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A B S T R A C T

Implantations of metallic biomaterials are being carried out more and more frequently due to accident and
population aging. Therefore, there is a need for new metallic implants which can combine properties such as
durability, biocompatibility and affordability. In this study, multilayer functionalized 316 L stainless steel (SS)
supports resistant to steam sterilization were presented. An electropolymerization of pyrrole was performed on
SS supports to obtain a protective layer. This polypyrrole coating rendered SS surface resistant to corrosion. Then
an electrodeposition of Calcium Phosphate (CaP) doped with increasing concentrations of silicon (Si) ranging
from 0 to 2 mM was tested to improve support bone integration. The impacts of silicon addition in the CaP
coating without or after steam sterilization were analyzed by profilometry, Scanning Electron Microscopy and
Fourier Transform Infrared Spectroscopy. These latter revealed that CaP doped with 0.5 mM of Si constituted the
optimal support formulation, presenting sterilization resistance and good biocompatibility.

1. Introduction

The implantation of orthopedic biomaterials is widely used all
around the globe to restore physiological functions. Approximately
70% of the implants used in medicine are metallic biomaterials [1] and
are mainly used to repair failed hard tissue. The demand for implants is
increasing exponentially as part of the efforts to improve the life quality
of the aging population. The global market for implants is expected to
grow to $115.8 billion by 2020 [2].

The three most implanted metallic biomaterials are titanium alloys,
cobalt‑chromium alloys and stainless steel (SS). The 316 L SS is the
most widely used alloy mainly for non-permanent implants (e.g. bone
plates, screws) and dental surgery [3,4]. Despite 316 L SS having good
mechanical properties, good biocompatibility and being inexpensive,
this alloy is less used for permanent implantation due to the corrosion
induced by the contact with body fluids and the release of toxic ions
such as nickel and chromium ions which causes local inflammation
[5–7]. Among all the SS implants that failed, more than 90% presented
corrosion attack [8]. Different physical and chemical techniques have
been developed to improve SS resistance to corrosion such as plasma

immersion ion implantation and deposition [9], surface modification of
biomedical 316 L SS with zirconium carbonitride coatings [10], dip
coating [11], electropolishing and acid dipping [12] or sol-gel spin
coating [13]. In this study, the electrodeposition of an electro-con-
ductive polymer was chosen to prevent SS corrosion. In the past dec-
ades steel surface passivation using conducting polymers such as
polyaniline, polypyrrole, and polythiophene has been particularly stu-
died and improved [14]. A conducting polymer coating on an implant
prevents the release of harmful ions into the body. Furthermore, elec-
trodeposition is useful in controlling the chemical composition and
thickness of the coating as demonstrated by Martins et al. [15]. De-
positions are reproductive even on complex geometry or porous sup-
ports and only inexpensive equipment is needed to perform electro-
depositions [16,17].

The electro-conductive polymer retained for this study was poly-
pyrrole (PPy) because of its high resistance to corrosion and delami-
nation [18,19], easy synthesis, high conductivity, good adhesion, and
good biocompatibility [20]. PPy hydrophilicity can also be changed by
electrochemical reductions and oxidations [21] that allow to modify
PPy topography. However, the absence of PPy functional groups able to
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interact with human body biomolecules blocks the further deposition of
exogenous biological molecules such as, for instance, extracellular
matrix glycoproteins [3]. A PPy coated implant is considered a passive
biocompatible material since no adverse tissue response is observed at
the implantation site [22]. Several approaches have recently been de-
veloped to improve the biocompatibility and biointegration of PPy by
incorporating other materials such as hydroxyapatite nanoparticles or
zinc oxide particles [23,24]. Chakraborty et al. have also developed a
fast method to synthesize hydroxyapatite PPy composites by mixing
calcium phosphate (CaP) with Py solution before performing electro-
deposition [25]. Another approach to functionalizing PPy coating is the
deposition of a second porous layer of strontium hydroxyapatite [16].
This approach maintains hydroxyapatite porosity and the bilayer
formed strongly adheres to 316 L SS. Hydroxyapatite direct coating on
metallic supports has been developed by several researchers [26] but
the corrosion resistance of hydroxyapatite could not improve in some
cases [27].

