The rule of conditional probability is valid in quantum theory

P.G.L. Porta

In a recent manuscript, [START_REF] Gelman | Holes in Bayesian statistics[END_REF] claim that łthe usual rules of conditional probability fail in the quantum realm" and that łprobability theory isn't true (quantum physics)", and purport to support these statements with the example of a quantum double-slit experiment. Their statements are false. In fact, opposite statements can be made, from two different perspectives:

• The example given in that manuscript conőrms, rather than invalidates, the probability rules. The probability calculus shows that a particular relation between probabilities, to be discussed below, cannot a priori be assumed to be an equality or an inequality. In the quantum example it turns out to be an inequality, thus conőrming what the probability calculus says.

• But actually the same inequality can be shown to appear in very non-quantum examples, such as drawing from an urn. Thus there is nothing peculiar to quantum theory in this matter.

In the present note I will prove the two points above, recalling some relevant literature in quantum theory. I shall also correct a couple of wrong or imprecise statements that Gelman & Yao make about quantum physics in their example.

Let me point out at the outset that the rules of probability theory (product or conditional or conjunction, sum or disjunction, negation) are in fact routinely used in quantum theory with full validity, especially in problems of state łretrodiction" and measurement reconstruction [START_REF] Jones | Principles of quantum inference[END_REF][START_REF] Slater | Reformulation for arbitrary mixed states of Jones' Bayes estimation of pure states[END_REF]de Muynck 2002 chs 7, 8;[START_REF] Barnett | Retrodictive quantum optics[END_REF][START_REF] Ziman | Reconstruction of superoperators from incomplete measurements[END_REF][START_REF] D'ariano | Quantum calibration of measurement instrumentation[END_REF]; see [START_REF] Månsson | Numerical Bayesian state assignment for a three-level quantum system. I. Absolute-frequency data; constant and Gaussian-like priors[END_REF] ğ 1 and the rest of the present note for many further references). An example is the inference of the state of a quantum laser given its output through different optical apparatus [START_REF] Leonhardt | Measuring the Quantum State of Light[END_REF].

A more recent claim, somewhat similar to Gelman & Yao's and with a similar supporting example, was made in a work by [START_REF] Brukner | Conceptual inadequacy of the Shannon information in quantum measurements[END_REF] and disproved by Porta Mana (2004a) through a step-by-step analysis and calculation. The fallacy in this kind of examples rests in the neglect of the experimental setup, leading either to an incorrect calculation of conditional probabilities, or to the incorrect claim that the probability calculus yields an equality, where it actually does not. The same incorrect claims can be obtained with completely non-quantum systems , such as drawing from an urn, if the setup is neglected (Porta Mana 2004a ğ IV).

Let us start with such a non-quantum counter-example.

A non-quantum counter-example Consider an urn with one 𝐵 lue and one 𝑅 ed ball. Two possible drawing setups are given:

𝐷 a With replacement for blue, without replacement for red. That is, if blue is drawn, it is put back before the next draw (and the urn is shaken); if red is drawn, it is thrown away before the next draw.

𝐷 b With replacement for red, without replacement for blue.

These two setups are obviously mutually exclusive. We can easily őnd the unconditional probability for blue at the second draw in the setup 𝐷 a :

P ( 𝐵 2 | 𝐷 a ) = 3 4 . (1) 
Note that this probability can be intuitively found by simple enumeration, à la Boole, considering łpossible worlds" if you like. Out of four possible worlds, half of which has blue at the őrst draw, and the other half has red, we can count that three worlds have blue at the second draw.

