldValue

params

headerElements

hdrName

headers

body

resp

mthd

sc

Fig. 1. Main elements of W3C HTTP RDF Vocabulary.

us use a simple example to explain how to represent a Web API interaction with
this vocabulary. This example represented in Figure 2 consists in an interaction
between a broker client agent sending a request to a registar server for registering
a number of identifiers. The request contains the wanted number of identifiers to
register and the server replies with a 201 status code to denote the creation of
a new resource corresponding to that registered collection of identifiers. We pro-
vide in Figure 3 the RDF representation of this interaction, following W3C HTTP
RDF Vocabulary. The used RDF serialisation is Turtle with namespace prefixes
reported in Table 1. The RDF graph consists in a pair of instances of http:Request
and http:Response classes which are linked by a http:resp property, which defines
one interaction. An instance of http:Request must have a method and a target
URI. In our example the property used for the target URI is http:absolutePath,
a sub-property of http:requestURI. Notice that for the header content we use the
hdrName / fieldValue representation because in this example header names are
predefined ones, while it is also possible to describe any list of key-value pairs by
using class Parameter.

broker registar
POST /reg HTTP/1.1
Host: example.org:8080
Content-Type: text/plain

5 201 Created HTTP/1.1
Location: /reg/x8344

Fig. 2. Interaction between a broker client and a registar server

An important aspect of the W3C HTTP RDF Vocabulary is that it reifies the
methods, headers and status codes whose semantics is precisely defined in RFCs,
while also representing them by a string literal which enables to deal with ad-hoc

Towards an ontology of HTTP interactions 5

_:req a http:Request ;

http:mthd mthd:POST ;

http:absolutePath "/reg" ;

http:headers [

http:hdrName hdr:Host ;

http:fieldValue "example.org:8080"

] , [

http:hdrName hdr:ContentType ;

http:fieldValue "text/plain"

];

http:resp _:resp ;

http:body [

a cnt:ContentAsBase64 ;

dct:isFormatOf [

a cnt:ContentAsText ;

cnt:chars "5"

]

] .

_:resp a http:Response ;

http:sc sc:Created ;

http:headers [

http:hdrName hdr:Location ;

http:fieldValue "/reg/x8344"

] .

Fig. 3. Turtle representation of the registar interaction example

Table 1. Namespace prefixes used in the registar examples

Prefix Namespace

http: http://www.w3.org/2011/http#

mthd: https://www.w3.org/2011/http-methods#

hdr: http://www.w3.org/2011/http-headers#

sc: http://www.w3.org/2011/http-statusCodes#

cnt: http://www.w3.org/2011/content#

dct: http://purl.org/dc/terms/

6 M. Lirzin and B. Markhoff

headers or status codes. This matches the extensibility requirement of the HTTP
protocol. In the registar example of Figure 2, we are only using standard methods,
headers and status code. As a consequence they are identified by a URI instead of
a literal. An interaction is an instance of property http:resp. It is characterized by
the status code number associated to the response and the proposed vocabulary
allows user to determine it by identifying the class associated with this status code
number. The status code number must have 3 digits and its class is defined by the
first digit where:

Class Informational Successful Redirection Client Error Server Error

Status codes J100, 199K J200, 299K J300, 399K J400, 499K J500, 599K

Those classes are defined in the namespace associated with the prefix sc: which
is part of the HTTP vocabulary. Each reified status code is an instance of its
corresponding class. In our example, the status code is 201 and we represent it by
the individual sc:Created, instance of class sc:Successful.

Another aspect which is important to consider is the body part of the message,
which is its content payload. The HTTP protocol supports the usage of multiple
formats for the same resource, which are identified by Media-Type defined by
the Content-Type header. In our example the request contains the literal ”5” with
Media-Type text/plain. The cnt:Content class provides a way to associate mul-
tiple representation views of the same body payload. The http:body property is
always associated with a cnt:ContentAsBase64 but we can associate it with the
dct:hasFormat property to a textual representation using a cnt:ContentAsText re-
source.

3 Problem Statement

Other works use this RDF vocabulary, for example [24] uses it to define RESTdesc,
a hypermedia API definition framework for automatic composition of hypermedia
APIs. ”Hypermedia API” refers to those Web APIs that effectively follow the four
constraints of the Representational State Transfer (REST) architectural style [7],
in particular the fourth: hypermedia as the engine of application state. We are
also interested in hypermedia APIs, with a goal of automatic verification of the
conformance of a client requirement with respect to a server supply: we aim at
representing both the requirement and the supply specifications as RDF graphs.
This brings us to the need to formally represent the interaction between an HTTP
client and an HTTP server, both of them using hypermedia with RDF linked
content. But we found limitations to simply use the proposition from [12] as [24]
does.

To illustrate why, we notice that the example we used to present the W3C
HTTP Vocabulary in RDF is not realistic because, very often, parameters in Web
APIs are passed in the query string. Moreover the link associated with the Location
header is a Literal where we would want to have it as a URI. We would like to
express the conversation shown in Figure 4.

Towards an ontology of HTTP interactions 7

This conversation is composed of two interactions. The first one is similar
to the example of Figure 2 but with the difference that the number of requested
identifiers takes the form of a count query parameter. This difference is meaningful
given the wide adoption of this convention which is compatible with browser form
handling. The second interaction consists in dereferencing the link provided by
the Location header of the response of the first interaction. The dereferenced link
has a response that contains a body content in the JSON format, which has its
own structure which is more complex than the plain string used in the request in
Figure 2. This is not possible to attach meaningful semantics to this conversation
by simply using the HTTP RDF vocabulary.

broker registar

x8344

POST /reg?count=5 HTTP/1.1
Host: example.org:8080

201 Created HTTP/1.1
Location: /reg/x8344

GET /reg/x8344 HTTP/1.1
Host: example.org:8080
Accept: application/json 200 OK HTTP/1.1

Content-Type: application/json

{"ids": [14, 35, 28, 6, 22]}

Fig. 4. Hypermedia conversation between a broker and a registar

Another aspect is that the HTTP RDF vocabulary is based on the RFC 2616
which has been superseded by other RFC documents and in particular by the
RFC 7231. This topic of this updated specification is dedicated to the semantics
of HTTP 1.1. Those semantics have been mostly preserved by newer versions of
the protocols. Those upgrades are mainly concerned by performance aspect in
the transport layer meaning either by optimizing TCP connections in the case of
HTTP 2 of replacing it with UDP in the case of HTTP 3.

Our proposals presented in next section aim at overcoming the previously men-
tioned limitations, but in order to precisely evaluate their usefulness we also devise
a set of Competency Questions that we would like to answer more easily with our
proposed ontology. Competency Questions reflect functional requirements repre-
senting ontological commitments [19,3,9].

CQ 1 (Media type) What is the media-type associated with a message body?

CQ 2 (Interaction result) What is the status code number of an interaction?

CQ 3 (Header values, e.g. location header) What is the target URI provided
in the location header of a response?

Being able to answer to the previous questions enable to answer to the following
one:

8 M. Lirzin and B. Markhoff

CQ 4 (Conversation result) What is the status code of the combinaison of two
interactions, the second query targeting the URI provided in the location header
of the first response?

CQ 5 (Content negotiation) Does the media-type of a response body match one
of those declared in the Accept header of its corresponding request?