Among numerous bioactive materials, osteoconductive CaP is con-
ventionally employed in orthopedic surgery as a bone ceramic sub-
stituting material due to its biocompatibility, bioactivity and good
adaptation under in vivo circumstances [28]. CaP is the main compo-
nent of the inorganic bone matrix [29] and presents an inherent bio-
compatibility when it is applied as a biomaterial in the human body
[30]. CaP coatings could significantly improve the biological perfor-
mance of metallic implants [31] and could promote osteointegration
[32]. When seeking to improve ceramic bioactivities, silicon (Si) is
often used as a substituent or a dopant to improve the chemical struc-
ture, and the mechanical strength [33] and to enhance biomimetic bone
matrix [34]. Moreover, silicon (Si), which is a key element in bone
growth, is known to enhance and stimulate osteoblast activity [35]. Si
has been found not only to promote osteoblast differentiation, but also
to facilitate bone repair at the wounded site [36]. Previous studies have
demonstrated promising effects of Si incorporation on the bioactivity of
CaP supports [37].

Although implant strategies are largely well described, implant
sterilization and resulting effects are nevertheless less studied in the
literature even though they are essential to orthopedic surgery.
Biomaterial associated infections are critical complications of modern
orthopedic surgery, which often lead to prolonged patient pain [38].
The asepsis of functionalized biomaterial could constitute a real sci-
entific and technological obstacle due to sterilization protocols that
could damage the implant's chemical or physical properties. Different
conventional biomaterial sterilization methods such as ethylene oxide,
gamma irradiation or steam sterilization could be employed. Ethylene
oxide sterilization is time consuming because the removal of all toxic
residual ethylene oxide elimination requires a long time [39], whereas
gamma ray sterilization is faster but could damage medical polymer
devices [40] and imposes economic and technological constraints.
Moreover, gamma ray sterilization could have deleterious effects on
patient-care equipment such as delamination in hip prosthesis and
cracking in polyethylene knee bearing [41]. Compared to plasma and
ethylene oxide, steam sterilization could be an interesting alternative
for large-scale sterilization. Thus, steam sterilization appears as the gold
standard technique for sterilizing metal-based biomaterials and is
widely used in hospitals and medical divisions [42]. Steam sterilization
presents several advantages as it is nontoxic, inexpensive, bactericidal,
has short treatment time and good penetration [43]. However, ster-
ilization techniques cannot be used on temperature- or moisture-sen-
sitive materials and numerous cycles of steam sterilization may damage
SS implants, inducing corrosion [44]. A new sterilization approach has
been recently developed based on supercritical carbon dioxide (ScCO2).
This technique is efficient on temperature-sensitive materials but, to
date, no specific international standard protocol has been developed for
using this procedure, whereas steam sterilization is a well-established
method for sterilizing biomaterial (ISO 17665-1:2006 “Moist heat/
Steam sterilization method”) [42].

The aim of this present work was to optimally functionalize 316 L SS
supports at low cost, through successive electrodepositions of a PPy film
and a coating of CaP doped with different Si concentrations. The multi-
composite coatings formed onto substrates had to not be damaged by
steam sterilization. To this end, the coatings' physico-chemical prop-
erties were characterized and the effects of sterilization were analyzed.

The response of the STRO-1+ A pre-osteoblasts cultured on our
supports was studied so as to investigate the effect of Si doping on cell
viability and morphology. The optimal CaP+Si support synthesis pro-
tocol was thus determined and its biocompatibility was tested.

2. Materials and methods

2.1. Materials

Pyrrole (Py) (98% purity) and sodium salicylate (99% purity) were
purchased from Alfa Aesar and Sigma-Aldrich respectively. The Py
monomer was distilled at 50 °C under reduced pressure to obtain col-
orless purified Py solution.

The electrolytic solution for preparing the CaP+Si coating was
composed of calcium nitrate tetrahydrate (Ca(NO3)2.4H2O, 98% purity,
Sigma–Aldrich), diammoniumhydrogen phosphate ((NH4)2HPO4, 99%
purity, Sigma–Aldrich) and sodium metasilicate nonahydrate
(Na2SiO3.9H2O, 98% purity, Sigma–Aldrich).

2.2. Electrochemical deposition

2.2.1. Steel plates preparation
Medical grade 316 L SS plates were cut by means of blue laser

technologies (CMS Saligny sur Roudon, France) using a L3030 laser
cutting machine (TRUMPF, Germany) in order to obtain calibrated
supports with a size of 30 × 5 × 2 mm.