The conditional probabilities for blue at the second draw, given the őrst draw, are also easily found:

P ( 𝐵 2 | 𝐵 1 ∧ 𝐷 a ) = 1 2 P ( 𝐵 2 | 𝑅 1 ∧ 𝐷 a ) = 1 .
(2)

We őnd that

P ( 𝐵 2 | 𝐷 a ) = P ( 𝐵 2 | 𝐵 1 ∧ 𝐷 a ) P ( 𝐵 1 | 𝐷 a ) + P ( 𝐵 2 | 𝑅 1 ∧ 𝐷 a ) P ( 𝑅 1 | 𝐷 a ) , (3) 
which is just the rule of conditional probability. It is in fact just the systematization and generalization of the intuitive łpossible worlds" reasoning done above.

Next consider the setup 𝐷 b . We easily őnd

P ( 𝐵 2 | 𝐷 b ) = 1 4 , (4) 
P ( 𝐵 2 | 𝐵 1 ∧ 𝐷 b ) = 0 P ( 𝐵 2 | 𝑅 1 ∧ 𝐷 b ) = 1 2 , (5) 
P ( 𝐵 2 | 𝐷 b ) = P ( 𝐵 2 | 𝐵 1 ∧ 𝐷 b ) P ( 𝐵 1 | 𝐷 b ) + P ( 𝐵 2 | 𝑅 1 ∧ 𝐷 b ) P ( 𝑅 1 | 𝐷 b ) . (6) 
Now compare the unconditional probability for blue at the second draw in the setup 𝐷 a , with the conditional probabilities for blue at the second draw given the őrst draw in the setup 𝐷 b :

P ( 𝐵 2 | 𝐷 a ) ≠ P ( 𝐵 2 | 𝐵 1 ∧ 𝐷 b ) P ( 𝐵 1 | 𝐷 b ) + P ( 𝐵 2 | 𝑅 1 ∧ 𝐷 b ) P ( 𝑅 1 | 𝐷 b ) . (7)
This inequality is not surprising ś we are comparing different setups. It is not an instance of the conditional-probability rule. In fact the probability calculus has nothing to say, a priori, about the relation between the left side and right side, which are conditional on different statements or, if you like, pertain to two different sample spaces.

You can call the inequality above łinterference" if you want; for further and more involved examples with urns and decks of cards see Kirkpatrick (2003a,b) and Porta Mana (2004a ğ IV). Now consider another pair of drawing setups: setup 𝐷 c , with replacement for both colours; and setup 𝐷 d , without replacement for either colour. You can easily őnd that

P ( 𝐵 2 | 𝐷 c ) = P ( 𝐵 2 | 𝐵 1 ∧ 𝐷 c ) P ( 𝐵 1 | 𝐷 c ) + P ( 𝐵 2 | 𝑅 1 ∧ 𝐷 c ) P ( 𝑅 1 | 𝐷 c ) , (8) 
P ( 𝐵 2 | 𝐷 d ) = P ( 𝐵 2 | 𝐵 1 ∧ 𝐷 d ) P ( 𝐵 1 | 𝐷 d ) + P ( 𝐵 2 | 𝑅 1 ∧ 𝐷 d ) P ( 𝑅 1 | 𝐷 d ) , (9) 
P ( 𝐵 2 | 𝐷 c ) = P ( 𝐵 2 | 𝐵 1 ∧ 𝐷 d ) P ( 𝐵 1 | 𝐷 d ) + P ( 𝐵 2 | 𝑅 1 ∧ 𝐷 d ) P ( 𝑅 1 | 𝐷 d ) . ( 10 
)
The őrst two equalities above are expressions of the conditionalprobability rule. The third is not , however. It is simply a peculiar equality contingent on the two speciőc setups.

The probability calculus therefore correctly handles situations leading to inequalities such as (7), and to equalities such as (10).

The explicit presence of ' 𝐷 ... ', which represents given information, is necessary discussions involving different setups, such as the above. If I ask you łwhat's the probability of blue at the second draw?", you will ask me łin which drawing setup?". The probability is conditional on the information about the drawing scheme.