We should be able to also query the body content when it is expressed in RDF:

CQ 6 (Body content) What are the values associated with a given property p
inside the body of an HTTP message?

We should be able to ask for parameters in the URI query string:

CQ 7 (Query parameters) What is the value of a specific parameter, e.g. named
”age”, passed in the query string of the target resource?

4 Extending the HTTP ontology

We are using the SROIQ(D) Description Logic, which is associated with OWL2
DL, to describe our ontology. This formalisation is grounded in the former HTTP
RDF vocabulary by the EARL W3C Working Group [12]. We use the RDF prop-
erty/class terminology instead of the classical role/concept terminology. We denote
by > the class of all individuals and by D the class of data literals meaning the
class of things that cannot be the subject of any of properties and that can have
only one interpretation. > and D classes are disjoints.

4.1 Message

Communications over the HTTP protocol are based on request/response messages
exchanged between a client sending a request and a server providing the response.
A message is defined by a collection of headers which represent the metadata and
a body which contains the data payload of the message. It is not required for a
message to have any header elements or a body content.

Message v ∀headers.Headers u ∀body.Content > v ≤1body.>

The property body is functional. The details regarding the Headers and Content
classes are provided in Section 4.5 and Section 4.6 respectively. There are only two
disjoint kinds of messages which are either requests or responses.

Message ≡ Request tResponse Request uResponse v ⊥

We relate those two kinds of messages with the property resp whose domain is
Request and range is Response.

∃resp.> v Request > v ∀resp.Response

It is possible to have multiple responses for the same request with some restrictions
that are explained in Section 4.4.

Towards an ontology of HTTP interactions 9

4.2 Request

A request is a message which must have a method and an effective URI. We
define the class Method as a superclass of all standardised request methods using
nominals. We do not use equivalence relationship because request methods can be
extended.

{get,head,post,put,delete,connect,options,trace,patch} vMethod

Request vMessage u ∃mthd.Method u ∃uri.URI

> v ≤1mthd.Method > v ≤1uri.URI

The properties mthd and uri are functional. The value associated with the prop-
erty uri is a URI following the syntax described in RFC 3986 [2,] which provides
the following illustrative example:

http︸ ︷︷ ︸
scheme

:// example.com:8042︸ ︷︷ ︸
authority

/over/there︸ ︷︷ ︸
path

? name=ferret︸ ︷︷ ︸
query

nose︸ ︷︷ ︸
fragment

The property uri abstracts the possible concrete syntaxes found in the target URI
which can take multiple forms [5, Section 5.3]. Some of them require to combine
the value of the Host header and the protocol scheme (http or https) to com-
pute the absolute URI. When the request target has an absolute form, the target
URI corresponds to the effective request URI. The various component parts of
the URI associated with the property uri can be extracted from it with the prop-
erties scheme, authorithy, path, query, fragment. Those properties have literal
values. This choice differs from the W3C HTTP vocabulary which uses the proper-
ties http:requestURI, http:absolutePath and http:absoluteURI to provide different
views of the target URI but represented as literals. The property uri corresponds
to the same value as http:absoluteURI but lifted to an actual URI. This matters
in the context of RDF because only URIs can be the subject of properties. This
choice allows us to answer to CQ 7 because we can associate to individuals of
class URI a property queryParams to explicit the query parameters when they are
represented by the value associated with the property query, as detailed in Section
4.3. The solution in the W3C HTTP vocabulary is to represent the target URI as
a string and this is not enough to decompose the parameters.

4.3 Query parameters

One important aspect when describing an HTTP request is to define parame-
ters, which can be passed in multiple ways but one basic way is to use the
query part of the URI meaning the characters between the ? and #. In the con-
text of Web applications the format of this part of the URI conforms to the
application/x-www-form-urlencoded7 media type which enables passing key-value
pairs as arguments which are denoted k and v in the following example.

k︷︸︸︷
age =

v︷︸︸︷
54 &

k︷︸︸︷
id =

v︷ ︸︸ ︷
XPZIJ4︸ ︷︷ ︸

query

7 https://url.spec.whatwg.org/#concept-urlencoded

https://tools.ietf.org/html/rfc7230#section-5.3
https://url.spec.whatwg.org/#concept-urlencoded

10 M. Lirzin and B. Markhoff

With the property query we can access the string literal corresponding to the
encoded version. We want to access those key-value pairs semantically with proper
properties and classes. We then define the property queryParams.

URI v ∀queryParams.Parameter Parameter ≡ ∃name.D u ∃value.D

Our representation of URIs is depicted in Figure 5.

4.4 Response

A response is a message which must have a status instance accessible via the
property sc which itself has a status code accessible via the property code whose
value must be a 3 digit number. This number is present in the status line of the
concrete response.

Response vMessage u ∃sc.Status Status v ∃code.J000, 999K
> v ≤1sc.> D v ≤1code.D

The properties sc and code are functional. We use the compact notation J000, 999K
to denote a non-negative integer datatype with a restriction that its value is less
or equal than 999. This would take the following form in OWL 2 turtle syntax:

:threeDigit a rdfs:Datatype ;

owl:equivalentClass [

a rdfs:Datatype ;

owl:onDatatype xsd:nonNegativeInteger ;

owl:withRestrictions ([xsd:maxInclusive 999])] .

There exists a bijection between status instances and status codes which means
that the status code is characteristic of its instance. For example we can define the
status instance Created which means a new resource has successfully been created
by asserting that this is the unique status instance with a status code of 201.

{Created} ≡ Status u ∃code.201

Status codes can effectively be thought as the syntactic element that denotes the
meaning of the response status. The meaning of the response status is represented
by the status instance. While each status has specific meaning they can be classified
in Status subclasses that characterise the general result of the interaction.

Successful ≡ Status u ∃code.J200, 299K ClientError ≡ Status u ∃code.J400, 499K
Redirection ≡ Status u ∃code.J300, 399K ServerError ≡ Status u ∃code.J500, 599K

Informational ≡ Status u ∃code.J100, 199K

All the instances of those classes define final responses with the exception of the
instance of the Informational class which defines interim responses meaning tem-
porary responses that will eventually be followed by a final response. [6, Section
6.2]. This means that multiple responses can be associated with one request but
only one of them can be a final response.

∃sc.Informational v Interim Final ≡ Response u ¬Interim

https://tools.ietf.org/html/rfc7231#section-6.2
https://tools.ietf.org/html/rfc7231#section-6.2

Towards an ontology of HTTP interactions 11

Definition 1 (Interaction). An interaction is an instance resp(q, r) of the prop-
erty resp such that q is an instance of Request and r is an instance of Final.

In Figure 5 we do not represent the sub-classes of Status, as we do not represent
those of StatusCode in Figure 1.

Header

Message

Content

ContentAsRDF sd:Graph
about

Request

Method

Response Status

3 digits number

sc

code

Literal
Literal

hdrName

fieldValue

Literal
methodName

URI
uri

Literal

Literal

Literal

Literal

Literal

Literal

scheme

authority

path

query

fragment

idRes

Parameter

queryParams

Literal

Literal
name

value

hasLocation

li
n
k

loca
tio

n

headers

body

resp

mthd

Fig. 5. Main elements of our ontology for HTTP.

