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Abstract Estimating discharges Q(x, t) from altimetric measurements only, for ungauged rivers (in particular, those with6

unknown bathymetry b(x)), is an ill-posed inverse problem. We develop here an algorithm to estimate Q(x, t) without7

prior flow information other than global open datasets. Additionally, the ill-posedness feature of this inverse problem8

is re-investigated. Inversions based on a Variational Data Assimilation (VDA) approach enable accurate estimation of9

spatio-temporal variations of the discharge, but with a bias scaling the overall estimate. This key issue, which was already10

highlighted in our previous studies, is partly solved by considering additional hydrological information (the drainage area,11

A (km2)) combined with a Machine Learning (ML) technique. Purely data-driven estimations obtained from an Artificial12

Neural Network (ANN) provide a reasonably good estimation at a large scale (≈ 103 m). This first estimation is then13

employed to define the first guess of an iterative VDA algorithm. The latter relies on the Saint-Venant flow model and14

aims to compute the complete unknowns (discharge Q(x, t), bathymetry b(x), friction coefficient K(x, t)) at a fine scale15

(approximately 102 m). The resulting complete inversion algorithm is called the H2iVDI algorithm for ”Hybrid Hier-16

archical Variational Discharge Inference”. Numerical experiments have been analyzed for 29 heterogeneous worldwide17

river portions. The obtained estimations present an overall bias (less than 30% for rivers with similar characteristics than18

those used for calibration) smaller than previous results, with accurate spatio-temporal variations of the flow. After a19

learning period of the observed rivers (e.g. one year), the algorithm provides two complementary estimators: a dynamic20

flow model enabling estimations at a fine scale and spatio-temporal extrapolations, and a low complexity estimator (based21

on a dedicated algebraic low Froude flow model). This last estimator provides reasonably accurate estimations (less than22

30% for considered rivers) at a large scale from newly acquired WS measurements in real-time, therefore making it a23

potentially operational algorithm.24

Keywords Data assimilation · neural network · inference · rivers · discharge · bathymetry · altimetry · datasets · SWOT25

mission.26

1 Introduction27

The estimate of ungauged or poorly gauged river discharges is one of the greatest challenges in hydrology. Numerous28

satellite missions acquire a huge amount of data of different kinds (altimetry, optical, etc.) every day, which can be useful29

to set up river flow models (see e.g. [9] and references therein). One of the ultimate goals of river flow models is to30

estimate the space-time varying discharge Q(x, t). Setting up a river flow model requires knowledge of the bathymetry,31

an effective friction coefficient, and the (potential) lateral fluxes (see e.g. [10]). The future Surface Water and Ocean32

Topography (SWOT) mission (NASA-CNES et al.) launched in December 2022 starts to provide unprecedented Water33

Surface (WS) measurements of rivers wider than 50−100 m. The SWOT instrument measures the WS elevation Z (with34

a decimetric accuracy over 1 km2) and the WS width W (with a varying uncertainty of a few m, depending on the river35

planform). This instrument will cover a great majority of the globe with relatively frequent revisits: from 1 to 4 revisits36

per 21-day repeat cycle (see [48,47]).37

Given these WS measurements and in order to set up river flow models, the following inverse problem arises: esti-38

mate the discharge Q(x, t), but also the unobserved bathymetry b(x) and a friction law parametrization K(x, t). A few39

algorithms have been developed to solve related inverse sub-problems (see e.g. [16] and references therein, where five40
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different algorithms are compared on 19 river portions). These algorithms are either based on relatively basic flow models41

(the algebraic Manning-Strickler’s law) or empirical hydraulic and geometric power-laws. No method has proven to be42

accurate or robust in all the configurations considered. Indeed, all the methods remain sensitive to the introduced priors,43

e.g. good knowledge of the bathymetry or a mean value of discharge.44

It has been mathematically shown in [30] (see also discussions in [6]) that the considered inverse problem is ill-posed45

if based on flow model equations only (i.e. without any additional prior). This ill-posedness question is addressed in [19]46

in the simpler case of Manning-Strickler type models. This important result explains the biased estimations obtained in47

[17] with almost all algorithms tackling this problem. Various data assimilation approaches based on the Kalman filter and48

its variants have been developed, but initially, none of them considered the complete inverse problem, which aims to infer49

the complete set of unknowns (Q(x, t),b(x),K(x, t)), as discussed in [4] and references therein. However, more recently,50

[1] addressed the actual complete inverse problem using an Ensemble Kalman Filter (EnKF) with a stochastic description51

of the discharge. The flow model is a standard backwater equation, which is a scalar first-order ODE, constrained by52

empirical closing power-laws relating key fields, such as width (WS) W , elevation (WS) H, and discharge Q (classical53

laws called at-a-station hydraulic geometry laws, [15]). The approach relies on unknown priors (PDFs), estimations of54

the river’s geomorphology obtained by a purely data-driven method, and a classification process. The final discharge55

estimation [1], which is the optimal solution of the EnKF algorithm called SAD, is encouraging, with typical median56

NSE of approximately 0.77 and normalized RMSE of approximately 29 obtained on 15 rivers over 19 river portions57

considered in the called Pepsi dataset [16]. Therefore, it seems that the empirical closure power-laws [15] enable the58

partial solution of the equifinality issue when combined with a flow model-EnKF scheme. However, the estimations are59

not yet robust for all tested rivers.60

The complete inverse problem has been tackled by a few different Variational Data Assimilation (VDA) algorithms,61

as discussed in [6,42,41,30]. VDA approaches are based on the optimal control of the considered flow model(s), as dis-62

cussed in [2]. In [41,42], the triplet of unknowns is accurately inferred from the 1D Saint-Venant flow model. However,63

the priors are computed from small Gaussian perturbations of the true values of K and b(x) and define a rating curve Q(Z)64

at downstream (outflow condition). As a consequence, the inversion process easily converges to values corresponding to65

the rating curve imposed at outflow. If the latter is nearly exact, the obtained estimations are obviously not biased. On the66

contrary, if it is unknown, as it is in practice, the bias issue remains. In parallel with the present study, [20] has addressed67

the bias issue by first estimating mean values of the key fields using a Bayesian approach combined with a low Froude68

flow model, such as in [30,19]. In this Bayesian-type approach, the question of priors is moved to the prior PDFs and69

to unknown parameters of the discharge likelihood function. Therefore, the ill-posed feature of the problem is somehow70

transferred to the optimal properties of the Bayesian description. Using this approach, the results presented in [20] appear71

to be more accurate than those presented in [17]. However, it should be noted that these results are based on different72

datasets than those compared in [16,17].73

[30,6] address the inverse problem for ungauged rivers using the Saint-Venant system flow model, where only the down-74

stream unknown normal depth (Z) is imposed, combined with the low-Froude flow model developed in [6,30]. This model75

is designed for the scale of satellite measurements (see also [19]). The HiVDI algorithm [30] implements a complete in-76

version strategy that accurately infers spatio-temporal variations of discharge, but with a potential bias as discussed above.77

The bias value depends on the first guess values and priors introduced in the minimization formulation. However, it is78

shown that if the mean value of discharge or bathymetry is known, the bias vanishes [30,6]. Applications of the HiVDI79

algorithm have been developed in different complex contexts, see e.g. [51,18,45]. Precise comparisons of three ”dis-80

charge algorithms” based on different concepts (including the HiVDI algorithm above) are presented in [17]. To apply81

this method to worldwide ungauged rivers, no informed prior other than information available in open global databases82

can be introduced in the inversions, neither in the direct model nor in the inverse method.83

This study proposes to tackle this complex inverse problem by enriching the HiVDI algorithm with additional hy-84

drological information, namely local drainage area A (km2), and an ANN-based learning process [31]. The resulting85

algorithm, called H2iVDI (Hybrid Hierarchical Variational Discharge Inference) as in [31], provides more accurate esti-86

mations of discharge for ungauged rivers compared to previous studies [6,30,16,51,17]. This higher accuracy is mainly87

due to better first guess values for the VDA iterative process than before ([30]); these are derived by an ANN, which pro-88

vides purely data-driven estimations. The ANN is trained from the WS measurements plus drainage area values A (km2),89

which is an additional physical information compared to the aforementioned studies. It turns out that the ANN-based es-90

timations are already good, at least much better than available global priors such as Water Balance Model (WBM) mean91

values [11]. Therefore, this purely data-driven estimation naturally defines the first guess value for the iterative VDA pro-92

cess. The solutions obtained from any VDA process depend on the physical model, potentially on the first guess value (it93

is the case in this ill-posed problem context), and also on the covariance matrices defining the cost function metrics. The94

present algorithm H2iVDI contains original improvements of the covariance matrices definition. They are non-uniform95

and therefore somehow physically adaptive, which improves the robustness and accuracy of the VDA-based estimations.96

97

In Section 2, the addressed inverse problem is detailed, and the basic principles of the H2iVDI algorithm to solve98

this problem are presented. Data types, including altimetry and in-situ measurements, and the three different scales of99
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data and models are detailed in Section 3. The discharge estimations Q(ANN) obtained by the ANN (which provides100

purely data-driven estimations) and then re-analyzed through the low Froude flow model are presented in Section 4. In101

Section 5, the results obtained by the VDA iterative algorithm, which provide the complete unknown parameters set102

(Q(x, t),A0(x),K(x;h(x, t))) at a fine scale, are analyzed. Additionally, the ill-posedness feature of the inverse problem is103

shown when relying on classical flow models only. Section 6 presents how, past the ”learning period”, the low-complexity104

algorithm can provide quite accurate discharge estimations at a large scale in real-time. A conclusion is proposed in105

Section 7. In the appendix, the river geometry model, the dynamic Saint-Venant flow model, the low Froude flow model106

(low-complexity algebraic system), details on the VDA formulation, and the ANN are presented.107

2 Problem statement and H2iVDI algorithm principles108

2.1 Problem statement109

This study aims at estimating discharges Q(x, t) (m3/s)), bathymetry profiles b(x)(m) and effective friction parameters110

K (m1/3/s) of ungauged rivers from WS measurements only. The WS measurements are of SWOT-like type: elevation111

values Z(x, t) and width values W (x, t), see [47]. These WS measurements are available at two different scales (with112

different accuracies of course): at ”large scale” called reach scale (≈ km and days) and at a smaller scale called node113

scale (≈ 200m), see Fig. 1. At the reach scale an estimation of the slope S(x, t) (m/m) is also available. Details on the114

datasets and these two scales are presented in the next section.115

Following [6,30] and partly in relation to these two spatio-temporal scales of WS measurements, two hierarchical flow116

models are considered: the original low-Froude model presented in [30] (see details in Section C) and the classical Saint-117

