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Objective: To assess the relationship between matrix metalloproteinase 9 (MMP-9),

a proteolytic enzyme involved in the breakdown of the blood-brain barrier, and infarct

growth and hemorrhagic transformation in acute ischemic stroke (AIS) with large vessel

occlusion (LVO) in the era of mechanical thrombectomy (MT) using the kinetics of MMP-9

and sequential magnetic resonance imaging (MRI).

Methods: HIBISCUS-STROKE is a cohort study including AIS patients with LVO treated

with MT following admission MRI. Patients underwent sequential assessment of MMP-9,

follow-up CT at day 1, and MRI at day 6. The CT scan at day 1 classified any hemorrhagic

transformation according to the European Co-operative Acute Stroke Study-II (ECASS II)

classification. Infarct growth was defined as the difference between final Fluid-Attenuated

Inversion Recovery volume and baseline diffusion-weighted imaging volume. Conditional

logistic regression analyses were adjusted for main confounding variables including

reperfusion status.

Results: One hundred and forty-eight patients represent the study population. A high

MMP-9 level at 6 h from admission (H6) (p = 0.02), a high glucose level (p = 0.01), a

high temperature (p = 0.04), and lack of reperfusion (p = 0.02) were associated with

infarct growth. A high MMP-9 level at H6 (p = 0.03), a high glucose level (p = 0.03) and

a long delay from symptom onset to groin puncture (p = 0.01) were associated with

hemorrhagic transformation.

Conclusions: In this MT cohort study, MMP-9 level at H6 predicts infarct growth and

hemorrhagic transformation.
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INTRODUCTION

Ischemia-reperfusion injury in stroke is defined as a biochemical
cascade causing a deterioration of ischemic brain tissue that
parallels and antagonizes the beneficial effect of reperfusion
(1). A key feature of this process is the proteolytic breakdown
of the blood-brain barrier (BBB) vasculature. The increase
of BBB permeability is mediated by activation of matrix
metalloproteinase (MMP), and especially MMP-9 (2, 3).

So far, the importance of MMP-9 on infarct growth and risk of
hemorrhagic transformation has not been explored in relation to
mechanical thrombectomy (MT). In the context of intravenous
(IV) thrombolysis, early increase of MMP-9 expression may
promote hemorrhagic transformation but also infarct growth
with subsequent influence on neurological disability (4–12).
Since restoration of the blood supply following MT might be
more abrupt and potentially cause greater BBB damage despite
a timely and successful reperfusion, an appropriate assessment of
MMP-9 activity in this settingmay provide additional insight into
reperfusion injury related to MT (13). We sought to determine
whether early MMP-9 level is associated with infarct growth
and hemorrhagic transformation. For this purpose, a sequential
assessment of MMP-9 and ischemic damage using MRI was
implemented in the setting of MT.

METHODS

Study Population
HIBISCUS-STROKE is an ongoing cohort study including all
patients admitted since October 2016 in the Lyon Stroke
Department for an acute ischemic stroke (AIS) with large vessel
occlusion (LVO) treated either within 0–6 h or 6–24 h time
window with MT following brain magnetic resonance imaging
(MRI) assessment. Patients with Computed-Tomography at
admission, with posterior circulation stroke, without follow-up
planned in our institution (secondary transfers to primary stroke
center), without informed consent and without available blood
samples were excluded from the HIBISCUS-STROKE cohort.
Among patients included in the HIBISCUS-STROKE cohort,
those with known inflammatory disease, active malignancy,
vasculitis, antibiotics at admission, myocardial infarction, or
major surgery in the 30 previous days were excluded in order
not to skew the results of the biomarkers analysis. All patients
underwent a sequential assessment of systemic MMP-9 level.
Peripheral blood samples were collected from each patient: at
admission (H0), 6 h (H6), 24 h (H24), and 48 h (H48) from
admission. A CT scan was performed at day 1 in order to rule out
any hemorrhagic transformation. Final infarct size was assessed
on follow-up MRI at day 6 (Figure 1).

Baseline data on demographic characteristics, lifestyle risk
factors, medical history, and use of medications were collected
at hospital admission. Neurological status was assessed by board
certified neurologists using National Institute of Health Stroke
Scale (NIHSS) score at admission, and the modified rankin scale
(mRS) score at 3 months during a face-to-face follow-up visit.
Poor outcome was defined as 3-month mRS score > 2. Stroke

subtype was classified according to the Trial of Org 10,172 in
Acute Stroke Treatment (TOAST) criteria (14).