Before each electrochemical experiment, we polished the substrate
with abrasive paper using different grain sizes (120, 220, 360, 400, 600,
800 SieC) and a Struers LaboPol-1 polisher. The supports were then
cleaned in an ultrasonic bath using permuted water, ethanol and
acetone in order to remove impurities. They were then air dried.

2.2.2. PPy coating on 316 L SS
The electrochemical polymerization of Py on the 316 L SS plates was

performed using a potentiostat/galvanostat (VSP 150, Bio-Logic Science
Instruments) combined with a three electrode system. The 316 L SS
support was used as working electrode, a saturated calomel electrode
(SCE) as reference, and a steel grid as counter-electrode. The electro-
lytic solution used contained 0.1 M freshly distilled pyrrole and 0.5 M
salycilate sodium.

The applied potential was scanned between −0.5 and 1.1 V/SCE for
15 cycles at a fixed scan rate of 50 mV/s, and then rinsed with per-
muted water to remove unused monomer molecules prior to drying in
the air.

2.2.3. CaP coating on PPy coated 316 L SS
25 mM calcium nitrate tetrahydrate Ca(NO3)2.4H2O and 15 mM

ammonium phosphate dihydrogen NH4(H2PO4) were dissolved in per-
muted water to prepare the electrolyte. The electrodeposition process
was carried out at a speed of 20 mV/S, a potential applied between
−1.6 and + 1.1 V/SCE, and the electrolyte temperature set at 60 °C.

2.2.4. CaP+Si coating on PPy coated 316 L SS
The CaP+Si coating was prepared with a solution of 25 mM Ca

(NO3)2.4H2O; 15 mM NH4(H2PO4) and 0.3; 0.5; 1 or 2 mM
Na2SiO3.9H2O in permuted water. The same procedure used for CaP
coatings was applied.

S. Hamdaoui, et al. Colloid and Interface Science Communications 37 (2020) 100282

2



2.3. Surface characterization

2.3.1. Electrochemical corrosion testing
The corrosion behavior of coatings on 316 L SS was evaluated via

linear polarization in simulated body fluid (SBF) solution prepared
according to the Kukobo et al. protocol [45]. The electrochemical stu-
dies were performed in a conventional three-electrode cell (a 316 L SS
support as working electrode, a reference electrode (SCE), and a steel
grid as counter-electrode). Coated and uncoated samples were im-
mersed in SBF for 30 min before each experiment. The pH of the
electrolyte was maintained at 7.4. Potentiodynamic polarization studies
were carried out at a scan rate of 5 mV/s in the potential range from−1
to 0.5 V. The obtained data were recorded and each experiment was
repeated at least three times to check reproducibility.

2.3.2. Profilometric analysis
The thickness and roughness of surface deposits were determined

via profilometry (DEKTAK 150). The mean of three measurements
calculated among five different areas on each support.

2.3.3. Fourier transform infrared spectroscopy (FTIR-ATR)
FTIR spectra were recorded from 4000 to 650 cm−1 on a Bruker

Tensor 27 spectrophotometer equipped with PIKE Attenuated Total
Reflectance (ATR). The spectra resulted from 16 scans with a 2 cm−1

resolution. Spectrometric analyses were performed at room tempera-
ture.

2.4. Biological evaluation

Samples were systematically steam sterilized for 15 min at 120 °C in
a Melatronic 23 autoclave before cell culture.

2.4.1. Cell culture
STRO-1+A (STRO) osteoblast progenitor cells [26] were kindly

provided by Dr. P. Marie (Inserm U1132, Paris Diderot University,
France). They were cultured at 37 °C in Iscove's modified Dulbecco's
medium (IMDM) (Sigma-Aldrich) containing 10% (v/v) fetal bovine
serum (FBS), 2 mM Glutamax® (Invitrogen), 100 units/ml penicillin
(Gibco) and 0.1 mg/ml streptomycin (Gibco). The culture was in-
cubated at 37 °C in a humidified atmosphere of 5% CO2 until pre-
confluence.

2.4.2. Cell viability
Pre-confluent STRO cells were treated with trypsin/EDTA, har-

vested by means of centrifugation, and the cell pellet was re-suspended
in IMDM containing 10% fetal calf serum (FCS) and 1% Glutamax®. The
cell suspension was adjusted to 1 × 106 cells/ml. 60 μl of cell

suspension was seeding on each support. Culture was performed for 1,
3, or 8 days in a humidified atmosphere of 5% CO2, at 37 °C.