Venant flow model (see details in Section B).118

In short, the addressed inverse problem is the following.119

120

Problem (P): Given the WS measurements aforementioned at small scale NodeSc and large scale ReachSc, esti-
mate the discharge Q(x, t) (m3/s), a bathymetry profile b(x)(m) and effective friction parameter values K (m1/3/s).121

It is worth noticing that effective friction parameter values K depends in particular on the flow model scale and on the122

flow regime. In this study, following [6,18], K will be defined as a function depending on the space variable x and the123

water depth h(x, t) therefore a function of the form K(x,h(x, t)). Details are provided in Section 4.2.124

125

Fig. 1 (Left) Top view of an observed river with the two different scales: reach scale and node scale (denoted by ReachSc and NodeSc respectively).
At each location r (cyan portions) corresponds a set of WS measurements (Zr,p,Wr,p,Sr,p) (large scale measurements). The algebraic (low complexity)
flow model, see Section C, is solved at this large scale.
At each node (red circle, NodeSc) corresponds a presumed true cross-section Ar and another set of WS measurements (Zr,p,Wr,p) (small scale mea-
surements).
At the computational grid scale (denoted by CompGridSc) points (dx = 100m, not shown here), no WS measurements are available. The Saint-Venant
dynamic flow model, see Section B, is solved at this scale.
(Right)(Top) The inverse problem: infer the flow discharge Q(x, t) (m3/s), the bathymetry b(x) (m) (equivalently the unmeasured lowest wetted cross-
section A0(x) (m2), see also Fig. 14) and an effective friction parameter K(x, t) (m1/3/s) from the WS measurements.
(Right)(Bottom) Space-time grid of the measurements: reach number r in x-axis vs satellite overpass instant p re-ordered from lowest to highest
flow-line on the y-axis.
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2.2 A-priori capabilities and limitations of inversions based on flow models only126

Let us recall here a crucial issue when addressing the present inverse problem (P). This result has been first shown in [30]127

(see also [19] for preliminary discussions).128

Let us first consider the (low-complexity) algebraic flow model (5) deriving from the basic Gauckler-Manning -Strickler129

equilibrium law between gravity and friction forces. The model (5) is based on the Low-Froude assumption Fr2 << 1130

(property widely satisfied in the present spatial hydrology context as analyzed in [19,6]). This model enables to deter-131

mine the ratio Q/K0,r, equivalently Q/K, but not the unknowns pair (Q,K). This remarks holds even if the bathymetry b132

(equivalently A0) is known. Of course, this remarks holds for the more simple scalar Manning-Strickler’s equation too or133

any other derived version of this basic equilibrium law.134

135

Let us consider now the complete 1D shallow flow model (3) (Saint-Venant’s system). The inverse problem aiming136

at estimating the triplet (Qin(t),A0(x),K(h(x, t)) from this system (3) is also ill-posed. Indeed, it is easy to notice that the137

solution (A,Q)(x, t) is unchanged if multiplied by an adequate factor. Let us show this. Let Q̄ be any scalar value: Q̄ may138

be a mean value of Q or the friction K. We define re-scaled state variables as follows: (A∗,Q∗) = (A,Q)/Q̄. The mass139

equation (3)(a) divided by Q̄ is unchanged: ∂t(A∗)+ ∂x(Q*) = 0. The same mass equation holds, Q and A are simply140

re-scaled by the same factor.141

Next, the re-scaled momentum equation (Eqn (3)(b) divided by Q̄) reads:142

∂t(Q∗)+∂x

(
Q2
∗

A∗

)
+gA∗ ∂xZ =−gA∗S f (1)

with S f ≡ S f (A,Q;h;K) = 1
K2
|Q|Q

A2h4/3 . If defining h as the effective cross-section depth: h = A/W , W the WS width, then:143

S f (A,Q,h;K) = S f (A∗,Q∗,h∗; Q̄−2/3K).144

Therefore, given the WS measurements (W,Z), the 1D Saint-Venant equations (3) with parameter K are equivalent to145

the same equations in the re-scaled variables (A∗,Q∗) but with (Q̄−2/3K) instead of K as Strickler’s parameter. Concern-146

ing boundary conditions, both upstream and downstream conditions are transparently re-scaled by the factor Q̄. It is worth147

noting that this little calculation and its consequences remain of course true for simplified versions of the Saint-Venant148

models e.g. like those presented in [3].149

150

As a consequence and as already mentioned in the general introduction, we know how to infer quite accurately space-151

time variations of the discharge however very likely with a bias, see e.g. [30,18,45,51,17,20]. This bias depends on the152

priors introduced in the employed numerical methods and the first values of the iterative algorithms. To finish, note that153

it has been shown in [30] that the knowledge of the mean value (e.g. seasonal or annual) of Q may be enough to remove154

the bias.155

156

One of the important goal of the present study is to reduce at best this bias in the discharge (and bathymetry) estima-157

tions without any additional informed priors other than global open databases.158

2.3 Inversion algorithm basic principles159

To attempt to solve the bias issue when solving Problem (P) above, the developed algorithm is here the following (see160

Fig. 2).161

– Step 1) First estimations at large scale (ReachSc)162

– Step 1a) Purely-data driven estimation of Q by an ANN163

An ANN with a classical dense architecture is built up to estimate the discharge value Q at the reach number r and164

instant p of the observation. The input variables of the ANN are the WS measurements (Zr,p,Wr,p) at large scale165

(details are presented in the following data description section) plus the river portion drainage area A (km2). This166

last input variable is the only ancillary data employed in this study. It can be derived from HydroSHEDS database167

(Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales) [33] for worldwide rivers.168

The resulting output of the ANN is the discharge value, estimation denoted by Q(ANN)
r,p (r the location index, p the169

instant index).170

171

– Step 1b) Corresponding physically-consistent values of A0,r and Kr,p172

Given Q(ANN)
r,p and the WS measurements at large scale, estimations of the unobserved wetted cross-sections A0173

and friction (Strickler) parameters K are computed as the solution of the Low Froude flow model (5). This simple174

flow model has been demonstrated sufficiently accurate at large scale in [30] (see also [19] for a preliminary175
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version). This step provides an estimation of A0,r at each location r, equivalently an effective bathymetry br given176

the river geometry representation, see Section A and Fig. 14. The friction parameters K are obtained in the form177

Kr(hr,p) by performing the Metropolis–Hastings algorithm (MCMC method).178

179

– Step 2) Estimation of the complete unknowns (Q(x, t),b(x),K(x,h(x, t)) at fine scale (NodeSc)180

181

A Variational Data Assimilation (VDA) method based on the Saint-Venant flow model has been developed to esti-182

mate Q(x, t), A0(x) and K(x,h(x, t)) at fine scale [30]. VDA relies on an iterative algorithm which requires first values183

of the estimated quantities. The latter are based on the large scale estimations obtained at Step 1): Q(ANN)
r,p , A0,r and184

Kr(hr,p).185

186

After convergence, estimations of (Q(x, t),b(x),K(x,h(x, t)) are obtained at fine scale. Moreover, this step results to187

a calibrated (spatio-temporal) Saint-Venant model (see Section B) valid at fine scale.188

189

– Step 3) Low complexity operational model valid at large scale (ReachSc)190

After a complete hydrologic cycle, typically after one year, Saint-Venant flow models have been calibrated for each191

river; the river portions have been ”learned”. In particular, effective bathymetries b(x) (equivalently A0(x)) are now192

available. Given these estimations of bathymetry b(x) and Q(x, t) resulting of Step 2), it is interesting to re-compute193

an optimal effective large scale friction parameter Kr(hr,p) corresponding to the low-complexity flow model. This is194

done by performing the Metropolis–Hastings algorithm (MCMC method).195

196

Finally, after the learning period of the observed rivers (e.g. one year), the present approach provides three compli-197

mentary estimators:198

1) the trained ANN (purely data-driven);199

2) the calibrated Saint-Venant flow model valid at the finest scale and enabling to extrapolate WS measurements;200

3) the algebraic ”surrogate” Low Froude flow model valid at larger scale.201

202

The complete algorithm described above is called H2iVDI algorithm (H2iVDI for ”Hybrid Hierarchical Variational203

Discharge Inference”). It is represented in Fig. 2.204

205
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Fig. 2 FlowChart of the inversion algorithm H2iVDI. Input data are the WS measurements (Z,W,S) at large scale ReachSc (at Step 1) and Step 3))
and at smaller scale NodeSc (at Step 2)). Prior of the algorithm is A (km2) only (values extracted from e.g. HydroSHEDS database). After a complete
representative learning period (typically one year), effective bathymetry b(x) (equivalently A0(x)) and local effective friction laws K(x;h(x, t)) are
available at both scales.

Operational Near-Real-Time (NRT) estimations Past the learning period, given newly acquired WS measurements, few206

possibilities will exist to compute discharge estimations in Real-Time (RT) (computations in µs CPU-time).207

A first one is as follows. Given the WS measurements including the slopes (therefore at ReachSc), it is possible to gen-208

erate numerical space rating curves (also called Stage Fall Discharge -SFD- laws) following e.g. [44,37]. SFD laws may209

also be derived from datasets acquired by multi-missions such as Sentinel-3, Sentinel-6 (ESA), IceSat2 (NASA). Note210

that in 2022, slope measurements can be expected from the (future) SWOT mission only, moreover at ReachSc only. SFD211

constitutes efficient NRT estimators. The generation of SFD laws has been implemented in the H2iVDI algorithm; it is212

however not presented here.213

Note that operationally, these estimations will be NRT only because of the delay to produce the inputs of these mod-214

els from the observations [47]. The low complexity low Froude model aforementioned can provide operational NRT215

estimations too. This option is investigated in Section 6.1.216

3 Data description217

3.1 The altimetry and in-situ data218

3.1.1 The different scales219

Data availability is different depending on the spatial scale. Let us detail the three different scales which are considered220

in this study, see Fig. 1.221

– The large scale is the so-called ”reach scale” in the SWOT community, see [47]. It varies between a dozen of km to a222

few km (≈ 5 km), depending on the river. The reach scale is denoted by ReachSc.223

– The SWOT small scale called node scale in the SWOT community. It corresponds to an average distance of 200m.224

This scale, denoted NodeSc, is defined by ”nodes”, see Fig. 1. However in the data used in this study, it corresponds225

to the grid employed in the reference models (e.g. HEC-RAS) to generate the SWOT-like data and presumed true226

cross-sections A(x). The distance between two nodes here varies between a few km to a few hundreds of meters227

(generally ≈ 200 m) depending on the river.228
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– The very fine scale called here Computational Grid Scale (CompGridSc). It corresponds to the computational grid of229

the Saint-Venant dynamics flow model (see Section B). The CompGridSc elements are 100m long.230