The study was approved by the local ethics committee and all
subjects or their relatives signed an informed consent form.

Neuroimaging
All MRIs were performed with 1.5-Tesla Intera or 3-Tesla
Achieva scanners (Philips, Best, Netherlands). The admission
MRI protocol included fluid-attenuated inversion recovery
(FLAIR), T2-gradient echo, diffusion-weighted imaging (DWI),
time-of-flight MRA, and perfusion-weighted imaging. The
CT scan at day 1 classified any hemorrhagic transformation
according to the European Co-operative Acute Stroke Study-II
(ECASS II) classification (15). The follow-upMRI protocol at day
6 included FLAIR sequence. A stroke neurologist (T-H. C.) with
expertise in neuroradiology, blinded to clinical and laboratory
data, independently reviewed both admission and follow-up
MRI using a dedicated post-processing work station (3D slicer
software). The acute ischemic lesion was segmented from the
baseline DWI with a semi-automated method (3D Slicer: https://
www.slicer.org/) by using both a validated ADC threshold (ADC
<620 × 10−6 mm2/s) and visual assessment of b1000 images.
The final infarct was identified on day-6 FLAIR images using
3D Slicer. Lesion volumes were subsequently calculated from
the segmentation masks. Infarct growth was defined as the
difference between final volume on the FLAIR-sequence and
baseline volume on the DWI-sequence. Alberta Stroke Program
Early CT score (ASPECTS) was measured on baseline DWI (16).
Successful reperfusion was defined as thrombolysis in cerebral
infarction score (TICI)≥2b (17).

Blood Sampling Protocol
White blood cells (WBC) count and high sensitivity C-reactive
protein (hsCRP) were routinely measured at admission. MMP-
9 level was measured using DuoSet R© ELISA Development
Kits (R&D Systems). Sera were prepared and stored at −80◦C
within a 3 h delay at the NeuroBioTec biobank (CRB-HCL: BB-
0033-00046, France). All samples were thawed only once for
study measurements. Serum samples were diluted at 1/2,000.
Sensitivity was 12.2 pg/mL.

Statistical Analysis
Continuous variables are expressed as means (standard deviation
[SD]) or medians (interquartile range [IQR]), and categorical
variables as percentages. Medians were compared using the
Mann–Whitney or Kruskall–Wallis test for independent samples.
The Wilcoxon signed rank test was performed for matched
samples. Percentages were compared using the Fishers exact test.
Spearman correlation coefficients (r) were calculated between
variables. Analyses were focused on the early MMP-9 peak at
H6. Normality of distributions was assessed graphically and with
the Shapiro–Wilk test. As MMP-9, infarct growth, WBC count,
and hsCRPwere not normally distributed, we dichotomized them
according to their median. The association between MMP-9 level
at H6 and infarct growth and hemorrhagic transformation was
measured by calculating crude odds ratios (ORs) and 95% CIs
using conditional logistic regression analyses. A multiple logistic
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regression model was performed to detect independent markers
of infarct growth or any hemorrhagic transformation. Covariates
with a significant univariate association with infarct growth or
hemorrhagic transformation were included in each multivariate
model along with other potential predictors independent of
their univariate p-value, selected a priori. A backward selection
procedure was chosen. The models were adjusted for:

– infarct growth: age, sex, glucose level, temperature, baseline
volume on the DWI-sequence, stroke onset to groin puncture
time, IV thrombolysis, and reperfusion status (NIHSS
score and systolic blood pressure not retained by the
backward selection),

– hemorrhagic transformation: sex, glucose level, stroke onset
to groin puncture time, IV thrombolysis, and baseline volume
on the DWI-sequence (age, NIHSS score, and systolic blood
pressure not retained by the backward selection).

Two-tailed p < 0.05 was considered to be statistically significant.
The data were analyzed with Stata Version 15TM (STATACORP,
COLLEGE STATION, TEXAS 77845 USA).

Data Availability Statement
Further anonymized data can be made available to qualified
investigators on request to the corresponding author.

RESULTS

HIBISCUS-STROKE Cohort
Between October 2016 to April 2019, 148 patients met the
inclusion criteria (Figure 1). Baseline and follow-up MRI were
available and interpretable for 127 (77.4%) patients. The main
clinical and imaging characteristics are shown in Table 1. Mean
age was 69 ± 15. Sixty percent of patients were men. Median
NIHSS score on admission was 15 [9–19]. Median infarct growth
was 3.4 cc [−1.3 to 24.6]. Hemorrhagic transformation occurred
in 40 patients (27.6%). Ninety-one (61.5%) patients had a good
outcome (mRS score 0–2) at 3 months. No patient was lost at the
3-month follow-up.