4.5 Header fields

A Message can contain multiple headers. A header is composed of a field name
and a field value which are both literals.

Header v ∃hdrName.D u ∃fieldValue.D

Such semantic view is still not that descriptive because of the usage of literals
which are just strings. To refine the semantic of standard headers such as Location

and Content-Type, we can use a property chain in order to directly refer to their
values with properties reflecting their names. This is motivated by our Competency
Questions CQ 1 and CQ 3. It is common to have a location header such as in the
following example:

Location: <http://example.org/new/resource>

We want to access simply to the associated link. We can then refine the corre-
sponding header instances by stating that if its header field name is "Location"

then it has a link property. The value of that property corresponds to the URI

12 M. Lirzin and B. Markhoff

literal contained in the property fieldV alue, but lifted to an URI. This enables
the definition of properties on that value.

Header u ∃hdrName.{"Location"} v ∃link.>

In order to describe the associative nature of message headers we can use property
chain axioms to associate request to the lifted semantic value associated with
standards headers. For example for the Location header we can define the property
location. To achieve that we introduce a reflexive property hasLocation for only
those instances that have a Location field name.

∃hdrName.{"Location"} ≡ ∃hasLocation.Self
headers ◦ hasLocation ◦ link v location

This mechanism is illustrated in Figure 5 for the Location header. We propose to
do that for all predefined headers, and in particular the Content-Type header.

The W3C HTTP vocabulary approach is different in that regard because it
tries to augment a literal view of headers with the property http:headerElements

whose values can be decomposed with http:elementName, http:elementValue and
http:params in a generic way. The representation of heterogeneous associative data
structures like message headers by a conjonction of well characterized property
constraints like the Location header is more precise despite requiring a wider TBox.

4.6 Body Content

While the header fields are the representation metadata, the payload body is the
representation data. As defined in Section 4.1, this data is accessible from a mes-
sage via the property body which value is always of class Content. The W3C HTTP
vocabulary delegates the representation of the body values to an external Content
Vocabulary [11] which takes into account the fact that a resource can be associated
with multiple representations in various formats. Unfortunately the HTTP W3C
vocabulary restricts the range of the property body to ContentAsBase64 which
does not seem to match the semantics of HTTP where the actual format of the
body is advertised by the Content-Type and Content-Encoding headers. The first
one is mandatory when having a body and its value is a media type M. Those
headers allow the recipient of a message to know how to interpret the body con-
tent. For example when a Content-Type of text/plain and no Content-Encoding is
present the body value should directly be an instance of the ContentAsText class.

∃body.Content v ∃content-type.M

In CQ 2 we want to access the links provided in a message. Some of those links
are provided in the header field values but others are provided in the body. This
is true when the Content-Type corresponds to an hypermedia format. Since RDF
provides a native way to represent those links which are plain URIs, our proposal
is to require the body content to be available as RDF. To do that, we must clearly
encapsulate the content graph in order to distinguish it from the graph of the

Towards an ontology of HTTP interactions 13

interaction. With that restriction we can have both the graph of the body and the
graph of its message container in a single formalism. We implement that require-
ment by introducing the ContentAsRDF class as a sub-class of Content. Property
about serves as the bridge between the message and the content’s graph, and this
latter is a named graph as defined in the SPARQL 1.1 Service Description8.

ContentAsRDF v Content u ∃about.> > v ∀about.Graph > v ≤1about.>

The property about is functional. For example a body message describing Resource
:foo can be represented with the following TriG syntax:

:B {

:foo :ids (1 2 3) ;

:date "2003-02-10"^^xsd:date .

}

Then it can be associated with the body content in the following way:

:m a http:Message ;

http:body :b .

:b a cnt:ContentAsRDF ;

cnt:about :B .

:B a sd:Graph .

For having the body payload in RDF, the basic option is to require representations
to be in RDF serialisation formats like RDF/XML, JSON-LD and Turtle. A more
advanced option is to adopt the notion of RDF presentation [15], which provides
a way to lift a non-RDF format into an RDF graph and a reverse way to lower an
RDF graph representation into the same non-RDF format.

5 Evaluation

One important step to enable evaluation is to populate the ontology with represen-
tative individuals. We can now represent the two interactions described in Section
3 and illustrated in Figure 4. A visual representation of the associate RDF graph
is provided in Figure 6.

The question of ontology evaluation has received a lot of attention and can
be divided in several related categories [22], logical, structural, and functional.
The logical category groups quality dimensions that can be performed using a rea-
soner, e.g. the satisfiability. Our implementation in OWL 2 DL allows us to verify
inference capabilities with the HermiT reasoner, in particular capability of de-
tecting logical inconsistencies through error provocations during the population of
the ontology with some representative sets of individuals. The structural category
is composed of context-free dimensions which can be measured by quantitative
metrics, for instance using OntoMetrics9, but also the popularity or the coupling
degree with other linked data resources. To us, some important dimensions in this
category are the following ones:

8 https://www.w3.org/TR/2013/REC-sparql11-service-description-20130321/
9 https://ontometrics.informatik.uni-rostock.de/ontologymetrics

https://www.w3.org/TR/2013/REC-sparql11-service-description-20130321/
https://ontometrics.informatik.uni-rostock.de/ontologymetrics

14 M. Lirzin and B. Markhoff

q1 r1

post

uri1

.../reg?count=5

.../reg/x8344

count

5

Created

q2

uri2

get

r2

Ok

/reg/x8344 [14, 35, ...]
idRes

id
R
es

resp

uri

mthd

queryParams na
m
e

value

sc

location
uri

mthd

resp
sc

body

about

ids

Fig. 6. Graph representation of registar conversation

– flexibility: is the ontology easily adaptable to multiple uses? We address this
question with our proposals for headers, body content and query parameters
which enhance the reusability potential of the ontology with respect to the
original W3C HTTP RDF Vocabulary.

– transparency: is the ontology easily analysable? We address this question by
our formalisation in Description Logic, implemented with OWL2 DL, expli-
cating our choices and motivations.

– cognitive ergonomics: is the ontology easily understandable and exploitable
by users? We address this question by writing this article, documenting the
ontology, and publicly publishing it.

– compliance to expertise: is the ontology compliant with the knowledge it rep-
resents. In our case, we better represent the semantics of RFCs by introducing
classes and properties in place of just string literals, for instance for URIs.
This dimension is also related to functional properties which, for an applica-
tion ontology such as the one presented in this paper, are of course of outmost
importance.

The functional category groups ontology quality dimensions which address in-
tended uses and functions in contexts. We address this by writing SPARQL queries
on our ontology in order to answer to the Competency Questions we expressed in
Section 3.

CQ 1 What is the media-type associated with a message body?

SELECT ?m ?mt

WHERE {

?m a http:Message .

?m http:content-type ?mt .

}

CQ 2 What is the status code number of an interaction?

SELECT ?status

WHERE {

?q http:resp ?r .

?r http:sc/http:code ?status .

}

Towards an ontology of HTTP interactions 15

CQ 3 What is the URI link provided in the location header of a response?

SELECT ?next

WHERE {

?q0 http:resp/http:location ?next .

}

CQ 4 What is the status code of the combinaison of two interactions, the second
query targeting the URI provided in the location header of the first response?

SELECT ?status

WHERE {

?q0 http:resp/http:location ?next .