The inequality ( 7) is what Gelman & Yao (2020 p. 2) complain about, but in the context of a pair of quantum setups. I do not see how one can complain about it, or claim inconsistencies. It is obviously correct even from an intuitive analysis of the two setups. And the probability calculus correctly leads to it, too. The probability calculus correctly leads also to the equality (10) . As already said, given two mutually exclusive setups, the probability calculus a priori neither commits to an equality nor to an inequality.

I will now show that the simple example above is in fact conceptually quite close to the quantum experiment mentioned by Gelman & Yao. The closeness is especially clear from the experimental and mathematical developments of quantum theory of the past 40 years (at the very least), as the literature cited below shows.

The quantum two-slit experiments

The basic argument of Gelman & Yao is that, in a given setup of the quantum two-slit experiment, we have a speciőc probability distribution for the appearance of an emulsion or excitation on some point of the screen. We can call this a łscreen detection", but please keep in mind that in so doing we are adding an extra interpretation that modern quantum theory does not actually commit to (see discussion and references below). In a different experimental setup we have conditional probabilities for screen detection conditional on slit detection. Now, the probability of the őrst setup is not equal to the combination of the conditional probabilities of the second setup.

But this is exactly what happened in our urn example above, eq. ( 7) . In the present quantum case we do not have a violation of the conditional probability rule either ś if anything it is a conőrmation.

To see the analogy more clearly, let me present some additional facts from quantum theory.

The experimental setup without detectors at the slits and the setup with slit detectors are actually limit cases of a continuum of experimental setups [START_REF] Wootters | Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr's principle[END_REF]; for a recent review and further references see [START_REF] Banaszek | Quantum mechanical which-way experiment with an internal degree of freedom[END_REF]). In the general case, such a setup has slit detectors of varying efficiency, denoted by a parameter 𝑞 ∈ [ 0 , 1 ] that can be chosen in the setup. The possible degrees of efficiency are of course mutually exclusive, so these setups are mutually exclusive.

The slit detector has a given efficiency in the following sense: Let us call 𝑦 the detection position on the screen, and 𝑋 1 is the statement that detection occurs at slit #1 (you can translate to randomvariable jargon if you prefer). When we prepare the electromagnetic őeld in a quantum state 𝑆 , and use ideal detectors with perfect efficiency, the probability of detection at slit #1 is, say 𝑝 𝑆 , and 1 -𝑝 𝑆 for slit #2.

If we use the setup with detectors having efficiency 𝑞 ś denote it by 𝐷 𝑞 ś then the probability of detection at slit #1 is

p ( 𝑋 1 | 𝐷 𝑞 , 𝑆 ) = 1 2 ( 1 -𝑞 ) + 𝑞 𝑝 𝑆 , (11) 
and 1 2 ( 1 + 𝑞 ) -𝑞 𝑝 𝑆 for slit #2. The setup with perfect detectors is the limit case 𝑞 = 1 . In the case of zero efficiency, 𝑞 = 0 , there is no relation between the light states and the őring of the slit detectors; that is, we are always fully uncertain as to which detector would őre, no matter how the light state is prepared.

These kinds of setup ś and many other interesting ones ś are quite easy to prepare with the statistically analogous quantum Mach-Zehnder interferometers (see the textbooks in footnote 2 below; Leonhardt 1997 ğ 4.2; [START_REF] Yuen | Quantum statistics of homodyne and heterodyne detection[END_REF].

In each setup 𝐷 𝑞 (and given the light state 𝑆 ) we also have the conditional probability distribution p ( 𝑦 | 𝐷 𝑞 , 𝑆 ) for detection at 𝑦 on the screen, and the conditional probability distributions p ( 𝑦 | 𝑋 , 𝐷 𝑞 , 𝑆 ) for detection at 𝑦 on the screen, given detection 𝑋 at the slits. We have

p ( 𝑦 | 𝐷 𝑞 , 𝑆 ) = p ( 𝑦 | 𝑋 1 , 𝐷 𝑞 , 𝑆 ) p ( 𝑋 1 | 𝐷 𝑞 , 𝑆 ) + p ( 𝑦 | 𝑋 2 , 𝐷 𝑞 , 𝑆 ) p ( 𝑋 2 | 𝐷 𝑞 , 𝑆 ) . (12)
This is an instance of the conditional-probability rule, which is of course valid. This equality also holds for long-run frequencies (see point ( iii ) below). Note that such conditional and unconditional frequencies are experimentally observed. I would like you to convince yourself, though, that the equality above (not the speciőc values of the frequencies) is not really an experimental fact, since it rests on the very way we measure conditional frequencies.