Viability tests were performed by staining cells with 4 μM calcein
AM and 1 μM ethidium homodimer (LIVE/DEAD® kit for mammalian
cells (Invitrogen) for 40 min at room temperature (RT). Cellularized
supports were examined using a Leica fluorescence microscope (10×
objective). Living and dead cells were stained respectively with calcein
AM and ethidium bromide dimer.

Images of cells were processed using the ImageJ® software and then
analyzed using the MATLAB® software. Measurements of cell viability
were done on three independent fields per sample; they were renewed
in two independent experiments in duplicate.

2.4.3. Cell morphology
To determine cell morphology, previously cellularized supports

were fixed for 15 min with 4% paraformaldehyde solution in phosphate
buffered saline (PBS). Non-specific binding sites were blocked by in-
cubating the cells in PBS containing 1% bovine serum albumin (BSA)
(Sigma-Aldrich) for 30 min at room temperature. Then cells were la-
beled for 45 min with a solution containing 4′,6-diamidino-2-pheny-
lindole dihydrochloride (DAPI) (1 μg/ml − 1) and phalloidin Alexa®
532 (0.02 U/ml) (Invitrogen). Observations and image capture were
performed using a Confocal Laser Scanning Microscope (CLSM, Zeiss
LSM 710) with adapted Plan-Apochromatic objectives (×63). For each
sample 3 independent fields were analyzed. Data are representative of
two different experiments performed in duplicate.

3. Results and discussion

3.1. Support functionalization and characterization

3.1.1. Electrochemical deposition of PPy coatings
A black uniform smooth and adherent film of PPy was obtained on

316 L SS supports after applying the potential between −0.5
and + 1.1 V/ECS with a scanning speed of 50 mV/s for 15 cycles. In
order to analyze the film formed on the supports, an SEM study was
performed.

3.1.2. Scanning electron microscopy (SEM) analysis
The surface of an uncoated 316 L stainless steel support was

homogeneous, with only small grooves due to polishing being observed
(Fig. 1). The PPy film produced via cyclic voltammetry adhered to and
uniformly covered the support. All the films formed were homogeneous
and presented globular structures. Similar structures with numerous
globules were observed by Martins et al. [15]. Furthermore, steam
sterilization did not affect this film structure; the same film organiza-
tion with globules was observed.

Fig. 1. SEM images of PPy electrodeposited 316 L SS supports. PPy before steam sterilization (a), and PPy after steam sterilization (b).
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3.1.3. Corrosion tests and topography analysis
In order to evaluate the anticorrosion efficiency of PPy films, cor-

rosion tests were carried out in an SBF medium. Fig. 2 shows the po-
tentiodynamic polarization curves of the 316 L SS uncoated and coated
with PPy, before and after steam sterilization. The Tafel extrapolations
consisted of cathodic and anodic polarization used to evaluate the
corrosion potential (Ecorr) and the corrosion current density (Jcorr).
Results are presented in Table 1.

Potentiodynamic polarization curves manifested that the corrosion
potential increased from −423 to −313 mV after PPy deposition on
316 L SS. This increase in the corrosion potential indicates that 316 L SS
coated with PPy has a better anti-corrosion performance in SBF. It can
be attributed to the formation of a passive film under the PPy layer due
to the presence of sodium salicylate as already demonstrated by Ananth
et al. [46]. In addition, the formation of a protective layer on the sur-
face of 316 L stainless steel induces superior corrosion protection [47].

After steam sterilization, no significant change in the polarization
parameters was observed, which demonstrates comparable resistance to
corrosion (Table 1).

In parallel, the thickness and roughness of the PPy coating was
measured. The PPy films formed via polymerization of Py were 2.2+/
− 0.3 μm thick which is comparable to the values obtained for the
steam sterilized films (Table 1). Similar results were observed con-
cerning PPy support roughness with sterile and unsterile PPy films.