Note that a lower complexity flow model (the algebraic model presented in Section C) will be defined at ReachSc231

only.232

In all the sequel, we denote by the integer variables (r, p) the space-time discrete indices of the quantities defined233

at the reach and node scales e.g. (Ar,Zr,p,Wr,p), see Fig. 1. We will denote by the real variables (x, t) the space-time234

dependency of the quantities defined at the Computational Grid Scale (CompGridSc) e.g. (A(x, t),Q(x, t)).235

3.1.2 Synthetic SWOT-like data236

The future SWOT instrument will provide time series (∼ 4−21 days frequency depending on the latitude) of WS elevation237

Z, water extent and therefore the river width W , [47,48]. These measurements will be available at different scales: at238

NodesSc at the nodes locations and at ReachSc when computed at the reaches locations. The measured WS slopes S will239

be accurate at large scales only, therefore produced at ReachSc scale.240

During the Calibration-Validation (Cal-Val) phase (also referred as the ”fast sampling orbit”), the instrument will have241

a 1-day repeat period. In the present study, the considered data are SWOT-like ones during this Cal-Val phase, [47,48].242

These data are of the same nature as the forthcoming nominal SWOT data but with 1-day revisit. Moreover as a first step243

and following the Pepsi 1 and Pepsi 2 [16,17] benchmarks design (Discharge Algorithm Working Group of the SWOT244

Science Team), we first focus on the perfect data case to better analyse the capabilities of the complete method. Next,245

the same experiments but obtained from perturbed data (either with realistic Gaussian noise or statistical model designed246

from the error budget of the SWOT Science Simulator) are discussed. The latter show the robustness of the approach. The247

next phase will consist to consider outputs of the SWOT Science simulator or data from AirSWOT (AirBorne) campaigns248

[47]. This scientific approach enables to rigorously analyse the developed methods capabilities.249

The considered data are as follows:250

– The complete set of measurements (Zr,p,Wr,p,Sr,p) at ReachSc for each reach r and at each instant p.251

– The measurements of (Zr,p,Wr,p) at NodeSc for each node r and at each instant p.252

In the sequel and if ambiguous, it will be clarified at which scale the different fields and data are considered.253

The SWOT instrument should provide WS measurements (Z,W ) at the “node scale” 200m long. This fine scale data254

is represented by data available in the Pepsi 1 and Pepsi 2 databases at NodeSc.255

256

Each river portion is decomposed into R reaches: r = 1, ..,R, Fig. 14. It is assumed that (P+1) instants of measure-257

ments are available; the corresponding measurements are ordered by flow elevations Zp; the case p= 0 denotes the lowest258

water level (Z0) and p = (P+1) denotes the highest (ZP+1).259

Given a river portion, the resulting SWOT data set is {Zr,p,Wr,p}R,P+1 plus WS slope {Sr,p}R,P+1 at ReachSc.260

261

Depending on the considered flow model, the r-th ”spatial point” denotes either the node or the reach number. More262

precisely, the node scale is the adequate scale for the Saint-Venant dynamics flow model (3), while the larger reach scale263

is consistent with the low complexity algebraic model (5), see [19,6] for detailed investigations.264

Note that SW elevations Z may be obtained from multiple altimetry missions databases, from e.g. DAHITI database [49],265

however at heterogeneous accuracy and frequencies. Also, rivers width W may be extracted from e.g. the Global With266

Database built in [52] or from optical measurements of water extents (e.g. using Sentinel 2 images).267

268

Finally, let us point out that if considering the nominal SWOT orbit (21 days repeat orbit), the present inverse prob-269

lem remains of same nature as the present one, of course with a time limitation of the discharge estimations validity (see270

details at the end of the next section).271

272

3.1.3 Synthetic in-situ data273

References data: Pepsi datasetsThe synthetic data of discharge and flow observations used in this study are a compilation274

of the Pepsi databases which have been built up for the Pepsi 1 and 2 challenges, see [16,17]. These databases contain275

synthetic flow observations generated from outputs of various hydraulic flow models. These models have been calibrated.276

It is assumed by the Discharge Algorithm Working Group of the SWOT Science Team that these models represent suf-277

ficiently well the flow dynamics to constitute references for benchmarking discharge algorithms, [16,17]. The present278

SWOT like observations have been generated from these flow models outputs at daily sampling (corresponding to the279

CalVal orbit phase), both at NodeSc and at ReachSc. For the aforementioned reasons, here no errors have been added to280

the models outputs.281

282
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The considered datasets contain numerous river portions with various hydro-geomorphological properties and various283

regimes.284

Other more sophisticated datasets exist: SWOT Instrument Simulator and AirSWOT campaigns data, see e.g. [51]. How-285

ever these real-like datasets are restricted to very few river portions only. These datasets are in particular not well suited286

for ML experiments.287

The number of days, nodes and reaches varies from one river portion to another. The number of days varies from 12288

days to a full year. The number of nodes by river portion varies from 21 to 3189; the number of reaches varies from 4289

to 16. Some of the river portions in this dataset were outside the range of SWOT visibility since the width was less than290

50m; they were then removed from the dataset. Similarly river portions with less than 100 days of observations were291

removed. Finally, a total number of 29 river portions were selected which represents a total count of 145 reaches and292

(time multiplied by space) of 55 525 observations of any variable at ReachSc. At NodeSc, values of (Z,W ) and (Q,A)293

are available. At ReachSc, values of (Z,W,S) and (Q,A) are available.294

Ancillary dataTo train the ANN, we will use local drainage area values A (km2) as an input variable. In the present295

altimetry context, this variable may be considered as an ancillary data. The knowledge of A will be the only additional296

prior of the inversion algorithm. The employed values of A are extracted from HydroSHEDS (Hydrological data and297

maps based on SHuttle Elevation Derivatives at multiple Scales), [33]. This database is a collection of geo-referenced298

datasets (vector and raster) at various scales (from 3 arc seconds to 30 arc seconds). It includes river networks, void filled299

DEM, watershed boundaries, drainage directions and flow accumulations. As the flow accumulation in HydroSHEDS is300

expressed in number of cells, a dedicated script to compute drainage area (flow accumulation in kilometers square) from301

the drainage directions has been developed. Then the drainage area A at every reach r of the PEPSI database has been302

computed using the geo-location of every river portions.303

3.2 Statistic description of the datasets304

Data representing the important features of the considered rivers portions are presented in Fig. 3. More precisely for each305

river portion are presented the mean value, quantiles (and outliers) for the discharge Q and width W , Fig. 3 (Top). The306

drainage area A (km2) related to the considered river portion is also plotted, Fig. 3 (Bottom). This variable is not present307

in the flow models however it is an important additional information. This variable enables to better estimate discharges308

using ANNs (see next Section).309

310

Three rivers (Jamuna, Mississipi downstream and Padma) present particularly high values of discharges and widths311

(as well as high values of drainage area A ). It can also be noted that the Missouri river portion presents high values of312

drainage area.313

314

This preliminary statistic analysis will help to define learning classes for the ANN. Moreover it will help to set up315

a-priori PDFs and covariance kernels to solve the algebraic flow model (Section C) and the VDA optimization problem316

(Section D.2).317

318

The Pearson correlation coefficient R2 has been computed between numerous variables: Z, W , elevation variations319

dZ, wetted crossed-sections variations dA (both being computed between two ordered overpasses), also soil composition320

(percentage of clay, sand and silt), mean annual rain, mean annual temperature and land use. The numerical results are321

not detailed here; the only high correlations are between (Q,dZ), (Q,dA) and somehow (dA,W ).322

The Pearson correlation coefficient R2 has been computed between Q and numerous variables: Z, W , elevation variations,323

dZ (above lowest observed elevation Z0), wetted crossed-sections variations dA (above Z0), also soil composition (per-324

centage of clay, sand and silt), mean annual rain, mean annual temperature, land use and drainage area. The numerical325

results are not detailed here. The only high correlations are (in decreasing order) (Q,dA), (Q,W ) and somehow (Q,A ).326
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Fig. 3 Hydraulic features of the considered river portions. The green bar indicates the mean value, boxes indicate ±25% quartiles, circles are outliers
(Python boxplot command). (Top) Discharge Q (m3/s). (Middle) Width W (m). (Bottom) Drainage area A (km2).
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Fig. 4 Distribution of the data in Q-Lset (red), Q-Vset-in (blue) and Q-Vset-out (cyan) in planes (dA, Q), (A , Q) and (W ,Q).

3.3 Effective low Froude Strickler coefficient327

Given the datasets previously presented, the friction coefficient K is computed by solving the algebraic flow model328

(5). Since this low complexity flow model relies on the low Froude assumption, this provides the effective low Froude329

Strickler coefficient. The obtained estimations, see Fig. 5, highlight the large range of the effective low Froude Strickler330

coefficient. Moreover it confirms a-posteriori physically-consistent values of K resulting from the measurements.331

Fig. 5 Effective Strickler friction coefficient K computed by solving the low Froude (algebraic) flow model (5), given data of the considered river
portions.

4 Numerical results of Step 1): First estimation at large scale332

4.1 Step 1a) Estimations of Q by ANN333

A first estimation of discharge is obtained by performing the ANN detailed in Section E. The obtained estimation is334

denoted by Q(ANN). This ANN is first trained on the learning set denoted by Q-Lset. Next, the trained ANN accuracy335

is analyzed on two different validation datasets denoted by Q-Vset-in and Q-Vset-out respectively. These three distinct336

datasets are detailed below.337

4.1.1 Learning set Q-Lset and validation sets (Q-Vset-in, Q-Vset-out)338

ANN constitutes excellent interpolators (if well trained); on the contrary, they are poor extrapolators. Then, it is necessary339

to train an ANN such as those employed here (see Section E for details) on well-designed data classes. Here, data can be340

easily classified into 2 rough classes. The threshold to define these 2 classes follows from the statistical analysis presented341

in figures 3 and 4: one considers rivers presenting a discharge value lower or greater than 10 000 m3/s. This threshold342

value is obviously not the only possible, however similar results would be obtained with a different threshold value if343
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respecting a reasonably good splitting of the dataset. The number of 2 classes is here chosen to illustrate the concept.344

The learning dataset denoted by Q-Lset is constituted by river portions presenting mean discharge value lower than345

10 000m3/s, see Fig. 3 (Top Left). All river portions satisfying this criteria are incorporated into Q-Lset excepted 4 of346

them. Three (3) rivers randomly chosen have not been included into Q-Lset: Garonne downstream, Missouri mid-section347

and Ohio. An additional fourth river has been selected since partly inside the learning dataset only: the Iowa river. Indeed,348

this river presents discharge values Q, drainage area A and lowest observed cross-section A0 at the very lower limit of349

the dataset values and with values of width W and A0 outside the other dataset values see Fig. 4.1.1. As a consequence,350

this river will represent a partly learned case only for the supervised ML process presented in next section.351