?q1 http:uri ?next .

?q1 http:resp/http:sc ?status .

}

CQ 5 Does the media-type of a response body match one of those declared in the
Accept header of its corresponding request?

ASK {

?q http:resp ?r .

?q http:accept/http:media-type ?mt1 .

?r http:content-type ?mt2 .

FILTER (CONTAINS(STR(?mt1), STR(?mt2))

|| CONTAINS(STR(?mt2), STR(?mt1)))

}

Here we rely on string comparison which is a simplistic form of content negotia-
tion because in practice media types have derivatives with syntactic variations.
A semantic description of media types would solve that limitation.

CQ 6 What are the values associated with a given property p, for instance ex:ids,
inside the body of an HTTP message?

SELECT ?ids

WHERE {

?m http:body/cnt:about ?G .

GRAPH ?G { ?x ex:ids/rdf:rest*/rdf:first ?ids } .

}

Here Property ex:ids associates the root of the content representation with an
RDF list of identifiers. Each element present in that list is extracted by using
the rdf:rest*/rdf:first pattern.

CQ 7 What is the value of a specific parameter, e.g. named ”age”, passed in the
query string of the target resource?

SELECT ?age

WHERE {

?q http:uri/http:queryParams ?p .

?p http:name "age" .

?p http:value ?age

}

16 M. Lirzin and B. Markhoff

6 Related Work

As explained in Section 3 our aim is to validate a Web API with respect to a spec-
ification, in order to support the work of developers, producers and consumers
of Web APIs. Web developers know well HTTP and are less interested in more
abstracted representations: for explaining them their potential mistakes, we think
that it is better for the validator to manipulate HTTP items. This is why we
choose to rely on an ontology of HTTP. It allows us to represent a Web API as a
conversation graph, composed of linked interactions, an interaction being an in-
stance of Property resp relating an instance of class Request to an instance of class
Response. The HTTP ontology provides the framework for building the conversa-
tion graph from the Web API code. It is also a guide for the automatic validation
that we intend to perform on the conversation graph, through the verification of
the constraints expressed in the specification.

In this related works section we consider the Web API specification prob-
lem which motivates our work, from several points of view, reflected by the past
and current uses of the various proposals. Historically, at the beginning were the
so-called Web services, defined with SOAP, WSDL and UDDI [26], with sev-
eral proposals aimed at specifying semantic Web services, such as OWL-S [17]
or SAWSDL [13]. These Web services follow a remote procedure call (RPC) form
of inter-process communication popularised by the rise of object oriented program-
ming, ignoring the principle of hypermedia at the heart of the Web, and defining
and exposing their own arbitrary sets of operations rather than the defined HTTP
methods. They have been widely studied and developed, and big enterprise infor-
mation systems still use it (e.g. Amazon). From a developer point of view WSDL
specifications really provide a good support for using such kind of services, but
no attempt to automate their use by programs has definitely proved successful.
Yet WSDL provides a machine-readable description of how the service can be
called, what parameters it expects, and what data structures it returns [26]. It
describes services as collections of network endpoints (ports), which are associa-
tions of a URL with a binding describing a concrete protocol and message format
specifications, namely the supported operations with descriptions of the data be-
ing exchanged. SAWSDL [13] is a set of extension attributes for defining how to
add semantic annotations to the various parts of a WSDL document. It allows
designers to relate WSDL and XML Schema specifications to ontologies.

The subsequent history of Web services is dominated by the so-called REST
services or RESTful services [20], or hypermedia APIs [24], together with the emer-
gence of Linked Data and the growing popularity of JSON and JSON-LD. Before
considering these other kinds of Web services, it is important to notice the uni-
versality of the requirement of a way to provide information on a service general
functionalities as well as on the form and meaning of its inputs and outputs. This is
the aim of SAWSDL for SOAP-based services, or OWL-S [17] intended for any kind
of service. Interestingly, this one can be compared to the recent proposal of another
universal description of functions [4], which is also motivated to complement Web
services specifications that are very coupled with the technology stack10, allowing

10 https://w3id.org/function/spec

https://w3id.org/function/spec

Towards an ontology of HTTP interactions 17

to declare and describe any specific problem, function, or algorithm, whether ex-
ecuted using Web APIs or not. Both OWL-S and the Function Ontology address
the need to automatic discovery, invocation, composition and interoperation of
services. OWL-S is an old W3C Member Submission (2004) while the Function
Ontology is at a stage of first non official draft, intended for applications built on
top of the Semantic Web. Both of them include a binding mechanism to relate the
upper level functional descriptions to more concrete Web APIs descriptions, these
latter being expressed using WSDL, or the HTTP ontology, or Hydra [14].

Hydra’s purpose is to describe and use the so-called Web APIs that are based
on the REST architectural style and are simpler to deploy and interact with than
SOAP-based services [23,20]. Those Web APIs are now the most developed and
used Web services. OpenAPI [10] is a widely used initiative to associate to Web
APIs a machine-readable documentation, that can be compiled into a Web page,
and thus findable with a Web browser using standard Web search engines. With
such a syntax-level description, OpenAPI offers what WSDL enables for SOAP
Web services, or WADL for REST Web services (JSON replacing XML). In con-
trast, Hydra offers a semantic-level description and aims to go further in simplify-
ing the development of truly RESTful services by leveraging the power of Linked
Data [14], which is mostly ignored by the OpenAPI initiative. To this end, Hydra
consists in a lightweight RDFS vocabulary to both describe Web APIs and to aug-
ment Linked Data with hypermedia controls (allowing to specify which IRIs in an
RDF graph are intended to be dereferenced or not). Notice that W3C also sup-
ports the Linked Data Platform (LDP) standard [21] whose aim is to allow Linked
Data (LD) providers exposing LD in a RESTful manner, including an interaction
model to interact (read-write) with them. This is in line with Hydra’s intention of
describing RESTful Web APIs that can consume LD. Hydra is the most similar
proposal to the HTTP ontology. But it is different though, as it introduces more
abstract classes and properties to represent HTTP and IRI components, together
with purely RDF-based notions which requires Web API developers to master
(JSON-LD serialised) RDF.

Hydra is used in several applications, for instance for automating the discov-
ery and consumption of Web services by software agents via SPARQL micro-
services [18], which allow programs to query any Web API using SPARQL. The
Web API is wrapped by such a micro-service, which uses an internally stored de-
scription of the Web API and the incoming SPARQL query to (i) query the Web
API, (ii) transform its output into an RDF graph and (iii) perform the query on
this dynamically built graph. The Web API functional description is based on
Hydra and schema.org, plus SHACL [18] for guiding the dynamic graph building.

RESTdesc [25,24] is also a semantic description format for hypermedia APIs,
which relies on the HTTP ontology rather than Hydra, and on Notation3 Logic [1]
rather than RDFS or OWL. It is devised for automatic discovery and composition
of hypermedia APIs. For its authors, the intended benefit of using Linked Data is
to provide the ground to enable intelligent agents to navigate APIs and perform
choices at runtime, like humans do on Website. While this goal is highly inter-
esting, it is far from what is done in practice in current enterprise information
systems where the service composition is manually programmed from a fixed set

18 M. Lirzin and B. Markhoff

of endpoints. In our experience this careful manual composition process is already
making things difficult to manage and maintain when services evolve, to not want
to rely on automatic compositions as proposed in RESTdesc to fulfil our require-
ments. In order to support the daily work of producers and consumers of Web
APIs, we basically want to validate a Web API with respect to a specification,
and explain the possibly occurring errors to the developer. To this end we focus
on representing the common knowledge shared by all these developers: HTTP
interactions.