In our population, MMP-9 levels peaked early at 6 h from
admission (p= 0.04; Figure 2).

FIGURE 1 | Flow-chart of patient selection (A) and timeline of HIBISCUS-STROKE cohort from admission (B) (H0, admission; H6, hour 6; H24, hour 24; H48, hour

48; M3, month 3; IV, intravenous; MRI, magnetic resonance imaging; CT, computed tomography; mRS, modified Rankin Scale).
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TABLE 1 | Characteristics of the study population.

MMP-9 level at H6

All

(n = 148)

Low-level

(MMP-9 H6 ≤

775ng/mL)

(n = 74)

High-level

(MMP-9 H6 >

775ng/mL)

(n = 74)

p-value

Age, years 69 ± 15 70 ± 14 67 ± 16 0.15

Male, n (%) 89 (60.1) 46 (62.2) 43 (58.1) 0.74

Prestroke mRS

score > 2

8 (5.4) 3 (4.1) 5 (6.8) 0.72

Hypertension 69 (46.6) 37 [50] 32 [43.2] 0.51

Diabetes 25 (16.9) 11 [14.9] 14 [18.9] 0.66

Hyperlipidemia 38 (25.7) 20 [27] 18 [24.3] 0.71

Current smoking 29 (19.6) 12 [16.2] 17 [23.0] 0.41

Baseline NIHSS

score

15 [9–19] 13 [7–19] 16 [12–19] 0.05

SBP, mmHg 140.1 ± 22.2 141.9 ± 23.8 138.3 ± 20.6 0.39

DBP, mmHg 77.6 ± 17.4 78.0 ± 18.4 77.2 ± 16.6 0.91

Baseline

temperature

36.5 ± 0.6 36.5 ± 0.5 36.5 ± 0.7 0.46

Glucose level,

mmol/L

6.27

[5.61–7.59]

6.00 [5.56–6.99] 6.44 [5.78–7.92] 0.28

hsCRP at

admission, mg/L

3.3 [1.6–7.8] 3 [1.3–5.9] 3.5 [1.8–11.4] 0.13

WBC count at

admission, 109/L

8.3 [6.6–10.0] 7 [5.9–9.0] 9.2 [8.0–11.1] <0.01

Etiology 0.25

Cardioembolism 79 (53.4) 39 (52.7) 39 (52.7)

LAA 24 (16.2) 9 (12.2) 12 (16.2)

Other 16 (10.8) 11 (14.9) 4 (5.4)

Undetermined 29 (19.6) 15 (20.3) 19 (25.7)

IV thrombolysis 78 (52.7) 37 (50) 41 (55.4) 0.62

Thrombus location

M1 MCA 118 (79.7) 57 (75.7) 62 (83.8) 0.31

segment

M2 MCA 28 (18.9) 17 (23.0) 11 (14.9) 0.29

segment

Intracranial ICA 44 (29.7) 21 (28.4) 23 (31.1) 0.86

Tandem occlusion 30 (20.3) 15 (20.3) 15 (20.3) 1

ASPECTS 7 [6–8] 8 [6–9] 7 [6–8] 0.13

DWI lesion

volume, cc

17.4

[5.7–44.2]

13.3 [4.9–34.8] 23.0 [8.0–46.2] 0.18

Reperfusion

(TICI2b-3)

123 (83.1) 63 (85.1) 60 (81.1) 0.66

Onset to

admission, min

117 [70–282] 124 [73–302] 115 [70–245] 0.72

Onset to groin

puncture, min

222 [155–373] 230 [156–403] 218 [155–320] 0.57

Onset to

reperfusion, min

255 [195–378] 256 [195–414] 247 [195–358] 0.67

FLAIR lesion

volume, cc

26.1

[7.8–61.1]

16.7 [5.1–41.4] 38.7 [13.6–85.7] 0.01

Infarct growth, cc 3.3 [−1.3 to

22.7]

0.8 [−4.4 to

14.8]

4.9 [0.5 to 36.2] 0.02

(Continued)

TABLE 1 | Continued

MMP-9 level at H6

All

(n = 148)

Low-level

(MMP-9 H6 ≤

775ng/mL)

(n = 74)

High-level

(MMP-9 H6 >

775ng/mL)