All these 4 rivers will be used to evaluate the prediction capabilities of the trained ANN. They constitute the validation352

dataset denoted by Q-Vset-in.353

354

Fig. 6 Distribution of the data in (red) Q-Lset, (blue) Q-Vset-in (except the Iowa river) and the (green) Iowa river. (Top) in (W ,Q) plane. (Bottom) in
(A0,Q) plane

Finally, the learning dataset Q-Lset contains data related to (24−4) = 20 river portions. This corresponds to a total of355

41 747 training ”samples” (ML jargon). At each observation location r and each overpass instant p corresponds a sample.356

Each sample contains the 4 predictor variables (dA,W,S,A ) and the single target variable Q.357

In the presented numerical results, the 4 non-considered rivers in Q-Lset are: Garonne downstream, Missouri mid-section,358

Ohio and Iowa. Recall that the latter is an extreme case in terms of values range, see figures 3 and 4.359

360

The rivers portions presenting discharge values greater than 10 000 m3/s, that is Jamuna, Mississippi downstream and361

Padma, see Fig. 3 (Top Left), are gathered in the dataset denoted by Q-Vset-out. These data represent less than 10% of362
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Criteria nRMSE NSE R2

Mean value for the 20 rivers 12.85 % 0.95 0.98

Table 1 Accuracy of the trained ANN for the 20 rivers of Q-Lset: obtained mean value of criteria. (Recall that these preliminary estimations are next
improved by the algebraic flow model).

the total samples. Q-Vset-out will be used to evaluate the estimation capabilities of the trained ANN for rivers presenting363

values of Q far outside the learning values range.364

365

The ANN is trained on Q-Lset (supervised learning) that is rivers presenting discharges lower than the threshold,366

like rivers contained in Q-Vset-in. On the contrary, rivers contained in Q-Vset-out present discharges greater than this367

threshold. As a consequence, one can hope relatively good estimations (predictions) for rivers belonging to Q-Vset-in (if368

the ANN is well-trained), however bad estimations for rivers belonging Q-Vset-out. Also, it is expected that the ANN369

provides less accurate estimations for the partly learned Iowa case compared to the 3 other rivers of Q-V-set-in, since the370

Iowa represents a partly learned case.371

372

Finally, let us remark that classifying rivers within a few rough classes (like the present two here) is realistic. Indeed,373

rough classifications can be done e.g. from the GRDC database [8] or from the GRADES database [34].374

375

4.1.2 Assessment of the trained ANN376

Performance criteria Few criteria are used to measure the estimation accuracy: the normalized RMSE (nRMSE), the377

Nash–Sutcliffe Efficiency coefficient (NSE) and the Pearson correlation coefficient (R2). Applied to the variable Q, these378

criteria read:379

- nRMSE(Q)=RMSE(Q)/Q̄obs with RMSE(Q) =
( 1

n ∑
n
i=1(Q

est
i −Qobs

i )2
)1/2

, Qest
i (resp. Qobs

i ) is the estimated (resp.380

observed) i-th discharge value.381

- NSE criteria reads: NSE = 1− ∑
n
i=1(Q

est
i −Qobs

i )2

∑
n
i=1(Q

obs
i −Q̄obs)2 . NSE value range within [−∞,1].382

- R2 criteria reads: R2(Q) =
∑

n
i=1(Q

est
i −Q̄est )(Qobs

i −Q̄obs)

(∑
n
i=1(Q

est
i −Q̄est )2)

1/2
(∑

n
i=1(Q

obs
i −Q̄obs)2)

1/2 .383

Learning phase After optimization (learning stage), the loss function value (15) is low: the mean values of the misfit384

equals 189 (m3/s). The mean nRMSE and R2 over the 20 learned rivers are excellent, see Tab. 1. After training, the ANN385

approximates very accurately the learned rivers. The estimated discharges for the 4 first rivers in alphabetical order of386

Q-Lset are presented in Fig. 7. This figure aims at verifying the good learning process only.387
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Fig. 7 Discharge values estimated by the trained ANN for the 4 first rivers in alphabetical order of the learning set Q-Lset. (Top Left) Connecticut.
(Top Right) Garonne upstream. (Bottom Left) Kanawha. (Bottom Right) Kushiyara.

4.1.3 Estimations388

Estimations for rivers belonging to Q-Vset-in Below are presented the results obtained for the 4 river portions belonging389

to Q-Vset-in: these rivers do not belong to the learning set Q-Lset. This experiment participates to the estimator assess-390

ment. Q-Vset-in: each river present mean discharge values lower than 10 000 m3/s like those belonging to Q-Lset, see391

Fig. 3(Top) and Fig.4. Recall that these 3 of these 4 river portions have been randomly chosen. The fourth one (Iowa392

river) has been selected for its extreme features (it represents a partly learned case only). The results show that the ANN393

globally provides good estimations, see Tab.2 and the hydrographs in Fig. 8.394

395

The same experiment has been performed for all possible combinations of rivers that is a complete K-fold cross-396

validation, the results are very similar to the present one (presented for the rivers portions Garonne downstream, Iowa,397

Missouri mid-section and Ohio only).398

399

The obtained results are as follows. Garonne downstream, Missouri mid-section and Ohio hydrographs are very well400

estimated: the nRMSE are lower than 30%. If removing the bias value for each case, the accuracy becomes excellent,401

Tab.2. Local peaks only are not well captured. Note that in the Ohio case, the peak values are greater than 10000 m3/s402

that is outside the learning values range.403

As previously mentioned, the case of Iowa river is different. This river presents values partly outside the learning range,404

in particular for the width W and for the lowest observed wetted cross-section A0. Then, the estimated hydrograph is405

accurate excepted for the lowest values: the very low discharges are over-estimated by the ANN. This result is consistent406

with the string feature of ANNs: potential excellent interpolators however poor extrapolators. This over-estimation of the407

lowest values is the reason why the nRMSE criteria is quite high, and even if one removes the bias, Tab.2.408

This experiments shows that the ANN is a good predictor for rivers clearly inside the learning set.409

410

Let us recall that uncertainty error on discharge measurements may be considered as ≈ 30% (see e.g. [22] and refer-411

ences therein) that is higher than the obtained nRMSE on the estimations (Tab. 2 without the Iowa case).412
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Rivers nRMSE NSE nRMSE
with bias removed

Garonne downstream 26.6 % 0.81 7.7 %
Iowa 44.4 % 0.85 44.5 %

Missouri mid-section 18.7 % 0.85 7.0 %
Ohio 18.9 % 0.94 18.9 %

Table 2 Accuracy of the trained ANN for the 4 rivers of the validation set Q-Vset-in. (Recall that these preliminary estimations are next improved by
the algebraic flow model)

In terms of mean value of the estimations, the ANN mean value is better than the WBM values (horizontal dotted lines413

in Fig. 8), excepted in the Garonne downstream case (Fig. 8 (Top)(L)) where all estimations are already good.414

415

In conclusion, in terms of mean value (therefore in a bias point of view), the present ML approach enables to decrease416

the bias compared if starting from the WBM values. Moreover, the ANN provides already very good estimations of dis-417

charge (including the space-time variations). This is true for rivers presenting values clearly in the same range as those in418

the learning set. On the contrary, as soon as the values of input parameters are slightly outside the learning value ranges,419

the prediction becomes much less accurate as shows the Iowa case. For the Iowa case, the ANN is unable to reproduce420

some of the lowest flows (see 8 for days 0-70 and 225-360). Remember the Iowa case has lower values of W than the421

learning set Q-Lset (see 4.1.1), which explains why the prediction of the ANN are not accurate at low flows. This result422

is consistent with the widely observed property of dense ANNs as the present one.423

424

Fig. 8 Discharge values estimated by the trained ANN for the river portions belonging to Q-Vset-in. (Top Left) Garonne Downstream. (Top Right)
Iowa. (Bottom Left) Missouri mid-section. (Bottom Right) Ohio.

Estimations for rivers belonging to Q-Vset-out Despite the well-known poor property of extrapolation of ANNs, we425

briefly present here results obtained for the 3 rivers belonging to Q-Vset-out, that is rivers presenting discharge values426

much greater than 10 000 m3/s, see figures 3 (Top) and 4. The obtained performance criteria are indicated in Tab. 3 and427

the results for two rivers are plotted in Fig. 9. As expected, the estimated values by the ANN are lower than the true ones.428
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Rivers nRMSE NSE nRMSE
with bias removed

Jamuna 73.3 % 0.28 52.5 %
Mississipi downstream 43.6 % -0.56 16.4 %

Padma 109.4 % -0.67 71.4 %

Table 3 Accuracy of the trained ANN for the 3 rivers of Q-Vset-out. (Recall that these first purely data-driven estimations are next improved by the
algebraic flow model).

Variations of the hydrographs are roughly recovered; however peaks are greatly smoothed (the obtained hydrographs are429

not presented here).430

These numerical results confirm that an ANN does not provide good estimations for input values outside the learning431

ranges. This experiment highlights the importance to first make a classification of rivers (see Fig. 4), next to apply a432

correctly trained ANN.433

Fig. 9 Discharge values estimated by the trained ANN for two river portions belonging to Q-Vset-out. (Left) Jamuna. (Right) Mississippi Downstream.

4.1.4 On the sensitivity of the estimations with respect to error measurements and data frequency434

As already mentioned, as a first step and following the Pepsi 1 and Pepsi 2 [16,17] benchmarks design (from the Dis-435

charge Algorithm Working Group of the SWOT Science Team), algorithms evaluations are performed on data with no436

noise and 1 day sampling. Recall that the first SWOT observations will have a 1 day repeat period during the Cal/Val437

phase. Numerous experiments with realistic noise have been performed to be confident in the method robustness and its438

relative insensitivity with respect to a few input data properties. The results are here briefly presented.439

440

With perturbed WS measurements (Z,W ) We have tested the ANN estimation if considering perturbed measurements441

(Z,W ), respecting the expected instrument accuracy. Data have been perturbed using a statistical model developed from442

the error budget of the SWOT Science Simulator, see [17]. The obtained results are as follows: NRMSE equals 18.1%443

and NSE equals 0.91. These results have to be compared with those indicated in Table 1, that is: 18.1% vs 12.8% and444

0.91 vs 0.98. These results show that the ANN estimations remain robust to the inaccuracy of the WS measurements.445

446



16 Kevin LARNIER, Jérôme MONNIER

Fig. 10 Discharge values estimated by the trained ANN for the Iowa River using perfect (blue) and noisy (cyan) WS measurements.