The conditional and unconditional distributions above will of course be different depending on the setup 𝐷 𝑞 and the light state 𝑆 . But in each instance the rule of conditional probability holds. For example, if

𝑞 ′ ≠ 𝑞 ′′ , p ( 𝑦 | 𝐷 𝑞 ′ , 𝑆 ) = p ( 𝑦 | 𝑋 1 , 𝐷 𝑞 ′ , 𝑆 ) p ( 𝑋 1 | 𝐷 𝑞 ′ , 𝑆 ) + p ( 𝑦 | 𝑋 2 , 𝐷 𝑞 ′ , 𝑆 ) p ( 𝑋 2 | 𝐷 𝑞 ′ , 𝑆 ) , (13) 
p ( 𝑦 | 𝐷 𝑞 ′′ , 𝑆 ) = p ( 𝑦 | 𝑋 1 , 𝐷 𝑞 ′′ , 𝑆 ) p ( 𝑋 1 | 𝐷 𝑞 ′′ , 𝑆 ) + p ( 𝑦 | 𝑋 2 , 𝐷 𝑞 ′′ , 𝑆 ) p ( 𝑋 2 | 𝐷 𝑞 ′′ , 𝑆 ) , (14) 
p ( 𝑦 | 𝐷 𝑞 ′ , 𝑆 ) ≠ p ( 𝑦 | 𝑋 1 , 𝐷 𝑞 ′′ , 𝑆 ) p ( 𝑋 1 | 𝐷 𝑞 ′′ , 𝑆 ) + p ( 𝑦 | 𝑋 2 , 𝐷 𝑞 ′′ , 𝑆 ) p ( 𝑋 2 | 𝐷 𝑞 ′′ , 𝑆 ) . ( 15 
)
The last inequality, analogous to eq. ( 7) , comes from experimental observations (see the brief discussion below about the relation with de Finetti's theorem), and was not in fact not ruled out a priori by the probability calculus. Now let me discuss a couple of very interesting experimental facts about this collection of setups:

First, both the conditional 𝑦 | 𝑋 and unconditional probability distributions for the screen detection 𝑦 generally have an oscillatory profile, typical of interference [START_REF] Wootters | Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr's principle[END_REF][START_REF] Banaszek | Quantum mechanical which-way experiment with an internal degree of freedom[END_REF]; see also [START_REF] Chiao | Quantum non-locality in two-photon experiments at Berkeley[END_REF] for other experimental variations). The oscillatory character is maximal for the zero-efficiency setup 𝑞 = 0 and decreases as 𝑞 increases. For the perfect-detector setup 𝑞 = 1 there is no interference. But we can have quite a lot of interference even when the detection efficiency is quite high, so that some light states we are almost certain about slit detection; see references above. (The proőle depends on the speciőc light state, of course, which we are assuming őxed.)

Second, the unconditional (frequency) distribution observed in the setup 𝐷 0 with zero-efficiency slit detectors is experimentally equal to the distribution for screen detection observed in the setup without slit detectors (note that in the latter setup we cannot speak of conditional or unconditional probability, since slit detection does not exist).

Third, one conditional distribution observed in the setup with one slit closed is experimentally equal to one in the setup 𝐷 1 with perfect slit detectors. (Here we must be careful, because there is no slit detection in the second setup; rather, we speak of appearance or non-appearance at the screen, and in the latter case no conditional distribution is deőned.)