(n = 74)

p-value

Any hemorrhagic

transformation

40 (27.6) 14 (18.9) 26 (36.6) 0.03

PH type 1 or 2 3 (2.1) 2 (2.7) 1 (1.4) 1

SAH 4 (2.8) 1 (1.4) 3 (4.2) 0.36

mRS score 0–2 91 (61.5) 46 (62.2) 45 (60.8) 1

MMP-9, matrix metalloproteinase 9; H6, hour 6; NIHSS, National Institute of Health

Stroke Score; SBP, systolic blood pressure; DBP, diastolic blood pressure; hsCRP, High

sensitivity C-reactive protein; WBC, white blood cells; LAA, Large-artery atherosclerosis;

IV, intravenous; mRS, modified rankin scale; MCA, middle-cerebral-artery segment; ICA,

intracranial carotid artery; ASPECTS, Alberta Stroke Program Early CT score; DWI,

diffusion-weighted sequence; TICI, thrombolysis in cerebral infarction score; FLAIR,

Fluid Attenuated Inversion Recovery; PH, Parenchymal hematoma; SAH, Subarachnoid

hemorrhage. Variables are displayed as absolute number (percentage of column total);

mean ± SD; or median (25th−75th percentiles) as appropriate. Significant values are

shown in bold.

FIGURE 2 | Median matrix metalloproteinase 9 (MMP-9) levels in patient’s sera

at admission, 6, 24, and 48 h from admission [H0, admission; H6, hour 6;

H24, hour 24; H48, hour 48; Wilcoxon test for matched samples comparing

MMP-9 levels at each time with the time before (*p < 0.05)].

MMP-9 and Infarct Growth
In univariate analyses, a high glucose level [OR = 1.25 (1.02–
1.54); p = 0.03], a long delay from symptom onset to groin
puncture [OR = 1.05 (1.00–1.11) per 30min increase; p = 0.04),
lack of IV thrombolysis [OR = 0.42 (0.20–0.88); p = 0.02] and
lack of reperfusion [OR = 0.27 (0.09–0.79); p = 0.02] were
associated with infarct growth. A high WBC count [OR = 1.30
(0.53–3.17); p = 0.56] and a high hsCRP level [OR = 0.69
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(0.28–1.69); p = 0.42] at admission were not associated with
infarct growth. After adjustment for main confounding variables,
a high MMP-9 level at H6 [3.43 (1.23–9.55); p = 0.02], a high
glucose level [1.43 (1.08–1.90); p = 0.01], a high temperature
[2.55 (1.03–6.29); p = 0.04], and lack of reperfusion [0.16 (0.03–
0.77); p = 0.02] were independently associated with infarct
growth (Table 2).

MMP-9 and Hemorrhagic Transformation
A high MMP-9 level at H6 [OR = 2.48 (1.16–5.27); p =

0.02] was associated with hemorrhagic transformation. A high
WBC count [OR = 1.96 (0.91–4.25); p = 0.09] and a high
hsCRP level [OR = 0.57 (0.28–1.27); p = 0.17] at admission
were not associated with hemorrhagic transformation. After
adjustment for main confounding factors, a high MMP-9 level
at H6 [2.91 (1.14–7.42); p = 0.03], a high glucose level
[1.20 (1.02–1.42); p = 0.03] and a long delay from symptom
onset to groin puncture [OR = 1.08 (1.02–1.14) per 30min
increase; p = 0.02] remained significantly associated with
hemorrhagic transformation.

DISCUSSION

Our study assessed the association between MMP-9 level and
outcome in AIS patients with LVO treated with MT. The study
design stands apart from earlier works due to a sequential
assessment of bothMMP-9 and ischemic damage onMRI. MMP-
9 level at 6 h from admission was associated with infarct growth
and hemorrhagic transformation.

We observed an early peak at 6 h from admission. Previous
studies assessing kinetics of MMP-9 in AIS patients whether or
not they are treated with IV thrombolysis with heterogeneous
delays from the stroke onset have shown an early increase in the
first 24 h (4, 10, 11, 18–22).

Pathological data show the presence of high MMP-9 levels not
only in infarct tissue but also in the peri-infarct areas, suggesting
MMP-9 involvement in the process of infarct growth (23, 24).
A previous study conducted in 24 patients with middle cerebral
artery (MCA) occlusion treated with IV thrombolysis found that
MMP-9 level was associated with infarct growth at 24 h, but they
did not report reperfusion status, which is a major confounding
factor when interpreting their results (12). Our study confirms
that MMP-9 level at H6 and infarct growth remains associated in
the setting of MT after adjustment for reperfusion status.