7 Conclusion

We present in this article an ontological description of HTTP interactions, based
on a deep study of the HTTP RFC 7231 specification. We started from the HTTP
RDF Vocabulary proposed as a W3C Note, used and reused by several works. Be-
sides that, it relies on a limited interpretation (more attached to the HTTP syntax
than semantics) of RFCs, it does not allow us to formulate simply the queries
which correspond to the Competency Questions reflecting our requirements. We
conducted a formal analysis, using both Description Logics and Protégé OWL 2
DL, to introduce our proposed ontology, which answers to our needs as shown by
our evaluation efforts. Regarding the related works, to the best of our knowledge
only the W3C HTTP RDF Vocabulary is directly related to our aim of semanti-
cally representing the HTTP protocol, while the more general aim of describing
web services is addressed in many works. This more general problem is not directly
usable to validate a Web API with respect to a HTTP specification, for simply
explaining to developers their potential errors.

The HTTP RFC 7231 specification being quite large, our effort to formalise it
still incomplete and multiple aspect remains to be studied. Moreover we observed
in the case of query parameters that common practices are in fact ad-hoc exten-
sions of the URI specification, but they still need to be taken into account because
of their massive adoption. We are aware of several limitations of our approach.
For instance when representing an HTTP conversation that involves multiple in-
teractions on the same resource, we still are unable to describe the evolution of
those representations. Neither do we define how to represent the time dependency
relation between messages. Another limitation comes from the Open World As-
sumption (OWA) which means that it is not possible to check for the absence
of things, which is useful in a context of validation. For example we could want
to check that responses associated with the HEAD method do not have a body.
Combining OWL and SHACL could be the solution. Indeed, our immediate future
work is the exploitation of that ontology by instrumenting HTTP interactions ei-
ther on the client or on the server side. The logical inference performed by OWL
2 reasoner will check the conformance of those interactions towards the protocol
specification. For example it could check for every message that Content-Type are
properly declared in the presence of a body. To achieve this, we are working to
implement a program that converts HTTP messages into RDF graphs following
our ontology.

Towards an ontology of HTTP interactions 19

References

1. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.A.: N3logic: A logical
framework for the world wide web. Theory Pract. Log. Program. 8, 249–269 (2007)

2. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform resource identifier (uri): Generic
syntax (2005)

3. Blomqvist, E., Presutti, V., Daga, E., Gangemi, A.: Experimenting with extreme
design. In: Cimiano, P., Pinto, H.S. (eds.) Knowledge Engineering and Management
by the Masses. pp. 120–134. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

4. De Meester, B., Dimou, A., Verborgh, R., Mannens, E.: An Ontology to Semanti-
cally Declare and Describe Functions. In: The Semantic Web. pp. 46–49. Springer
International Publishing, Cham (2016), https://w3id.org/function/spec

5. Fielding, R., Reschke, J.: Hypertext transfer protocol (http/1.1): Message syntax and
routing (2014)

6. Fielding, R., Reschke, J.: Hypertext transfer protocol (http/1.1): Semantics and con-
tent (2014)

7. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM
Transactions on Internet Technology (TOIT) 2(2), 115–150 (2002)

8. Guarino, N.: Formal ontology and information systems. In: Proceedings of Formal
Ontology in Information Systems. pp. 3–15. IOS Press (1998)

9. Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A., Presutti, V. (eds.): Ontology
Engineering with Ontology Design Patterns - Foundations and Applications, vol. 25.
IOS Press (2016)

10. Initiative, O.: The OpenAPI Specification (2018)
11. Koch, J., Velasco, C., Ackermann, P.: Representing content in rdf 1.0 (2017)
12. Koch, J., Velasco, C., Ackermann, P.: HTTP Vocabulary in RDF 1.0 (Feb 2017),

https://www.w3.org/TR/HTTP-in-RDF/, W3C Working Group
13. Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: SAWSDL: semantic annotations

for WSDL and XML schema. Internet Computing, IEEE 11, 60–67 (12 2007).
https://doi.org/10.1109/MIC.2007.134

14. Lanthaler, M., Gütl, C.: Hydra: A Vocabulary for Hypermedia-Driven Web APIs.
LDOW 996 (2013)

15. Lefrançois, M.: RDF presentation and correct content conveyance for legacy services
and the web of things. In: Proceedings of the 8th International Conference on the
Internet of Things. p. 43. ACM (2018)

16. Lirzin, M., Markhoff, B.: Vers une ontologie des interactions HTTP. In: 31es Journées
francophones d’Ingénierie des Connaissances. Sébastien Ferré, Angers, France (Jun
2020), https://hal.archives-ouvertes.fr/hal-02888065

17. Martin, D., et., a.: Bringing Semantics to Web Services: The OWL-S Approach. In:
Semantic Web Services and Web Process Composition. pp. 26–42. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005)

18. Michel, F., Faron-Zucker, C., Corby, O., Gandon, F.: Enabling automatic discovery
and querying of web APIs at web scale using linked data standards. In: Companion of
The 2019 World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May
13-17, 2019. pp. 883–892 (2019). https://doi.org/10.1145/3308560.3317073, https:
//doi.org/10.1145/3308560.3317073

19. Noy, N., Mcguinness, D.: Ontology development 101: A guide to creating your first
ontology. Knowledge Systems Laboratory 32 (01 2001)

20. Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs. O’Reilly Media (2013)
21. Speicher, S., Arwe, J., Malhotra, A.: Linked data platform 1.0, w3c recommendation.

Tech. rep., W3C (2015)

https://w3id.org/function/spec
https://www.w3.org/TR/HTTP-in-RDF/
https://doi.org/10.1109/MIC.2007.134
https://hal.archives-ouvertes.fr/hal-02888065
https://doi.org/10.1145/3308560.3317073
https://doi.org/10.1145/3308560.3317073
https://doi.org/10.1145/3308560.3317073

20 M. Lirzin and B. Markhoff

22. Tartir, S., Arpinar, I.B., Sheth, A.P.: Ontological evaluation and validation. In:
Theory and applications of ontology: Computer applications, pp. 115–130. Springer
(2010)

23. Upadhyaya, B., Zou, Y., Xiao, H., Ng, J., Lau, A.: Migration of SOAP-based services
to RESTful services. In: 2011 13th IEEE International Symposium on Web Systems
Evolution (WSE). pp. 105–114. IEEE (2011)

24. Verborgh, R., Arndt, D., Hoecke, S.V., Roo, J.D., Mels, G., Steiner, T., Gabarró, J.:
The pragmatic proof: Hypermedia API composition and execution. Theory Pract.
Log. Program. 17(1), 1–48 (2017). https://doi.org/10.1017/S1471068416000016,
https://doi.org/10.1017/S1471068416000016

25. Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S., Vallés, J.G., Van de Walle,
R.: Functional descriptions as the bridge between hypermedia APIs and the semantic
web. In: Proceedings of the third international workshop on RESTful design. pp. 33–
40. ACM (2012)

26. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Prentice Hall PTR, USA (2005)

A Appendix: HTTP Interaction Ontology in Turtle

@prefix : <http://w3id.org/http#> .