3.1.4. Calcium phosphate (CaP) deposition on PPy coated films
To improve the osteointegration of our support, a second layer of

calcium phosphate (CaP) was electrodeposited on PPy films. In parallel,
silicon (Si) was added to the CaP mix to test the effect of the silicon
when incorporated into the CaP layer on 316 L SS supports coated with
PPy. This deposition was also performed via cyclic voltammetry.
Previous studies were tested to select the best method to deposit a dual

layer on 316 L substrates. Pulse electrodeposition was not efficient
enough to promote CaP deposition onto PPy coated substrates.
Sequential electrodepositions of PPy and CaP proposed in the present
study appear to be the best method for getting a homogenous and ad-
herent layer of CaP. Similar results were observed with the dual de-
position of strontium hydroxyapatite onto PPy films which avoids
coating cracking [16,25]. Each PPy coated support was immersed in the
electrolyte solution prepared by mixing 25 mM of calcium nitrate tet-
rahydrate Ca(NO3)2.4H2O, 15 mM of ammonium phosphate dihydrogen
((NH4)H2PO4) in permuted water and supplemented with a respectively
increasing amount of Na2SiO3.9H2O from 0; 0.3; 0.5; 1 to 2 mM. The
electrodeposition was carried out at a speed of 20 mV/s, and a potential
applied between −1.6 and 1.1 V/SCE, while the electrolyte solution
was also maintained at 60 °C during the deposition.

The supports obtained were characterized using profilometry, SEM
and Fourier Transform Infrared Spectroscopy (FTIR). Preliminary
measurements of the thickness and roughness of the CaP+Si supports
(data not shown) allowed us to select the most appropriate concentra-
tions of Si; among five Si concentrations tested ranging from 0 to 2 mM,
only 0.5 mM and 2 mM Si were retained for further experiments. Those
results were confirmed by SEM observations of each sample on which
thickness and roughness were measured. The sample retained presented
less of a blade- and needle-like morphology compared to the other ones.
Those supports seemed to be the most favorable for osteoblast culture
according to Mokabber et al. [48].

3.2. Characterization of multi-coated supports

3.2.1. Support surface analysis
The supports' properties before and after sterilization were com-

pared, with neither CaP coatings nor CaP+Si coatings being detached
from 316 L SS supports by the effect of steam sterilization. Then the
thickness and roughness of CaP and CaP+Si coatings were measured.
No significant differences were observed before or after sterilization, in
neither the thickness nor the roughness of the coating (Fig. 3). How-
ever, changes in the coating thickness depending on the Si concentra-
tion added were noticed (Fig. 3a). The addition of 0.5 mM of Si in
electrodeposition solution induced the most important increase in
coating thickness. The CaP+0.5 Si coating reached a maximum thick-
ness of 36±1 μm (before sterilization) and 36.8±0.6 μm (after ster-
ilization). A similar increase in coating roughness was observed with
the 0.5 mM Si formulation (Fig. 3b). Beyond this, the Si concentration
coating thickness and coating roughness decreased. So those results
confirmed that 0.5 mM Si appears as the optimal concentration for
performing CaP+Si coatings. Analyses of materials' surfaces using
profilometry helped to distinguish microscale changes in their topo-
graphy. The supports' surface did not seem to have been altered by
steam sterilization. To determine if steam sterilization induced lower
scale changes in our samples' surface, SEM observations were per-
formed.

3.2.2. Surface morphology characterization via SEM
The surface morphology of the CaP coating with a growing amount

of Si incorporated is shown in Fig. 4. Before sterilization, both the CaP
and CaP+2 mM Si coatings were composed of small shaped needles
and thin elongated plates; whereas CaP+0.5 mM Si supports presented

Fig. 2. Tafel polarization curves of 316 L SS supports coated or not coated with
PPy, before and after autoclaving.

Table 1
Polarization and topography parameters of 316 L SS supports coated or not coated with PPy, before and after autoclaving.

Sample conditions Polarization parameter Topography parameter

Ecorr (mV vs. SCE) Jcorr (μA.cm−2) Thickness (μm) Roughness (μm)