With less frequent WS measurements In the present ANN, the concept of spatial correlation or time correlation between447

the samples does not exist. Indeed, each sample corresponds to a set of (4 + 1) values which are correlated neither448

in time nor in space; they are simple point-wise snapshots. As a consequence, the ANN does not “see” any space or449

time structure in the datasets. After optimization (training), an optimal ANN model has been built. The latter enables to450

reproduce invariants between the four input variables and the output variable Q.451

Following the argument above, the present ANN should provide a similar accuracy if considering much less frequent452

observations (of course with same volume and quality of data). This assertion has been numerically verified (for example453

for a frequency of 5 days).454

Recall that the discharge estimations are valid a time approximately equal to the wave travelling through the river portion455

that is roughly a few hours (and potentially up to a day depending on rivers), see e.g. [43,6,30]. If considering the nominal456

SWOT orbit (21 days repeat orbit) with perturbed data, the inverse problem remains of same nature as the present one,457

with the estimations valid a few hours around the observations instant only.458

4.2 Step 1b) Deductions of A0 and K from the Low-Froude model459

Given the WS measurements and Q(ANN) from Step 1a), estimations of (A0(x),K(x;h(x, t))) are computed as the solution460

of the algebraic Low Froude flow model (5). As a consequence, these estimations of A0 and K are valid at large scale461

only, see Section A. Observe that estimating the unobserved wetted cross-section A0,r is here equivalent to estimate the462

bathymetry br, see Section A and Fig. 14.463

4.2.1 Parametrization of K464

The Strickler coefficient K depends on the location r but also on the water depth value h(x, t): it is a space-time dependent465

parameter of the flow model. Different parametrizations for K exist in the literature like the Einstein Formula or the466

Debord formula, see e.g. [7]. Here to reduce this space-time dependent model parameter, K is simply defined as local467

power-laws as it is proposed in [18,6]:468

Kr,p ≡ K((K0,r,β
K
r );hr,p) = K0,r (hr,p)

β K
r ∀r ∀p (2)

In the following, Kr,p refers to its parametrization defined by (2).469

470

4.2.2 Numerical results471

The algebraic system (5) is solved by using the Metropolis-Hasting algorithm (MCMC method implemented in the472

Python package PyMC3). In the Metropolis-Hasting algorithm, the a-priori PDF are set as follows: U (10,100) for K0,r,473

N (0,0.3) for β K
r and N (µA0/Ā,σA0/Ā) for (A0/A)r. Following the statistics obtained from the HydroSWOT and Pepsi474

databases, one has: µA0/Ā = 0.73, σA0/Ā = 0.21.475

Given A(0)
0,r and the measurements (Zr,0,Wr,0), the corresponding bathymetry profile b(0)r is explicitly obtained, see Section476
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3.1. These estimations are obtained at ReachSc only; see the bathymetry values in Fig. 12 (”prior VDA” values, black477

solid lines).478

The target bathymetry values are those employed in the various calibrated reference flow models (HEC-Ras, LisFlood,479

DassFlow-2D) which have been performed to obtain the synthetic data available in the Pepsi 1 and Pepsi 2 datasets,480

see [16,17] and references therein. In Fig. 12, the ”true” (target) values are represented by the red dots. The latter are481

computed from the effective rectangular values of the unobserved lowest cross-section A0(W =W0,H0 = Z0−b). These482

“true” values of bathymetry b and A0 are available at node scale (NodeSc) (see Section 3 and red dots in Fig. 12).483

484

The bathymetry obtained by solving the algebraic system (5) (”prior (VDA)” lines in Fig. 12) may be biased or not,485

depending on the rivers or the locations. In the Garonne case, the large scale pattern is quite good and relatively unbiased.486

On the contrary in the Ohio case, the bias is much more important (≈ 10 m).487

5 Numerical results of Step 2): Estimations at fine scale based on the Saint-Venant model and VDA488

The VDA algorithm aims at estimating Q(x, t), A0(x) and K(x,h(x, t)) at fine scale (ComputGridSc). VDA relies on an489

iterative algorithm which requires first values of the inferred quantities. The latter are set to the first estimations of Q(ANN)
r,p ,490

A0,r and Kr(hr,p) obtained at Step 1). The VDA algorithm aims at estimating ”input parameters” of the Saint-Venant flow491

model (3) (see details in Appendix B): the time-dependent discharge at inflow Qin(t), the bathymetry b(x) (equivalently492

the unobserved wetted cross-section A0(x), see Fig. 14) and an effective friction law K(x,h(x, t)).493

Let us denote by c the complete set of parameters: c(x, t) = (Qin(t),A0(x),K(x,h(x, t))). VDA consists to minimize a cost494

function j(c), see (10), which measures the discrepancy between data and flow model outputs. The present formulation495

of VDA is quite sophisticated; it is detailed in Section D. Like it is classical in non-linear geophysics problems, the cost496

function j(c) is likely not convex therefore presenting different local minima. Moreover, it is likely ill-conditioned: the497

sensitivity of j(c) with respect to local variations of c near a local optimal value is low. As a consequence, the definition498

of the first guess value c(0) = (Q(0)
in (t),A(0)

0 (x),K(0)(x,h(x, t)))) is crucial.499

5.1 First guess values500

The first guess values are set from the values obtained at Step 1). First guesses are denoted by an superscript (0). The501

first guesses A(0)
0,r and Kr(hr,p)

(0) are directly the values obtained at Step 1b). The first guess value Q(0)
in,p is not the value502

Q(ANN)
in,p : it is the solution of the Low Froude model (5) given A(0)

0,r and Kr(hr,p)
(0). Indeed, this low Froude estimation Q(0)

in,p503

better catches the variations of the true values than Q(ANN), see e.g. Fig. 12 (“prior” curve). This estimation Q(0)
in,p may be504

viewed as a physically-consistent correction of the purely data driven estimation Q(ANN).505

506

Remark. If a mean value of Q(true) is known for a given period (e.g. a week, a month), then one can make fit this507

information with Q(0)
in,p therefore providing a less biased first estimation. However, in ungauged rivers, such mean value508

is unavailable.509

5.2 On the VDA algorithm convergence510

VDA aims at solving the minimization problem (10) by an iterative descent algorithm. It is important to first analyse511

the algorithm convergence. The employed minimization algorithm (see Section D for details) generally converges in less512

than 100 iterations. In a very few cases, the convergence is reached after ≈ 150 iterations only, see e.g. Fig. 11. After513

convergence, the misfit values on WS elevation, see (8), is always excellent: standard deviation σmis f it ≈ 10 cm, see Fig.514

11. This value of σmis f it is lower than the expected value for the SWOT instrument (σSWOT = 25 cm, see [47]).515
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Fig. 11 VDA algorithm convergence: (Left) A typical convergence curve: cost function J(k) (dashed black line) and gradient components (colored
solid lines) vs iterations (Garonne Downstream case). ’BCOO1’, ’KPAR01’, ’KPAR02’, ’BATHY’ corresponds to the gradient component wrt to
Qin(t), K0(x), β K(x), b(x) respectively (all in norms 2). (Right) Misfit values |Zr,p−Zobs

r,p | ∀r∀p in meters (see (8)) after convergence.

5.3 The bias issue in a VDA context516

The equifinality issue pointed out in Section 2.2 does not depend on the method to solve the inverse problem (P) e.g.517

VDA or sequential filters. It is intrinsic to the use of the classical flow equations only. Let us detail consequences of the518

bias issue when solving Problem (P) by VDA. At each minimization iteration, the “model constraint” (3) (see Section 5519

for details) is satisfied by an infinity of flow states values (A,Q) characterized by the friction parameter K. In other words,520

the flow model (3) constrains the inverse problem solution (Qin(t),A0(x),K(h)) up a to a multiplicative factor only. This521

feature is (of course) retrieved in the numerical results: the space-time variations of the infered discharge values are522

reasonably accurate however up to a bias. This bias depends to the first guess and to the priors introduced in the VDA523

formulation (the covariance matrix parameters), see Section 2.2 for details.524

Note that if the bathymetry b(x) is given (therefore A0(x)), the re-scaled unknown (A∗,Q∗) introduced in Section 2.2 does525

not satisfy the flow model anymore. As a consequence in this case, Problem (P) based on Saint-Venant like equations526

may be well-posed. In other respect, recall that a single measurement of bathymetry enables the bathymetry estimation527

along a relatively long river portion, see [19,6].528

529

In the case a mean value of Q is known (e.g. seasonal or annual value) then this enables to fix the bias issue too.530

The numerical results below confirm this statement: given an accurate mean value of Q, estimations of Q(x, t) are very531

accurate, without bias.532

As a consequence, the VDA solution (solution of the minimization problem (10) under the flow model constraint) de-533

pends on priors: the first guess but also the covariance matrix B, see Section D.2. The covariance matrix B is necessary534

to ensure the robustness of the algorithm convergence. However, B is a prior probabilistic model (defined from the prior535

parameters σ�)1 and the computed optimal solution depends these prior parameters σ�. This feature is classical and well536

known in VDA communities, see e.g. [36,24] and references therein. The reader may refer e.g. to [2,38] for a formal537

proof showing equivalences between VDA covariance based solutions and Bayesian estimations.538

539

5.4 Results for rivers belonging to Q-Vset-in540

Given the first guess values (Q(0)
in,p,A0,r,(K0,β

K)r)
(0) computed as previously described, the VDA based on the Saint-541

Venant flow model provides (Q(x, t),A0(x),K(x;h)) at the finest scale (CompGridSc).542

Recall that the first guess (Qin(t),A0(x),K)(0) is a physically-consistent solution, however potentially presenting a bias.543

The bias is here a-priori smaller than if using WBM values but still, see Section 4.1.3.544

The VDA algorithm explores solutions in a “vicinity” of this first guess (Qin(t),A0(x),K)(0). As already mentioned in545

Section 3, the target bathymetries are not true ones; they are those employed in the reference numerical flow models546

which have been performed to generate the synthetic data available in the Pepsi 1 and Pepsi 2 datasets [16,17]. In Fig.547

12, these ”true” (target) values are represented by the red dots. The latter are computed from the effective rectangular548

values of the unobserved flow area A0(W =W0,H0 = (Z0−b)) (see Section A). These values of bathymetry b and A0 are549

available at node scale (NodeSc) only.550

551

1 For sake of simplicity, the subscript � denotes here any index of the variable σ
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Numerical results for the three rivers randomly chosen in Q-Vset-in plus the partly learned case (Iowa river) are552

presented in Fig. 12. Performance criteria are indicated in Tab. 4. The estimations are plotted in Fig. 12 (“prior (VDA)”553

denotes Q(0)
in,p). For the three rivers aleatory chosen (Garonne downstream, Missouri mid-section and Ohio), the three554

estimations of Q (ANN, first guess and VDA solution) are accurate. The nRMSE are lower than the standard error made555

on discharge measurements, see e.g. [12,28]. In terms of nRMSE and NSE criteria, QV DA values are similar to QANN
556

ones. However, the VDA estimation QV DA captures better the variations than the purely data-driven estimation QANN ,557