The equalities in the last two cases should a priori not be expected, because the setups are physically different. Of course one can look for physical, łhidden variables" explanations of such equalities. Experimental quantum optics simply acknowledges the fact that two setups are equivalent for such detection purposes, and incorporates this information into its mathematical formalism, by means of appropriately deőned ' povm s ', discussed below.

Note the statistical analogy between the cases above and the cases with the setups of the urn examples previously discussed. In each setup, the rule of conditional probability holds (and in the quantum case we can have distributions, conditional and unconditional, with oscillatory proőles). Across different setups, probability theory says that such a rule cannot be applied; and indeed we őnd inequalities across some setups and equalities across others, both in the quantum and non-quantum case, eqs ( 7) , ( 10) . Even more striking statistical analogies appear in the already cited non-quantum counter-examples (Kirkpatrick 2003a,b;Porta Mana 2004a ğ IV).

It is also possible to consider situations in which we are uncertain about which measurement setup applies. For example we may not know whether there were slit detectors, or the value 𝑞 of the detector efficiency. In such situations we introduce probabilities p ( 𝐷 ... ) for the possible setups and the conditional-probability rule applies, yielding for example

p ( 𝑦 | 𝑆 ) = 𝑞 p ( 𝑦 | 𝐷 𝑞 , 𝑆 ) p ( 𝐷 𝑞 ) (16) 
(here our knowledge of the state was assumed to be irrelevant to our inference about the setup). Then, given the measurement outcome, we can make inferences about the setup [START_REF] Barnett | Retrodictive quantum optics[END_REF][START_REF] Ziman | Reconstruction of superoperators from incomplete measurements[END_REF][START_REF] D'ariano | Quantum calibration of measurement instrumentation[END_REF]; see also [START_REF] Rigo | Inferring the density matrix for a system of an unknown Hamiltonian[END_REF] ś for example whether a slit detector was present or not ś again using the conditionalprobability rule in the guise of Bayes's theorem. This kind of inference is especially important in quantum key distribution [START_REF] Nielsen | Quantum Computation and Quantum Information[END_REF], where we try to infer whether a third party was eavesdropping, that is, performing a covert measurement. Again no violations of the probability rules in the quantum realm: quite the opposite, those rules allow us to make important inferences.

Further remarks and curiosities about quantum two-slits experiments I would like to mention a couple more experimental facts ś which are, besides, statistically very interesting ś to correct some statements by Gelman & Yao in relation to the two-slit experiment.

( i ) It does matter whether many photons are sent at once, or one at a time (cf. Gelman & Yao 2020 ğ 2 point 1); as well as their wavelength, temporal spread, and so on (strictly speaking, the spatio-temporal dependence of the őeld mode). These details are part of the speciőcation of the light state 𝑆 mentioned above, and lead to different probabilities distributions of screen detection.

For example, in some setups and for some states we can have a detection probability density p ( 𝑦 1 ) for the őrst photon, and a different density for the second photon p ( 𝑦 2 | 𝑦 1 ) , conditional on the detection of the őrst ś both being different from the cumulative density of detections. See e.g. the phenomena of higher-order coherence, bunching, anti-bunching, and many other interesting ones 2 . Interference phenomena can also be observed in time, not only in space. The rules of the probability calculus also apply in all such situations. We can infer, for example, the position of the őrst photon detection given the second from the conditional probability rule p

( 𝑦 1 | 𝑦 2 ) ∝ p ( 𝑦 2 | 𝑦 1 ) p ( 𝑦 1 ) .
( ii ) The details about the light source and the setup are not łlatent variables": they specify the quantum state of light and the measurement performed on it. They are like the initial and boundary conditions necessary for the speciőcation of the behaviour of any physical system.

( iii ) In view of point ( i ) above, it is important not to conŕate the probability distributions for single-photon detections, those for cumulative photon detection, and the frequency distributions of a long-run of such detections (Gelman & Yao 2020 ğ 2, seem to conŕate the two). Such distinction is always important from a Bayesian point of view.