316 L SS −423 4.51 / 0.81 ± 0.07
316 L SS + PPy −313 3.51 2.20 ± 0.30 0.20 ± 0.01
316 L SS + PPy + steam sterilization −301 2.13 2.34 ± 0.17 0.22 ± 0.03
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a mixture of round shaped crystals of different sizes with a more
compact organization. Previous studies have demonstrated that CaP
surface morphology has an important effect on cell attachment, pro-
liferation and viability [49]. Because needlelike shape morphology
could damage the cell's membrane and subsequent viability [48], CaP
+0.5 mM Si supports presenting reduced needlelike morphology ap-
peared to be the most favorable for osteoblast culture. The sub-micron
topography observed in CaP+0.5 mM Si supports is consistent with the
study by Da Silva et al. who described a nanotopography induced by the
incorporation of Si in hydroxyapatite tablets. Such a topography sti-
mulates osteoblastic adhesion through the formation of numerous focal
adhesion points [50] and stimulates osteogenic differentiation [51].
The supports' topography after steam sterilization was then analyzed.
The blade structure of CaP supports was reduced after sterilization,
while the CaP+2 mM Si support topography remained unchanged.
Furthermore, sterilized CaP+0.5 mM Si coated supports had denser,
organized structure close to the bone surface [52]. Previous studies by
Li et al. [53] demonstrated that steam sterilization could modify the
nanoscale structure of CaP through the reduction of crystal boundaries.
Cavities were still present through a globular organization of CaP
+0.5 mM Si which appeared closer to the bone matrix organization
(Fig. 4d) observed on bone implants after bone healing [54]. Such a
topography could be more favorable for cell attachment and pro-
liferation [55].

3.2.2.1. FTIR-ATR spectroscopy. In addition, surface functional groups

of CaP and CaP integrating an increasing quantity of Si were analyzed
via FTIR. Spectra of sterilized substrates were compared to unsterile
ones (Fig. 5). The band detected at 3572 cm−1 corresponded to the
stretching vibrations of the hydroxyl group (OH) (Fig. 5). Moreover, the
band centered at 1648 cm−1 is characteristic to the bending mode of
H20. The bands detected at 1121 cm−1, 1075 cm−1, 1036 cm−1 and
1021 cm−1 were associated with the υ3 vibration mode of O-P-O, the
band at 961 cm−1 corresponded to the stretch vibration mode of O-P-O
and the band 961 cm−1 corresponding to the PeO stretching vibration
mode υ1 [49,56,57]. An increase in the intensity of the 869 cm−1 band
was produced by the vibration mode υ2 of the carbonate group (CO32−)
[34,58] induced by the incorporation of Si in the coating. This band was
detected in all the coatings, probably due to the absorption of CO2 from
the air. A new absorption band was detected at 790 cm−1 in the CaP
+Si supports. This low intensity band observed corresponds to the
elongation vibrations of the Si-O-Si bond which was observed in a
previous study [59]. No significant spectra modifications were detected
on sterilized supports the FTIR-ATR analysis, the same transmission
bands with a decrease in the intensity of the OeH and H-O-H bands
were observed. FTIR-ATR spectra confirmed that autoclaving didn't
modify support functional groups and the presence of CaP+Si onto PPy
coated substrates.
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Fig. 3. Profilometry measurement of sample surface thickness (a) and roughness (b). CaP coatings were prepared with either 0.5 or 2 mM of Si added to the deposit.
Data are represented by mean ± standard deviation (n = 3 independent measurements).
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Fig. 4. SEM images of Cap+Si electrodeposited on PPy coated 316 L SS supports. Formulations presented are CaP before steam sterilization (a) and after steam
sterilization (b), CaP+0.5 mM Si before steam sterilization (c) and after steam sterilization, (d) CaP+2 mM Si before steam sterilization (e) and after steam
sterilization (f).

Fig. 5. FTIR-ATR spectra of CaP and CaP+Si coating deposited on PPy. Spectra of CaP before steam sterilization (a) and after steam sterilization (a’), CaP+0.5 mM Si
before steam sterilization (b) and after steam sterilization (b’), CaP+2 mM Si before steam sterilization (c) and after steam sterilization (c’).
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3.3. Effects of multilayer supports on pre-osteoblast behavior

3.3.1. Cell viability
STRO-1+ A pre-osteoblasts were cultured on functionalized sup-

ports for 1, 3 and 8 days respectively. Cell viability was measured after
staining adherent cells on supports using a Live/Dead® kit. Images of
stained pre-osteoblasts observed with a fluorescence microscope were

taken. The processing of photos via the Matlab® software made it
possible to calculate cell viability on each support type. As shown in
Fig. 6, pre-osteoblast viability grew all along when culture was done on
CaP+Si supports, whereas a decrease in cell viability was noticed at
day 8 on CaP supports. Cell viability was significantly higher on CaP
+0.5 mM Si supports. The increase in cell mortality for pre-osteoblasts
cultured for 8 days may be due to the saturation of the support surface
saturation with cells (data not shown).