Fig. 12, since physically-based.558

If removing the bias value for each case, the accuracy is excellent again, see Tab.4.559

560

Concerning the Iowa river, again, the estimated hydrograph is accurate for low values and much less for high ones and561

the peak, see Fig. 12 b). The peak corresponds to a 200-years return period. The cross-section shape presents an important562

discontinuity of W (Z) between the minor bed and the major bed (as no other case presents in the Pepsi-2 dataset). Then,563

the power-law model of K(Z) prevents to well represent this sharp change when flooding. A better representation of K564

would be the use of the Einstein or the Debord formula, see [7]. However, these formulas require an accurate detection565

of the minor bed boundaries, which is a task far to be trivial in all cases using SWOT observables only.566

567

Finally, this second set of estimations confirm that the ML phase (Step 1) must be performed on datasets well inside568

the learning values ranges. Moreover, the VDA process acts as a physical filter (both in space and time) of the uncorre-569

lated purely data-driven estimations. However, this step does not significantly reduce a potential bias introduced in the570

first guess.571

572

Concerning the bathymetry, the VDA improves its estimation in the Garonne case, in particular in pools (low values573

of b(x)), see Fig. 12 (Down)(L). In the Ohio case, the bathymetry estimation remains relatively inaccurate despite the574

excellent discharge estimation. In this case, the bathymetry error is balanced by the adjustment of K.575

576
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Fig. 12 Estimations for the rivers in Q-Vset-in. (a) Garonne downstream. (b) Iowa. (c) Missouri mid-section. (d) Ohio.
On each figure: (top) discharge values Qin(t) vs time during the assimilation window only, (bottom) bathymetry values b(x) and the observed median
flow line Z(obs)

med (x).



Hybrid Neural Network - Variational Data Assimilation algorithm to infer river discharges from SWOT-like data 21

Prior (ANN) Infered by VDA
River name nRMSE NSE nRMSE NSE nRMSE with bias removed

Garonne downstream 22.0 % 0.76 18.4 % 0.83 7.7 %
Iowa 28.3 % 0.84 29.8 % 0.82 20.6 %

Missouri mid-section 15.2 % 0.85 21.2 % 0.71 15.3 %
Ohio 12.0 % 0.93 14.5 % 0.90 10.0 %

Table 4 Performance obtained on the discharge estimation Q(V DA) for the rivers in Q-Vset-in.

5.5 On the robustness of the estimations in presence of noise577

Let us recall that the accuracy of QANN is affected slightly only if considering perturbed SW measurements (with realistic578

Gaussian noises), see Section 4.1.4. As a consequence and following our previous studies [6,51,30,17], one can expect579

that the VDA process propagates these errors but with the same order of magnitude i.e. without amplification. In [6,51,580

30,17], sensitivity analyses of the VDA algorithm (and of the algebraic flow model) have demonstrated a good robustness581

with respect to the WS measurement errors.582

In summary, the main source of the estimation errors is from far the bias potentially present in the first guess.583

The VDA results obtained from the first guess that would be computed using the ANN with perturbed WS measurements584

(Fig. 10) are not presented here. Indeed, they are similar to those with noise within the range of variation already observed585

in [30,17].586

587

Finally, recall that the accuracy of Q(ANN) is not affected if having less frequent data e.g. 10 days period (with similar588

amount and quality of data), since the input data of the ANN are non correlated. As a consequence, the remarks above589

made for the Cal-Val orbit case remain true for the nominal orbit case.590

Remark 1 What about the rivers belonging to Q-Vset-out? As expected, the results obtained for rivers belonging to Q-591

Vset-out (see Section 4.1.1), that is rivers presenting values outside the learning ranges, are much less accurate. For these592

rivers, the VDA estimations are better than the first guess values: the VDA estimation captures relatively well the time593

discharge variations, on contrary to the purely ANN-based ones. However, a relatively large bias remains: the true values594

are under-estimated like the ANN does in this case. These results are here not analysed more in details.595

596

In the end, these experiments confirm that for fully ungauged rivers (in particular without any prior rough mean597

value), the present VDA formulation based on first guesses derived from the ANN - Low Froude model strategy, enables598

to accurately capture the space-time discharge variations at small scale (CompGridSc). However, as expected following599

the mathematical analysis presented in [30] and Section 5.3, the VDA estimation does not make vanish the potential bias600

of the first guess.601

Recall that if any mean value of Q is known (e.g. the annual value) then the estimations become accurate with nRMSE602

much less than the standard error made on discharge measurements ([12,28]).603

6 Step 3) Low complexity operational model604

Past the assimilation period (learning period), the river has been ”learned” and the H2iVDI algorithm (Fig. 2) provides a605

calibrated dynamic flow model valid at fine scale (based the dynamics Saint-Venant flow model (3) ). This model provides606

estimations of discharge at ≈ 14−22% error (rRMSE, see Tab. 4) at fine scale for rivers respecting the validity range of607

the ANN (the Garonne down stream, Missouri mid-section, Ohio rivers in the present case). This accuracy is better than608

the discharge measurements one, see e.g. [12,28].609

Moreover, the estimation of an effective bathymetry b(x) (equivalently A0(x)) is available at fine scale (therefore at large610

scale too). However it may be biased as previously discussed. The effective friction parameter K(x;h(x, t)) is scale de-611

pendent and model dependent. Its adjustment absorbs modeling errors and the potential bias made on b.612

613

The algebraic low Froude flow model (5) can be performed in Real-Time (extremely short CPU-time): it can be used614

in an operational objective as a surrogate model given newly acquired data.615

Note that while the dynamics flow model (3) enables space-time extrapolation of discharge values (typically outside the616

measurements locations), this is not possible if with the algebraic flow model (5).617

6.1 Real-Time estimations given newly acquired WS measurements: the RT algorithm618

Given newly acquired data, an algorithm to estimate Qr,p in real computational time (µ-sec CPU-time) can be as follows.619
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Step 1) Re-calibration of the friction coefficient K. Given (Q(V DA)
r,p ,A(V DA)

0,r ) obtained after the VDA process, the algebraic620

Low Froude (LF) model (5) is solved to obtain (K0,r,β
K
r )(LF). This algebraic system is solved using the Metropolis-621

Hasting algorithm. This provides effective LF friction parameters K(LF)
r,p ; K(LF)

r,p = K((K0,r,β
K
r )(LF),A0,r;Zr,p), see (4).622

This stage can be done ”offline” at any moment past the calibration period.623

624

Step 2) RT estimations given newly acquired WS measurements. Given (A(V DA)
0,r ,(K0,r,β

K
r )(LF)) ∀r, given new WS mea-625

surements (Zr,p,Wr,p,Sr,p)R,P+1, the coefficients (c(k)r,p), for k = 1,2,3, and c(4)r in (5), can be evaluated.626

Next, Q(RT )
r,p ,∀r ∀p, can be explicitly obtained from (5), therefore computed in Real Time (RT).627

628

In the sequel, the algorithm based on these two steps is called the RT algorithm.629

630

Recall that the algebraic Low Froude model is valid at the Reach Scale and at the measurement ”instants” only, see631

[6,30].632

633

6.2 Numerical results634

In this section, the VDA estimations have been obtained from relatively short time periods compared to a complete year,635

see Tab. 5. However these learning periods are relatively representative of the potential annual variations. Outside these636

assimilation periods, the WS measurements are considered as newly acquired: the estimation denoted by Q(RT ) is ob-637

tained following the RT algorithm above.638

Q(RT ) is computed for the assimilation period too. This enables to compare Q(RT ) with Q(target) for the two time periods,639

see Fig. 13.640

During the assimilation period, the estimation Q(RT ) differs from Q(0)
in,p (“prior VDA”) because of the bathymetry has been641

re-evaluated after the VDA phase.642

Results are presented for the three rivers fully belonging to Q-Vset-in (the partly learned case is here skipped). Perfor-643

mance criteria are indicated in Tab. 5.644

For the rivers Garonne downstream and Ohio, the prior estimation Q(ANN) is already excellent, see Section 4.1.3. Then,645

the present RT-estimations given newly acquired WS measurements are accurate (≈ 17−30% nRMSE, see Tab. 5).646
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River name Assimilation period (days) Complete estimation period (days) nRMSE NSE
Garonne downstream [120-170] [1-365] 28.6 % 0.78
Missouri mid-section [201-250] [1-595] 29.9 % 0.64

Ohio [1-50] [1-220] 17.3 % 0.95

Table 5 The assimilation periods are those considered for the VDA processes. The performance scores are those obtained for Q(RT ) during the complete
period.

Fig. 13 Real-Time (RT) discharge estimations Q(t) vs time during the complete time period by solving the algebraic flow model (5). “Prior VDA”
corresponds to the first guess Q(0)

in,p presented in Section 5.1. (Top-left) Garonne Downstream, (Top-Right) Missouri mid-section, (Bottom) Ohio.