I may add that the idea and parlance of łphotons passing through slits" are used today only out of tradition; maybe a little poetically. The technical parlance, as routinely used in quantum-optics labs for example [START_REF] Leonhardt | Measuring the Quantum State of Light[END_REF]Bachor & Ralph 2004), has a different underlying picture. The ' system ' in a quantum-optics experiment is not photons, but the modes of the őeld-conőguration operator 2 (note that this is not yet Quantum ElectroDynamics). łPhoton numbers" denote the discrete outcomes of a speciőc energy-measurement operator; łphoton states" denote speciőc states of the őeld operators. As another example, łentanglement" is strictly speaking not among photons, but among modes of the őeld operator [START_REF] Van Enk | Entanglement of electromagnetic fields[END_REF]. Several quantum physicists indeed oppose the idea and parlance of łphotons", owing to the confusion they lead to. Lamb 3 wrote in 1995: the author does not like the use of the word łphoton", which dates from 1926. In his view, there is no such thing as a photon. Only a comedy of errors and historical accidents led to its popularity among physicists and optical scientists. [START_REF] Wald | Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics[END_REF] warns:

standard treatments of quantum őeld theory in ŕat spacetime rely heavily on Poincaré symmetry (usually entering the analysis implicitly via planewave expansions) and interpret the theory primarily in terms of a notion of łparticles". Neither Poincaré (or other) symmetry nor a useful notion of łparticles" exists in a general, curved spacetime, so a number of the familiar tools and concepts of őeld theory must be łunlearned" in order to have a clear grasp of quantum őeld theory in curved spacetime. [p. ix] [. . .] the notion of łparticles" plays no fundamental role either in the formulation or interpretation of the theory. [p. 2] See also Davies's Particles do not exist (1984).

A summary of the modern formalism of quantum theory It may be useful to give a summary of how probability enters the modern formalism of quantum theory. See textbooks such as [START_REF] Holevo | Probabilistic and Statistical Aspects of Quantum Theory[END_REF], [START_REF] Busch | Operational Quantum Physics[END_REF], Peres (1995 especially ch. 12), de Muynck (2002 especially ch. 3), and the excellent text by [START_REF] Bengtsson | Geometry of Quantum States: An Introduction to Quantum Entanglement[END_REF].

A quantum system is deőned by its sets of possible states and possible measurements. 

These probabilities for all 𝒓 form a probability distribution. The traditional Born-rule expression ' |⟨ 𝜙 𝑟 | 𝜓 ⟩| 2 ' is just a special case of the above formula. The probabilities in the formula come from repeated measurement observations in the same experimental conditions: we can invoke [START_REF] De Finetti | La prévision : ses lois logiques, ses sources subjectives[END_REF][START_REF] De Finetti | La prévision : ses lois logiques, ses sources subjectives[END_REF] theorem here ś the partial-exchangeability variant ś and some quantum physicists indeed do [START_REF] Caves | Unknown quantum states: the quantum de Finetti representation[END_REF][START_REF] Van Enk | Quantum state of an ideal propagating laser field[END_REF][START_REF] Fuchs | De Finetti representation theorem for quantumprocess tomography[END_REF]). The trace-product above is just a scalar product in a particular space. How a set of probability or frequency distributions can be encoded in scalar products is explained in a down-to-earth way in Porta [START_REF] Porta Mana | Why can states and measurement outcomes be represented as vectors?[END_REF][START_REF]Probability tables (probabilistic properties of non-deterministic physical systems)[END_REF].