The percentage of live cells was equal to or greater than 75% for all
supports, demonstrating their biocompatibility. Comparable osteoblast
viability was described on stainless steel supports covered with PPy and
hydroxyapatite [25,46]. The addition of 0.5 mM Si enhanced viability
as compared to other coatings. Pre-osteoblasts cultured on CaP
+0.5 mM Si supports for 3 and 8 days presented a viability of 95%.
These results are consistent with the positive cellular effect of the ad-
dition of Si into phosphocalcic supports [60,61].

Hence, our results confirm that CaP+0.5 Si is the optimal support
for pre-osteoblast culture.

3.3.2. Cell morphology
In parallel, the morphology of pre-osteoblasts was observed via

confocal laser scanning microscopy (CLSM). Cells were cultured as
described previously, before being fixed. Nuclei and actin filaments
were stained with DAPI (cyan) and Alexa Fluor® 532 phalloidin (ma-
genta) respectively. Pre-osteoblast CSLM images are shown in Fig. 7: at
day 1 the cells were mainly spread on both CaP+Si supports and had a
clearly distinguishable actin cytoskeleton (Fig. 7b and c). Cells attached
onto all types of supports at day 1 but the typical aspect of the osteo-
blasts' morphology [62] was observed mostly on supports coated with
CaP 0.5 mM Si. The presence of pseudopodes in cells cultured on such
supports confirmed their adhesion improvement. These results are
consistent with previous studies demonstrating a stimulation of osteo-
blast spreading and adhesion induced by the substrates' nanotopo-
graphy [34].

Then a significant increase in the number of cells was observed in
time, for all the supports. Pre-osteoblasts spread more after day 3 and
proliferated up to confluency at day 8 (Fig. 7). A previous study showed
that osteoblasts cultured on silicon-substituted hydroxyapatite tablets
presented more focal adhesion points and the osteoblast area increased
in the presence of silicon. [50] Our results corroborate such data as pre-
osteoblasts appeared connected to each other on CaP+0.5 m Si. STRO-
1 + A were much more elongated and presented spindle shaped mor-
phology with an oriented cytoskeleton (Fig. 7h).

The increase in cell proliferation and spreading on both CaP
+0.5 mM Si supports are in agreement with previous studies reporting
the effect of Si on osteoblast growth [61,63,64]. We hypothesize that
the nanotopography of CaP+0.5 mM Si supports together with the
chemical presence of silicon synergize not only pre-osteoblast adhesion
but also proliferation. Hence the CaP+0.5 mM Si support was the op-
timal support for cell culture and presented the best cytocompatibility.

4. Conclusion

The PPy deposition performed significantly protected 316 L SS
against corrosion and this coating was steam sterilization resistant. CaP
+Si coatings with increasing amount of Si were successfully performed
on 316 L SS supports via cyclic voltammetry electrodeposition. SEM
analysis showed that the morphology of the CaP coatings was modified
by the Si concentration in the electrolyte. A 0.5 mM Si concentration
induced substrate topography similar to the bone mineral matrix.

Crucially none of the CaP coatings was damaged by steam ster-
ilization, indeed, this even improved the CaP+0.5 mM Si topography
which presented close to bone tissue morphology. FTIR-ATR analysis of
the substrates confirmed that spectra were not modified by sterilization
and the appearance of a new band related to the incorporation of a
silicate group in the CaP structure was maintained. CaP+0.5 mM Si

Fig. 6. Cell viability of STRO-1 + A cells stained using the LIVE/DEAD® via-
bility kit. Cells were grown on CaP, CaP+0.5 mM Si or CaP+2 mM Si coating
for 1, 3 and 8 days. Data are expressed as percent of live cells and are re-
presented by the mean ± standard deviation (n = 2 experiments). Mood
statistical test was done, * P <0.05.
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was the optimal formulation for coatings displaying the substrates' best
physical-chemical properties such as roughness, thickness and compact
structure comparable to the inorganic structure of the bone.

The STRO-1+A human pre-osteoblast culture on supports revealed
that the CaP+0.5 mM Si coating induced better cell viability according
to the live/dead test. Cellular studies showed that the Si did not induce
any cytotoxicity on STRO-1+ A cells. The biocompatibility of Si doped
supports was confirmed by the study of cell morphology.

In this study an easy, fast, sterilization-resistant and inexpensive
way to functionalize 316 L SS supports was developed. We propose an
alternative and efficient method based onto CaP doped Si electro-
deposition to functionalize metallic biomaterials useful for orthopedic
and dental applications.
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