Remark 2 On the possibility to compute uncertainty envelopes. In the RT algorithm (Section 6.1), one can easily produce647

uncertainty envelops on the final estimation Q(RT ) as follows.648

At Step 1), one can introduce an uncertainty model on Q(V DA) by considering it as a random variable e.g. Q(V DA) ∼649

N (Q̄(V DA),σQ). Next when performing the Metropolis-Hasting algorithm to compute the effective Low-Froude values650

(K0,β
K)

(LF)
r , one obtains Kr,p as a random variable with a corresponding standard deviation σK .651

At Step 2), Q(RT )
r,p (the explicit solution of (5)) becomes a random variable with a corresponding standard deviation σ f inal .652

653

In summary, by setting a-priori uncertainty through the PDFs of Q(V DA), K(K0,r,β
K
r ), A0,r and the WS measurements,654

one obtains the posterior PDF of Q(RT ) (therefore the uncertainties).655

656

Like in any Bayesian approach, the prior PDFs are arbitrary (here those on Q(V DA) in particular). That is the reason657

why we prefer here to do not present such uncertainty envelopes which fully depends on the priors which are unknown.658

7 Conclusion659

This study proposes a hybrid Machine Learning - Physically Informed Data Assimilation approach (an algorithm combin-660

ing ANN and VDA) to infer rivers discharge for ungauged rivers from altimetry measurements. The developed algorithm,661
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named H2iVDI for Hierarchical Hybrid Variational Discharge Inference, constitutes an important improvement at differ-662

ent levels of the algorithm HiVDI presented in [30,51,17]. The challenging goal is to diminish the bias obtained in the663

previous studies, see e.g. [16,17]. The bias is the result of the equifinality issue mathematically demonstrated in [30] (see664

also [19] for preliminary discussions) and re-discussed here in detail.665

The H2iVDI algorithm is based on three steps. At Step 1), a deep ANN provides a first discharge estimation QANN .666

Given QANN , first estimations of the bathymetry and the parameters of the friction empirical law are derived from the low667

Froude flow model first developed in [30,19]. Step 1) provides already quite good estimations of the complete unknowns668

set (Q(x, t),b(x),K(x,h(x, t)) at large scale (≈ km). The input variables of the ANN (purely data-driven estimations first669

introduced in [31]) are the SWOT-like WS measurements plus an ancillary data: the drainage area A (km2) here taken670

from the HydroSHEDS database [33]. This additional physical information improves the ANN accuracy; this combina-671

tion somehow playing the role of a closure law. This purely data-driven estimation is next used to define the first guess of672

an advanced formulation of VDA at Step 2). The VDA algorithm enables to accurately capture the space-time variations673

of the discharge, provides a bathymetry and effective friction laws at small scale (≈ 10 m). The potential bias present in674

the first guess is not strongly diminished by the VDA iterative algorithm, in accordance with the mathematical analysis.675

In the end, the accuracy using the complete hybrid ANN-VDA based algorithm is better than previous inter-comparison676

studies [16,17], moreover with a bias greatly diminished.677

678

Past the assimilation period, the rivers have been ”learned”, the H2iVDI algorithm provides two calibrated flow mod-679

els: the dynamics Saint-Venant flow model valid at fine scale and the low complexity algebraic low Froude flow model680

valid at large scale. Given newly acquired WS measurements, the low complexity algebraic low Froude flow model con-681

stitutes a possible operational estimator by providing estimation of Q (at large scale) in real computational time (µ-sec682

CPU-time). Moreover, the resulting dynamic Saint-Venant flow model enables to generate numerical rating curves at683

virtual stations (Stage Fall Discharge laws) like in e.g. [44,37]. Such simple and operational laws may be derived from684

datasets acquired by multi-missions such as Sentinel-3, Sentinel-6 (ESA), IceSat2 (NASA) too.685

686

The numerical tests and performance criteria are here analyzed for synthetic SWOT-like data generated from the687

outputs of various calibrated flow models for 29 rivers portions available in the reference Pepsi 1 and 2 datasets, [16,17]).688

The obtained flow models / estimators provide estimations of discharge within the expected 30% range error (rRMSE),689

that is within the range of uncertainty on discharge measurements (see e.g. [12,28]) for all cases presenting input data690

within the learning ranges.691

Since the estimators at Step 1) are neither spatially nor temporally correlated, their results quality is not affected when692

considering more or less frequent data e.g. with a few days frequency instead of 1 day (with estimations valid a time693

approximately equal to the wave travelling through the river portion that is between approximately between a hour and a694

day depending on rivers portions). The results show that the ANN estimations remain robust in presence of realistic noise695

on the WS measurements. The VDA-based estimations (Step 2) with respect to realistic noises are robust too, confirming696

previous studies [30,51,6]. All these numerical experiments ensure the robustness and demonstrate a reasonable accuracy697

of the presently developed algorithm.698

This version of the algorithm is implemented in the Confluence framework that will be in charge of the testing and699

production of the discharge parameters for the SWOT mission. Thus this version is ready for operational ingestion of real700

SWOT WS measurements as soon as they are available, and particularly for the first phase of the mission (Cal/Val phase701

with 1 day repeat orbit).702

The present H2iVDI algorithm is implemented in the open-source computational software DassFlow [39]. Based on703

the recently released multi-dimensional 2D-1D software version [46], the estimation of discharge and bathymetry from704

satellite WS measurements (SWOT mission in particular) could be used to calibrate this complete surface flows numerical705

model which enable to simulate complex 1D networks, including braided portions [45] and local flood plains, see e.g.706

[46].707
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A River geometries812

Recall that the SWOT-like measurements consist in sets (Zr,p,Wr,p)R,P+1. Moreover at ReachSc, WS slopes values Sr,p are available and taken into813

account into the algebraic flow model (see next section). The values Sr,p are either deduced from the elevation values Z or estimated by an internal814

instrument process.815

The considered river geometries are derived from the SWOT-like datasets (Zr,p,Wr,p)R,P+1 following the suggestion made in [19]. The cross-816

sectional geometry consists in discrete cross sections formed by asymmetrical trapezium layers (Zr,p,Wr,p), see Fig. 14. The cross-sectional areas Ar,p817

satisfy: Ar,p = Ar,0 +δAr,p = Ar,0 +
∫ Zr,p

Zr,0
Wr(h)dh ∀r ∀p≥ 1.818

The variations δAr,p are approximated by the trapeziums: δAr,p ≈ ∑
p
q=1

1
2 (W

q
r +W q−1

r )(hq
r −hq−1

r ).819

The lowest cross-sectional areas denoted by Ar,0 (r = 1, · · · ,R) are unobserved; they are key unknowns of the flow models. They can be repre-820

sented by rectangles or any other fixed shape (e.g. a parabola); all the other cross-sectional areas are trapezoidal. Next, for simplicity and regularization821

purposes, the shape is approximated at a cubic spline curve in the least square sense (green curve), see Fig. 14.822

823

ToDo: Kev: 1 phrase de plus pour dire que ca ete quantifie / teste sur P rivers blabla ?824

825

For all considered rivers we have the hydraulic radius Rh which satisfies: Rh
r,p ≈ hr,p. Also since W >> h, it follows the effective depth expression:826

hr,p ≈ (Ar,0 +δAr,p)(Wr,0 +Wr,p)
−1.827

Fig. 14 A cross section Ar is the superimposition of the observed trapeziums Ar,p defined from the p-ordered SWOT measurements (Zr,p,Wr,p) + the
unobserved lowest cross-section A0. Next, the shape is approximated by a cubic spline (green curve).

B The dynamic flow model: Saint-Venant’s equations828

The considered dynamic flow model is the 1D Saint-Venant equations in their non conservative form in (A,Q) variables; A the wetted-cross section829 [
m2], Q the discharge

[
m3.s−1]. The equations read as follows, see e.g. [10]830 {

∂t A+∂xQ = 0

∂t Q+∂x

(
Q2

A

)
+gA∂xZ =−gAS f (A,Q;K)

(3)

where g is the gravity magnitude
[
m.s−2], Z is the WS elevation [m], Z = (b+ h) where b is the lowest rectangular cross-section (bed) level [m]831

and h is the water depth [m].832

At inflow (upstream), the discharge Qin(t) is imposed.833

At outflow (downstream), if known the WS elevation Zout is imposed. If unknown, the normal depth (based on the Manning-Strickler equilibrium834

equation) is imposed. Recall that the normal depth depends on the prior values (K,A0) at outflow.835

The RHS term S f is the classical Manning-Strickler friction term: S f (A,Q;K) = |Q|Q
K2A2R4/3

h

with K the Strickler roughness coefficient
[
m1/3.s−1

]
836

with Rh h h [m]. K is defined following the local power-law (4). The discharge Q is related to the water velocity u
[
m.s−1] by the relation: Q = uA.837

This 1D Saint-Venant model is discretized using the classical implicit Preissmann scheme (see e.g. [13]) with a space cell length ∆x = 200m and838

time step ∆ t = 1h.839

The numerical model has been implemented in the computational software DassFlow [39].840
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C The algebraic low-Froude flow model841

In this section, the so-called low Froude flow model dedicated is presented. This model has been developed especially for the scale of satellite measure-842

ments. The low-Froude validity has been investigated in detail in [19]; next the model has been improved and re-evaluated in [6,30]. Mathematically843

speaking it is an algebraic system depending on the three variables (Qr,p,Kr,p,A0,r) containing equations similar to the Manning-Strickler law at (r, p)844

given. The Strickler friction coefficient Kr,p depends on space (index r) and time (index p). To reduce its complexity, K is represented as a power-law845

in function of the water depth h.846

Reduced parametrization of K As already mentioned, the Strickler friction coefficient K is defined as local power-laws at the large scale847

(ReachSc) as defined in (2). As a consequence, given R× (P+1) measurements Zr,p, the friction parameter Kr,p is represented by 2R parameters only:848

(K0,r,β
K
r )1≤r≤R. This reduced parametrization provides a local effective power-law in h. The law reads in function of the WS measurements as:849

Kr,p ≡ K((K0,r,β
K
r );A0,r,Wr,0,Zr,p) = K0,r

(
Zr,p−Zr,0 +

1
Wr,0

A0,r

)β K
r

∀r ∀p (4)

The algebraic flow model While deriving the flow equations (mass and momentum conservation laws), the Low Froude assumption (Fr2 << 1)850

is applied. The resulting model is an algebraic system of R equations (one equation per reach r); each equation is similar to the Manning-Strickler law,851

see [30,6]. Since this “Low Froude” flow model is algebraic, its complexity is low. Using the present reduced parametrization (4), this system reads as852

follows:853

Q
3
5
r,p = K3/5

0,r (c(1)r,p A0,r + c(2)r,p )
(

c(4)r A0,r + c(3)r,p

)3/5β K
r

1≤ r ≤ R, 0≤ p≤ P (5)

The coefficients c(k)r,p , k = 1, · · · ,3, and c(4)r can be evaluated from the altimetry measurements. Their expressions are:854

c(1)r,p =W
−2
5

r,p S3/10
r,p , c(2)r,p = c(1)r,p δAr,p, c(3)r,p = (Zr,p−Zr,0), c(4)r =

1
Wr,0

(6)

System (5) constitutes the so-called algebraic flow model. It contains R(P+1) equations.855

If considering the full set of unknowns ((K0,r,β
K
r ),A0,r,Qr,p) i.e. R(3+(P+ 1)) unknowns, it is an underdetermined system therefore admitting856

an infinity of solutions.857

If the discharge values Qr,p are given, the system admits an unique solution for the two other variables ((K0,r,β
K
r ),A0,r) (2R unknowns). This is858

the way the first guesses (Kr,p,A0,r)
(0) are computed given QANN

r,p , see Section 5.1.859

860

Moreover this system is employed to compute real-time estimations of Q, see Section 6.861

862

Finally it is worth to notice that if A0,r is given ∀r (therefore all wetted areas Ar,p = Ar,0 +δAr,p ∀r∀p are given) then by solving the algebraic flow863

model (5) the inference of the ratio (Q/K)r,p is possible but not the sough variables (Qr,p,Kr,p). (Of course, this remark applies to the classical scalar864