Once the probability distribution above is given we can use the full-ŕedged probability calculus for our inferences. We can for example sum (or integrate) over detector outcomes 𝑦, . . . , obtaining the marginal probability for detector outcome 𝑥 ; or calculate the probability of outcome 𝑦 conditional on 𝑥 ; or make inferences about the measurement setup or the state. Again, there are no violations of the probability rules. The formalism ( 17) is neat in this respect because it allows us to represent such situations through new povm s and density matrices. You can easily check, for example, that the marginal probability for 𝑥 from eq. ( 17) can be encoded in the povm { M ′ 𝑥 } ≡ { 𝑦,... M 𝑥,𝑦,... } . A situation of uncertainty between setups 𝑀 ′ and 𝑀 ′′ , as in eq. ( 16) , can be encoded in the povm p ( 𝑀 ′ ) M ′ 𝒓 + p ( 𝑀 ′′ ) M ′′ 𝒓 . And so on, and similarly for states and their density operators.

For systems with inőnite degrees of freedom such as electromagnetic őelds or electrons (Fermionic őelds), the matrices above are replaced by operators deőned in particular algebras. A povm element can actually be a space-time-indexed operator. The computational details can become quite complicated, but the same basic ideas apply.

This formalism obviously also includes the speciőcation of postmeasurement states (if the system still exists afterwards), transformations, evolutions. I shall not discuss these; see the textbooks cited above.

Conclusions I hope that the above discussion and bibliography clearly show that:

• the rules of probability theory, including the conditional-probability rule, are fully valid in quantum theory and essential in its modern applications;

• some peculiar equalities or inequalities across different experimental conditions do not contradict the conditional-probability rule, and they appear just as well in quantum as in non-quantum situations, such as drawing from an urn.

Quantum theory already has its physically conceptual difficulties and computational difficulties, as should be clear from the portrait sketched in the present note. I do not see the point in making it seem even more difficult with false claims of non-validity of probability theory or with distorted pictures of its experimental content.

  A state 𝜌 is represented by an Hermitean, positive-deőnite, unit-trace matrix 𝝆 (which satisőes additional mathematical properties: Jakóbczyk & Siennicki 2001; Kimura 2003; Kimura & Kossakowski 2005; Bengtsson & Życzkowski 2017), called ' density matrix '. States traditionally represented by kets | 𝜓 ⟩ are just special cases of density matrices. A measurement setup 𝑀 is represented by a set of Hermitean, positive-deőnite matrices { M 𝒓 } (of the same order as the density matrices) adding up to the identity matrix. They are called ' positive-operator-valued measures ', usually abbreviated povm s. Traditional von Neumann projection operators {| 𝜙 𝑟 ⟩⟨ 𝜙 𝑟 |} are just special cases of povm s. Each matrix M 𝒓 is associated with an outcome 𝒓 of the measurement. These outcomes are mutually exclusive. An outcome can actually represent a combination of simpler outcomes, 𝒓 ≡ ( 𝑥, 𝑦, 𝑧, . . . ) , such as the intensities or őrings at two or more detectors. The probability of observing outcome 𝒓 ≡ ( 𝑥, 𝑦, . . . ) given the measurement setup 𝑀 and the state 𝑆 is encoded in the trace-product of the respective matrices: p ( 𝑥, 𝑦, . . . | 𝑀 ∧ 𝑆 ) ≡ tr ( M 𝑥,𝑦,... 𝝆 ) ,

of the Pitman-Koopman theorem for sufficient statistics,[START_REF] Koopman | On distributions admitting a sufficient statistic[END_REF] 

for example[START_REF] Mandel | Coherence properties of optical fields[END_REF][START_REF] Morgan | Measurement of photon bunching in a thermal light beam[END_REF][START_REF] Paul | Photon antibunching[END_REF][START_REF] Jacobson | Photonic de Broglie waves[END_REF] and textbooks such as Loudon 2000; Mandel & Wolf 2008;[START_REF] Scully | Quantum Optics[END_REF] Bachor & Ralph 2004;[START_REF] Walls | Quantum Optics[END_REF] 

of the Lamb shift,[START_REF] Lamb | Fine structure of the hydrogen atom by a microwave method[END_REF]