@prefix mthd: <http://w3id.org/http/mthd#> .

@prefix sc: <http://w3id.org/http/sc#> .

@prefix hds: <http://w3id.org/http/headers#> .

@prefix cnt: <http://w3id.org/http/content#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix sd: <http://www.w3.org/ns/sparql-service-description#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

: a owl:Ontology ;

rdfs:label "HTTP Ontology"@en ;

rdfs:comment "A namespace for describing HTTP interactions"@en .

Messages.

:Message a owl:Class, owl:AllDisjointClasses ;

rdfs:label "Message"@en ;

rdfs:comment "An HTTP message."@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

owl:members (:Request :Response) ;

rdfs:subClassOf [

owl:intersectionOf ([

a owl:Restriction ;

owl:onProperty :body ;

owl:allValuesFrom cnt:Content ;

https://doi.org/10.1017/S1471068416000016
https://doi.org/10.1017/S1471068416000016

Towards an ontology of HTTP interactions 21

] [

a owl:Restriction ;

owl:onProperty :hdr ;

owl:allValuesFrom :Header;

])] .

:Request a owl:Class ;

rdfs:label "Request"@en ;

rdfs:comment "An HTTP request."@en ;

rdfs:subClassOf [

owl:intersectionOf (:Message [

a owl:Restriction ;

owl:onProperty :mthd ;

owl:someValuesFrom :Method ;

] [

a owl:Restriction ;

owl:onProperty :uri ;

owl:someValuesFrom :URI;

])] ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> .

:Response a owl:Class, owl:AllDisjointClasses ;

rdfs:label "Response"@en ;

rdfs:comment "An HTTP response."@en ;

owl:members (:InterimResponse :FinalResponse) ;

rdfs:subClassOf [

owl:intersectionOf (:Message [

a owl:Restriction ;

owl:onProperty :sc ;

owl:someValuesFrom :StatusCode ;

])] .

:InterimResponse a owl:Class ;

rdfs:label "Interim"@en ;

rdfs:subClassOf :Response, [

a owl:Restriction ;

owl:onProperty :sc ;

owl:someValuesFrom sc:Informational ;

] ;

rdfs:comment "An interim response."@en .

:FinalResponse a owl:Class ;

rdfs:label "Final"@en ;

rdfs:subClassOf :Response, [owl:complementOf :InterimResponse] ;

rdfs:comment "A final response."@en .

:resp a owl:ObjectProperty ;

rdfs:label "response"@en ;

rdfs:comment "The HTTP response sent in answer to an HTTP request."@en ;

rdfs:domain :Request ;

22 M. Lirzin and B. Markhoff

rdfs:range :Response .

Method.

:Method a owl:Class ;

rdfs:label "Method"@en ;

rdfs:comment "The HTTP method used for the request."@en ;

owl:equivalentClass [

a owl:Restriction ;

owl:onProperty :methodName ;

owl:someValuesFrom :notEmptyToken] .

:mthd a owl:ObjectProperty, owl:FunctionalProperty ;

rdfs:label "method"@en ;

rdfs:comment "The HTTP method used for the HTTP request."@en ;

rdfs:domain :Request ;

rdfs:range :Method .

:methodName a owl:DatatypeProperty, owl:FunctionalProperty ;

rdfs:label "method name"@en ;

rdfs:comment "The HTTP method name used for the HTTP request."@en ;

rdfs:domain :Method ;

rdfs:range :notEmptyToken .

:notEmptyToken a rdfs:Datatype ;

rdfs:label "Non-empty token"@en ;

rdfs:comment "A token with at least one character" ;

owl:equivalentClass [

a rdfs:Datatype ;

owl:onDatatype xsd:token ;

owl:withRestrictions ([xsd:minLength 1])] .

mthd:GET a :Method ;

rdfs:label "GET" ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231#section-4.3.1> ;

:methodName "GET" .

mthd:HEAD a :Method ;

rdfs:label "HEAD" ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231#section-4.3.2> ;

:methodName "HEAD" .

mthd:POST a :Method ;

rdfs:label "POST" ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231#section-4.3.3> ;

:methodName "POST" .

mthd:PUT a :Method ;

Towards an ontology of HTTP interactions 23

rdfs:label "PUT" ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231#section-4.3.4> ;

:methodName "PUT" .

mthd:DELETE a :Method ;

rdfs:label "DELETE" ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231#section-4.3.5> ;

:methodName "DELETE" .

mthd:CONNECT a :Method ;

rdfs:label "CONNECT" ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231#section-4.3.6> ;

:methodName "CONNECT" .

mthd:OPTIONS a :Method ;

rdfs:label "OPTIONS" ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231#section-4.3.7> ;

:methodName "OPTIONS" .

mthd:TRACE a :Method ;

rdfs:label "TRACE" ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231#section-4.3.8> ;

:methodName "TRACE" .

mthd:PATCH a :Method ;

rdfs:label "PATCH" ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc5789> ;

:methodName "PATCH" .

URI.

:uri a owl:ObjectProperty, owl:FunctionalProperty ;

rdfs:label "uri" ;

rdfs:comment "Effective request URI" ;

rdfs:domain :Request ;

rdfs:range :URI .

:URI a owl:Class ;

rdfs:label "URI description" ;

rdfs:comment

"A semantic description of the syntactic parts composing a URI."@en .

:scheme a owl:DatatypeProperty, owl:FunctionalProperty ;

rdfs:label "scheme"@en ;

rdfs:domain :URI ;

rdfs:comment "The scheme part of an URI."@en .

:authority a owl:DatatypeProperty, owl:FunctionalProperty ;

24 M. Lirzin and B. Markhoff

rdfs:label "authority"@en ;

rdfs:domain :URI ;

rdfs:comment "The authority part of an URI."@en .

:path a owl:DatatypeProperty, owl:FunctionalProperty ;

rdfs:label "path"@en ;

rdfs:domain :URI ;

rdfs:comment "The path part of an URI."@en .

:query a owl:DatatypeProperty, owl:FunctionalProperty ;

rdfs:label "query"@en ;

rdfs:domain :URI ;

rdfs:comment "The query part of an URI."@en .

:fragment a owl:DatatypeProperty, owl:FunctionalProperty ;

rdfs:label "fragment"@en ;

rdfs:domain :URI ;

rdfs:comment "The fragment part of an URI."@en .

:idRes a owl:DatatypeProperty, owl:FunctionalProperty ;

rdfs:label "resource"@en ;

rdfs:comment "Everything except the query part"@en ;

rdfs:domain :URI .

Headers.

:Header a owl:Class ;

rdfs:label "Header"@en ;

rdfs:comment "A header in an HTTP message."@en ;

rdfs:subClassOf [

a owl:Restriction ;

owl:onProperty :hdrName ;

owl:someValuesFrom rdfs:Literal

] , [

a owl:Restriction ;

owl:onProperty :hdrValue ;

owl:someValuesFrom rdfs:Literal

] .