Manning-Strickler law too).865

D The Variational Data Assimilation (VDA) method866

In this section we detail the developed VDA method to infer the “input parameters” of the Saint-Venant flow model (3). The estimated parameters are:867

the time-dependent discharge at inflow Qin(t), the bathymetry b(x) (equivalently A0(x)) and the friction coefficient K. K is parametrized as indicated868

in (4). VDA consists to minimize a cost function which measures the discrepancy between data and the flow model outputs.869

D.1 The optimization formulation870

The employed VDA formulation is the one developed in [30] with a few improvements detailed later. At the observational scale, the discrete unknown871

“parameter” of the dynamic flow model (Saint-Venant’s equations) reads:872

c =
(
Qin,0, ..., Qin,P; b1, ..., bR;(K0,1,β

K
1 ), . . . ,(K0,R,β

K
0,R)
)T

(7)

The subscript p denotes the instant, p ∈ [0..P] , r denotes the reach number, r ∈ [1..R] , see Fig. 14. The parameters used to impose a normal depth873

at downstream, see Section B, are considered as unknown parameters too (otherwise the flow would be controlled by the imposed outflow condition).874

The cost function aims at measuring the misfit between data (therefore at the observations scale) and the Saint-Venant (fine scale) flow model875

output. It is defined as:876

j(c)≡ jobs(c) =
1
2

P

∑
p=0

R

∑
r=1

(
Zr,p(c)−Zobs

r,p

)2
(8)

This cost function j has to be minimized, starting from a first guess value (prior) c(0). However following [35,30], the following change of variable877

is applied:878

k = B−1/2(c− cprior) (9)

with B a covariance (symmetric definite positive) matrix, B = B1/2B1/2.879

Then by setting J(k) = j(c), the considered optimization problem reads:880

min
k

J(k) (10)
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The first order optimality condition of this optimization problem reads: B1/2∇ j(c) = 0. The change of variable based on the covariance matrix B acts881

as a preconditioner for the optimization problem, see e.g. [23,24] for related analysis.882

Recall that in the linear-quadratic case (the model is linear, the functional is quadratic), one can show the equivalence between the VDA solution883

of (10) (considering (9)) and Bayesian estimations based on B, see e.g. [38]. The VDA algorith is implemented in the DassFlow computational code884

[39]; it employs the automatic differentiation tool Tapenade [25].885

It is necessary to add a regularization (“convexifying”) term to the cost function j(c) to define a better conditioned optimization problem, see e.g.886

[5]. The classical way to do it is to define j as follows: j(c) = jobs(c)+ jreg(c) with jreg a Tikhonov regularization term. Here the regularization term887

reads as:888

jreg(c) = 1
2

(
γb ∑

R
r=1 |∂rbr(c)|2 + γK0 ∑

R
r=1 |∂rK0,r(c)|2

)
.889

The regularization term weight coefficients γ� are empirically set (such that at initial iteration the regularization terms ≈ 10% of jobs). Following an890

adaptive regularization strategy, see e.g. [26], the weight coefficients are divided by 2 every 10 iterations.891

892

Moreover thanks to the formulation (9), a regularization term is also implicitly introduced through the covariance matrix B. Indeed one can show893

the equivalence between the chosen covariance kernel B (e.g. as the second order auto-regressive kernel like those employed below, see (12)) and a894

regularization functional. The reader may refer to e.g. [50,40] for detailed examples. The definition of B is detailed in the next subsection.895

896

Remark. Compared to the H2iVDI algorithm presented in [30] (and implemented in [39]), a technical but important improvement have been intro-897

duced. The vertical discretization of the river geometry (superimposition of the measured trapeziums, see Section A) is now represented by a smooth898

curve parametrized by a very low number of points e.g. 5. These points are optimal in the sense they minimize the R2 (Pierson) criteria. Defining a899

regularized vertical geometry is important since it is differentiated in the reverse code. Indeed, the adjoint method (implemented here using automatic900

differentiation) computes the differential of the geometry function. Therefore if this function presents numerous stiff local gradients, this may affect the901

algorithm convergence robustness. The present regularized geometry provides more robust convergence of the optimizer while it remains physically-902

consistent.903

904

D.2 The covariance matrix B in the VDA formulation905

The choice of B greatly determines the computed solution of the inverse problem; this “prior model B” constitutes an important feature of the VDA906

formulation. In the present study, these covariances are defined from classical operators but with non constant coefficients therefore defining somehow907

physically-adaptive regularizations.908

D.2.1 Expression of B909

Here the three unknown parameters (Qin(t),b(x),K(x)) are supposed to be independent variables. This assumption is a-priori incorrect but one don’t910

known a-priori universal covariances between these variables. As a consequence B is defined as a block diagonal matrix:911

B = blockdiag(BQin,Bb,BK) (11)

Each block matrix B� is defined as a covariance matrix (symmetric positive definite matrix). The matrices BQ and Bb are set as the classical second912

order auto-regressive correlation matrices:913

(BQin)i, j = σQin(ti)σQin(t j) exp

(
−
∣∣t j− ti

∣∣
TQin

)
and (Bb)i, j = σb(xi)σb(x j) exp

(
−
∣∣x j− xi

∣∣
Lb

)
(12)

The matrix BK is set as BK = blockdiag(BK0 ,Bβ K ) with:914

(BK0 )i, j = σ
2
K0

exp

(
−
∣∣x j− xi

∣∣
LK

)
and B

β K = diag(σ2
β K (x)) (13)

The parameters TQin and (Lb,LK) act as correlation lengths.915

D.2.2 Setting of the parameters σ� and (TQin, L�)916

These parameters are important prior information of the inversions.They are set from the first guesses values (Qin,p,A0,r,(K0,β
K)r)

(0).917

Recall that the observation frequency is 24h. The measurements spacing varies from a few dozen meters to a few hundreds of meters. Local Froude918

numbers range in great majority within ≈ [0.05−0.3] , with some very local maximum values up to ≈ 0.5.919

The discharge parameters are set as follows. TQin = 24 h. The normalization coefficient σQin is time-dependent: σQin(t) equals 30% of the mean920

value of Q(0)(t). (Recall that uncertainty error on discharge measurements may be considered as ≈ 30%, see e.g. [22] and references therein).921

Concerning the bathymetry, σb is space dependent: σb(x) is set such that it corresponds to 50% of the mean value of A(0)
0 (x). Recall that the922

bathymetry values b(0)(x) are deduced from the unobserved flow area values A(0)
0 (x).923

Concerning the correlation length, we set: Lb = 1 km. However if this last parameter is too large, the matrix Bb may be not positive. In such a case,924

the characteristic length Lb is adaptively decreased until the matrix becomes positive. This has happened in a few cases, then the minimal resulting925

value was Lb = 500 m.926

The normalization coefficients related to the friction are constant: σK0 = 10 and σ
β K = 0.3. These values have been chosen following statistical927

analysis made on the databases and by analyzes on the gradient components. We set LK0 = dx = 100m (dx is the computation grid spacing).928

As an illustration, some covariance matrices B� are plotted in Fig. 15.929
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Fig. 15 The covariance matrices B1/2
� in the Jamuna river case. (L) B1/2

Qin (with TQin = 24h). A few covariance values only are plotted for sake of

readability. (R) B1/2
b (with Lb = 500m). Note that the scaling factor of B−1/2

� is σ
−1/2
� and not σ�.

E The Artificial Neural Network (ANN)930

An ANN is built up to estimate the discharge value Q at a given location r and a given instant p, from the WS observations plus the ancillary data A ,931

see Section 3. This ANN is designed as follows.932

The training dataset D contains Nl p learning pairs (samples) (Ii,Qi), i = 1, · · · ,Nl p . The i-th input is Ii = (dA,W,S,A )i where i denotes the i-th value933

at the considered location and day. Recall that dA (m2) denotes the variations of the wetted crossed-sections above the unobserved A0; it is straight-934

forwardly computed from the variations of Z (m) and W (m). The slopes values S are extracted from the Pepsi databases (model outputs) at ReachSc.935

Values of A (km2) are extracted from HydroSHEDS database.936

Measurements are daily sampled. This frequency corresponds to the important Cal-Val phase of the forthcoming SWOT instrument. However, note that937

the data could be less frequent (provided eg. every few days) without altering the ANN accuracy; this point is discussed at the end of the section.938

The i-th output is the discharge value Qi at the same location and same instant (day).939

940

The parameters of the neural network are denoted by Wk , k = 1, · · · ,Nhl ; Nhl being the number of hidden layers.941

Each layer contains Nnn neurons. Since neurons are connected to each other, the size of each parameter Wk equals Nnn×Nnn. The input variables942

are re-scaled by removing the mean and scaling to unit variance.943

Numerous numerical experiments based on numerous different network architectures have been tested. We have observed that fairly deep networks944

improve the estimation capabilities (ability to find quite correctly nonlinear trends between data); From our experiments, the set Nhl = 64 and Nnn = 64945

has proven the best precision w.r.t. performance.946

Therefore W1 contains 4×Nnn = 256 parameters, each Wj , j = 2, · · · ,(Nhl−1), contains N2
nn = 4096 parameters, while WNhl contains Nnn×1 = 64947

parameters.948

Training an ANN consists to solve the following optimization problem:949

W ∗ = argmin
W

lQ(W ) (14)

with the loss function (misfit-cost function) lQ classically set as950

lQ(W ) =
1

Nls

Nls

∑
i=1

(
Qi(W )−Qobs(Ii)

)2
= ‖Q(W )−Qobs(I)‖2

2,Nls
(15)

(We may also denote: Qobs
i = Qobs(Ii)). The resulting estimator is:951

Q(ANN) = Q(W ∗; I) (16)

The activation function of the ANN is the usual rectified linear unit (ReLU) function, see e.g. [21,32] for details. The ANN have been coded in952

Python using Keras and Mpi4Py libraries [14]. The minimization of lQ(W ) is performed using the classical Adam method [29], a first-order gradient-953

based stochastic optimization. The learning rate (the gradient descent step size) is classically adjusted during the optimization procedure. As usual, the954

hyper-parameters of the algorithm (learning rate, decay rate, dropout probability) are experimentally chosen; the selected values are those providing955

the minimal value of lQ. The reader may refer e.g. to [27] for more details and know-hows on ANN algorithms.956

957

Remark. The drainage area A (km2) is not represented in the hydrodynamics models, at least neither (5) nor (3). This additional physical is con-958

nected to the un-modeled infiltration fluxes; it somehow constitutes here a closure law. If training the same ANN as described above but based on the959

SWOT-like observations only, the numerical experiments have shown that the ANN does not provide informative enough results.960

961