Numerous studies have documented an increase in MMP-
9 levels following AIS, associated with disruption of the BBB,
thus promotion of hemorrhagic complications (2, 3, 25). This
aspect has received special attention in patients treated with
IV thrombolysis (4–9). Indeed, in addition to its thrombolytic
action, tissue plasminogen activator (tPA), via activation of
MMP-9, may also damage the basal lamina and tight junctions
of the cerebral blood vessels, resulting in increased permeability
of the BBB and hemorrhagic complications (26). We add to
these existing data of MMP-9 activity and hemorrhage risk in
AIS patients treated with tPA by examining AIS patients with
LVO treated with MT, a therapy with much higher reperfusion
rates and one which allows the recording of reperfusion status

TABLE 2 | Predictors of infarct growth and any hemorrhagic transformation in

univariate and multivariate analyses.

crude OR p-value adjusted OR p-value

[95% CI] [95% CI]

Infarct growth

High vs low

MMP-9 level at H6

1.93

(0.92–4.01)

0.08 3.43

(1.23–9.55)

0.02

Glucose level1 1.25

(1.02–1.54)

0.03 1.43

(1.08–1.90)

0.01

Temperature2 1.78

(0.93–3.41)

0.08 2.55

(1.03–6.29)

0.04

Reperfusion

(TICI 2b-3)

0.27

(0.09–0.79)

0.02 0.16

(0.03–0.77)

0.02

Any hemorrhagic transformation

High vs. low

MMP-9 level at H6

2.48

(1.16–5.27)

0.02 2.91

(1.14–7.42)

0.03

Glucose level1 1.10

(0.97–1.24)

0.14 1.20

(1.02–1.42)

0.03

Onset to groin

puncture time3
1.04

(1.00–1.09)

0.06 1.08

(1.02–1.14)

0.01

OR, odds ratio; MMP-9, matrix metalloproteinase 9; H6, hour 6; IV, intravenous; TICI,

thrombolysis in cerebral infarction score; ICA, internal carotid artery.
1per 1 mmol/L increase.
2per 1◦C increase.
3per 30min increase.

Significant values are shown in bold.

after treatment. We found an association between MMP-9 level
at H6 and the risk of hemorrhagic transformation, mainly
minor. The clinical relevance of this minor bleeding is still
debated (27).

The observed association between MMP-9 level at H6
and infarct growth and hemorrhagic transformation do not
necessarily imply a cause-effect relationship. Nevertheless, the
experimental data currently available on the role of MMP-
9 and on the effect of MMP-9 inhibition may be consistent
with a causal relationship (28–32). Preclinical animal studies
suggest that MMP-9 inhibition can be of therapeutic importance
in ischemic stroke although a small pilot study conducted in
humans did not show efficacy of this drug on 3-months mRS
score in the setting of IV thrombolysis (28–33). Insofar as we
have now entered into a new era of highly effective reperfusion,
a new approach investigating the potential benefit of compounds
which can directly inhibit MMP-9 activity should be considered
in future MT trials (34).

We recognize some limitations of our study. First, although
the limited sample size and the monocentric design may
be considered as a limitation, its major strength lies in
sequential assessment of MMP-9 coupled with MRI data
within a homogeneous cohort of stroke patients with LVO
in the context of MT. Secondly, imaging was performed
either on 1.5 or 3 T according to MRI magnets availability.
However, overall differences in the DWI and FLAIR imaging
are usually subtle between both fields strengths as previously
documented (35–37). Thirdly, final FLAIR-volume on day 6
may include a significant amount of edema instead of true
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infarction although previous studies have reported that it
likely reflects final infarct size (38–40). The edema component
could be further assessed using non-linear co-registration
methods (41). Edema component should be further assessed
using post-processing analysis as the nonlinear registration
method (41). Fourthly, susceptibility-weighted imaging (SWI)
or T2∗-weighted gradient echo (GRE) imaging were not
performed at day 6. These sequences would have been more
sensitive than CT, and might have revealed minor hemorrhagic
transformation (Hemorrhage infarction type 1 and 2) consistent
with delayed reperfusion damage following blood brain
barrier injury. Lastly, a comprehensive imaging assessment
of BBB disruption assessing subarachnoid hemorrhage,
gadolinium sulcal enhancement [hyperacute injury marker
(HARM)], or microvascular permeability (K2) would have been
a more direct measure of MMP-9 action and deserves further
investigation (42–44).

In this MT cohort study using sequential assessment of MMP-
9 levels and MRI, a high MMP-9 level at H6 predicts infarct
growth and hemorrhagic transformation.
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