:hdrName a owl:DatatypeProperty, owl:FunctionalProperty ;

rdfs:label "header name"@en ;

rdfs:comment "The name of an HTTP message header."@en ;

rdfs:domain :Header ;

rdfs:range rdfs:Literal .

:hdrValue a owl:DatatypeProperty, owl:FunctionalProperty ;

rdfs:label "header value"@en ;

rdfs:comment "The value of an HTTP message header."@en ;

Towards an ontology of HTTP interactions 25

rdfs:domain :Header ;

rdfs:range rdfs:Literal .

:hdr a owl:ObjectProperty ;

rdfs:label "header"@en ;

rdfs:comment "The headers in an HTTP message."@en ;

rdfs:domain :Message ;

rdfs:range :Header .

Location Header property

hds:isLocationHeader a owl:ObjectProperty, owl:ReflexiveProperty ;

rdfs:label "location header?" ;

rdfs:domain :Header ;

rdfs:range :Header .

:link a owl:ObjectProperty, owl:FunctionalProperty .

hds:LocationHeader a owl:Class ;

rdfs:subClassOf [

a owl:Restriction ;

owl:onProperty hds:isLocationHeader ;

owl:hasSelf true

] , [

a owl:Restriction ;

owl:onProperty :link ;

owl:someValuesFrom :URI ;

] ;

owl:equivalentClass [

owl:intersectionOf (:Header [

a owl:Restriction ;

owl:onProperty :hdrName ;

owl:hasValue "Location" ;

])] .

hds:location a owl:ObjectProperty ;

rdfs:label "location" ;

rdfs:domain :Response ;

rdfs:range :URI ;

owl:propertyChainAxiom (:hdr hds:isLocationHeader :link) .

Query parameters.

:QueryParam a owl:Class ;

rdfs:comment "A parameter for a part of a header value."@en ;

rdfs:label "Query Parameter"@en .

:paramName a owl:DatatypeProperty, owl:FunctionalProperty ;

26 M. Lirzin and B. Markhoff

rdfs:label "parameter name"@en ;

rdfs:comment "The name of a query parameter."@en ;

rdfs:domain :QueryParam ;

rdfs:range rdfs:Literal .

:paramValue a owl:DatatypeProperty, owl:FunctionalProperty ;

rdfs:label "parameter value"@en ;

rdfs:comment "The literal value of a query parameter."@en ;

rdfs:domain :QueryParam ;

rdfs:range rdfs:Literal .

:queryParams a owl:ObjectProperty ;

rdfs:label "query parameters"@en ;

rdfs:comment "The parameters found in the query string part of a URL."@en ;

rdfs:domain :URI ;

rdfs:range :QueryParam .

Content.

cnt:Content a owl:Class ;

rdfs:label "Content"@en ;

rdfs:comment

"Representation of a content which can associated to various formats."@en .

sd:Graph a rdfs:Class ;

rdfs:label "Graph"@en ;

rdfs:comment

"An instance of sd:Graph represents the description of an RDF graph."@en .

cnt:about a owl:ObjectProperty ;

rdfs:label "graph"@en ;

rdfs:comment "A property associating an RDF content with its RDF graph"@en ;

rdfs:domain cnt:ContentAsRDF ;

rdfs:range sd:Graph .

cnt:ContentAsRDF a owl:Class ;

rdfs:label "RDF Content"@en ;

rdfs:comment "RDF Content embedded in the body of an HTTP message"@en ;

rdfs:subClassOf cnt:Content ;

owl:equivalentClass [

a owl:Restriction ;

owl:onProperty cnt:about ;

owl:cardinality 1] .

:body a owl:ObjectProperty, owl:FunctionalProperty ;

rdfs:label "body"@en ;

rdfs:comment "The entity body of an HTTP message."@en ;

rdfs:domain :Message ;

Towards an ontology of HTTP interactions 27

rdfs:range cnt:Content .

Status codes

:StatusCode a owl:Class ;

rdfs:label "Status code"@en ;

owl:equivalentClass [

a owl:Restriction ;

owl:onProperty :statusCodeNumber ;

owl:someValuesFrom :threeDigit ;

] ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231#section-6> ;

rdfs:comment "The status code of an HTTP response."@en .

:sc a owl:ObjectProperty, owl:FunctionalProperty ;

rdfs:label "status code"@en ;

rdfs:domain :Response ;

rdfs:range :StatusCode ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231#section-6> ;

rdfs:comment "The status code of an HTTP response."@en .

:threeDigit a rdfs:Datatype ;

rdfs:label "3-digit integer"@en ;

rdfs:comment "A positive integer consisting in three digit" ;

owl:equivalentClass [

a rdfs:Datatype ;

owl:onDatatype xsd:nonNegativeInteger ;

owl:withRestrictions ([xsd:maxInclusive 999])] .

:statusCodeNumber a owl:DatatypeProperty, owl:FunctionalProperty ;

rdfs:label "status code number"@en ;

rdfs:domain :StatusCode ;

rdfs:range :threeDigit ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231#section-6> ;

rdfs:comment "The status code number."@en .

sc:Informational a owl:Class ;

owl:equivalentClass [owl:intersectionOf (:StatusCode [

a owl:Restriction ;

owl:onProperty :statusCodeNumber ;

owl:someValuesFrom [

a rdfs:Datatype ;

owl:onDatatype xsd:integer ;

owl:withRestrictions ([xsd:minInclusive 100] [xsd:maxInclusive 199])]])

] ;

rdfs:label "Informational"@en ;

rdfs:comment "A status code starting with 1, denoting Status an informational response"@en .

28 M. Lirzin and B. Markhoff

sc:Successful a owl:Class ;

owl:equivalentClass [owl:intersectionOf (:StatusCode [

a owl:Restriction ;

owl:onProperty :statusCodeNumber ;

owl:someValuesFrom [

a rdfs:Datatype ;

owl:onDatatype xsd:integer ;

owl:withRestrictions ([xsd:minInclusive 200] [xsd:maxInclusive 299])]])

] ;

rdfs:label "Successful"@en ;

rdfs:comment "A status code starting with 2, denoting a successful interaction"@en .

sc:Redirection a owl:Class ;

owl:equivalentClass [owl:intersectionOf (:StatusCode [

a owl:Restriction ;

owl:onProperty :statusCodeNumber ;

owl:someValuesFrom [

a rdfs:Datatype ;

owl:onDatatype xsd:integer ;

owl:withRestrictions ([xsd:minInclusive 300] [xsd:maxInclusive 399])]])

] ;

rdfs:label "Redirection"@en ;

rdfs:comment "A status code starting with 3"@en .

sc:ClientError a owl:Class ;

owl:equivalentClass [owl:intersectionOf (:StatusCode [

a owl:Restriction ;

owl:onProperty :statusCodeNumber ;

owl:someValuesFrom [

a rdfs:Datatype ;

owl:onDatatype xsd:integer ;

owl:withRestrictions ([xsd:minInclusive 400] [xsd:maxInclusive 499])]])

] ;

rdfs:label "Client Error"@en ;

rdfs:comment "A status code starting with 4"@en .

sc:ServerError a owl:Class ;

owl:equivalentClass [owl:intersectionOf (:StatusCode [

a owl:Restriction ;

owl:onProperty :statusCodeNumber ;

owl:someValuesFrom [

a rdfs:Datatype ;

owl:onDatatype xsd:integer ;

owl:withRestrictions ([xsd:minInclusive 500] [xsd:maxInclusive 599])]])

] ;

rdfs:label "Server Error"@en ;

rdfs:comment "A status code starting with 5"@en .

Entities

Towards an ontology of HTTP interactions 29

sc:Accepted a :StatusCode ;

rdfs:label "Accepted"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 202 .

sc:BadGateway a :StatusCode ;

rdfs:label "Bad Gateway"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 502 .

sc:BadRequest a :StatusCode ;

rdfs:label "Bad Request"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 400 .

sc:Conflict a :StatusCode ;

rdfs:label "Conflict"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 409 .

sc:Continue a :StatusCode ;

rdfs:label "Continue"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 100 .

sc:Created a :StatusCode ;

rdfs:label "Created"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 201 .

sc:ExpectationFailed a :StatusCode ;

rdfs:label "Expectation Failed"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 417 .

sc:FailedDependency a :StatusCode ;

rdfs:label "Failed Dependency"@en ;

rdfs:isDefinedBy <http://www.ietf.org/rfc/rfc4918.txt> ;

:statusCodeNumber 424 .

sc:Forbidden a :StatusCode ;

rdfs:label "Forbidden"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 403 .

sc:Found a :StatusCode ;

rdfs:label "Found"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 302 .

30 M. Lirzin and B. Markhoff

sc:GatewayTimeout a :StatusCode ;

rdfs:label "Gateway Timeout"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 504 .

sc:Gone a :StatusCode ;

rdfs:label "Gone"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 410 .

sc:HTTPVersionNotSupported a :StatusCode ;

rdfs:label "HTTP Version Not Supported"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 505 .

sc:IMUsed a :StatusCode ;

rdfs:label "IM Used"@en ;

rdfs:isDefinedBy <http://www.ietf.org/rfc/rfc3229.txt> ;

:statusCodeNumber 226 .

sc:InsufficientStorage a :StatusCode ;

rdfs:label "Insufficient Storage"@en ;

rdfs:isDefinedBy <http://www.ietf.org/rfc/rfc4918.txt> ;

:statusCodeNumber 507 .

sc:InternalServerError a :StatusCode ;

rdfs:label "Internal Server Error"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 500 .

sc:LengthRequired a :StatusCode ;

rdfs:label "Length Required"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 411 .

sc:Locked a :StatusCode ;

rdfs:label "Locked"@en ;

rdfs:isDefinedBy <http://www.ietf.org/rfc/rfc4918.txt> ;

:statusCodeNumber 423 .

sc:MethodNotAllowed a :StatusCode ;

rdfs:label "Method Not Allowed"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 405 .

sc:MovedPermanently a :StatusCode ;

rdfs:label "Moved Permanently"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 301 .

Towards an ontology of HTTP interactions 31

sc:MultiStatus a :StatusCode ;

rdfs:label "Multi-Status"@en ;

rdfs:isDefinedBy <http://www.ietf.org/rfc/rfc4918.txt> ;

:statusCodeNumber 207 .

sc:MultipleChoices a :StatusCode ;

rdfs:label "Multiple Choices"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 300 .

sc:NoContent a :StatusCode ;

rdfs:label "No Content"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 204 .

sc:NonAuthoritativeInformation a :StatusCode ;

rdfs:label "Non-Authoritative Information"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 203 .

sc:NotAcceptable a :StatusCode ;

rdfs:label "Not Acceptable"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 406 .

sc:NotExtended a :StatusCode ;

rdfs:label "Not Extended"@en ;

rdfs:isDefinedBy <http://www.ietf.org/rfc/rfc2774.txt> ;

:statusCodeNumber 510 .

sc:NotFound a :StatusCode ;

rdfs:label "Not Found"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 404 .

sc:NotImplemented a :StatusCode ;

rdfs:label "Not Implemented"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 501 .

sc:NotModified a :StatusCode ;

rdfs:label "Not Modified"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 304 .

sc:OK a :StatusCode ;

rdfs:label "OK"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 200 .

32 M. Lirzin and B. Markhoff

sc:PartialContent a :StatusCode ;

rdfs:label "Partial Content"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 206 .

sc:PaymentRequired a :StatusCode ;

rdfs:label "Payment Required"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 402 .

sc:PreconditionFailed a :StatusCode ;

rdfs:label "Precondition Failed"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 412 .

sc:Processing a :StatusCode ;

rdfs:label "Processing"@en ;

rdfs:isDefinedBy <http://www.ietf.org/rfc/rfc2518.txt> ;

:statusCodeNumber 102 .

sc:ProxyAuthenticationRequired a :StatusCode ;

rdfs:label "Proxy Authentication Required"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 407 .

sc:RequestEntityTooLarge a :StatusCode ;

rdfs:label "Request Entity Too Large"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 413 .

sc:RequestTimeout a :StatusCode ;

rdfs:label "Request Timeout"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 408 .

sc:RequestURITooLong a :StatusCode ;

rdfs:label "Request-URI Too Long"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 414 .

sc:RequestedRangeNotSatisfiable a :StatusCode ;

rdfs:label "Requested Range Not Satisfiable"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 416 .

sc:Reserved a :StatusCode ;

rdfs:label "(Reserved)"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 306 .

Towards an ontology of HTTP interactions 33

sc:ResetContent a :StatusCode ;

rdfs:label "Reset Content"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 205 .

sc:SeeOther a :StatusCode ;

rdfs:label "See Other"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 303 .

sc:ServiceUnavailable a :StatusCode ;

rdfs:label "Service Unavailable"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 503 .

sc:SwitchingProtocols a :StatusCode ;

rdfs:label "Switching Protocols"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 101 .

sc:TemporaryRedirect a :StatusCode ;

rdfs:label "Temporary Redirect"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 307 .

sc:Unauthorized a :StatusCode ;

rdfs:label "Unauthorized"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 401 .

sc:UnprocessableEntity a :StatusCode ;

rdfs:label "Unprocessable Entity"@en ;

rdfs:isDefinedBy <http://www.ietf.org/rfc/rfc4918.txt> ;

:statusCodeNumber 422 .

sc:UnsupportedMediaType a :StatusCode ;

rdfs:label "Unsupported Media Type"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 415 .

sc:UpgradeRequired a :StatusCode ;

rdfs:label "Upgrade Required"@en ;

rdfs:isDefinedBy <http://www.ietf.org/rfc/rfc2817.txt> ;

:statusCodeNumber 426 .

sc:UseProxy a :StatusCode ;

rdfs:label "Use Proxy"@en ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> ;

:statusCodeNumber 305 .

34 M. Lirzin and B. Markhoff

sc:VariantAlsoNegotiates a :StatusCode ;

rdfs:label "Variant Also Negotiates (Experimental)"@en ;

rdfs:isDefinedBy <http://www.ietf.org/rfc/rfc2295.txt> ;

:statusCodeNumber 506 .

Misc.

:httpVersion a owl:DatatypeProperty ;

rdfs:label "http version"@en ;

rdfs:comment "The HTTP version of an HTTP message."@en ;

rdfs:domain :Message ;

rdfs:range rdfs:Literal ;

rdfs:isDefinedBy <http://tools.ietf.org/rfc/rfc7231> .

	Towards an ontology of HTTP interactions

