Konstantin Dmitriev
email: konstantin.dmitriev@tum.de

Shanza Ali Zafar
email: shanza.zafar@tum.de

Kevin Schmiechen
email: kevin.schmiechen@tum.de

Yi Lai
email: yi.lai@tum.de

Micheal Saleab
email: micheal.saleab@tum.de

Pranav Nagarajan
email: pranav.nagarajan@tum.de

Daniel Dollinger
email: daniel.dollinger@tum.de

Markus Hochstrasser
email: markus.hochstrasser@tum.de

Florian Holzapfel
email: florian.holzapfel@tum.de

Stephan Myschik
email: stephan.myschik@unibw.de

A Lean and Highly-automated Model-Based Software Development Process

Keywords: 178C, DO-331, software assurance, safety critical systems, lean software development, model-based development, requirements management, agile development

published or not. The documents may come

I. INTRODUCTION

Software is an essential part of modern air vehicles and it usually implements complex safety-critical functions. To ensure safety of airborne software, the aviation community uses the standard DO-178C [START_REF]Software Considerations in Airborne Systems and Equipment Certification[END_REF] and its supplements (e.g. DO-331 [START_REF]Model-Based Development and Verification Supplement to DO-178C and DO-278A[END_REF] addressing model-based aspects) as a primary guidance for airborne software development. They describe in detail "objectives for software life cycle processes, activities that provide a means for satisfying those objectives, descriptions of the evidence in the form of software life cycle data [...] [and] variations in the objectives [...] by software level [and] additional considerations (for example, previously developed software)" [1, p. 1]. However, achieving compliance with DO-178C significantly increases cost and time of development. The growth of project expenses for DO-178C level C software can exceed 150% compared to the development of typical high-quality consumer software per Capability Maturity Model Integration (CMMI) Level 2 or 3 [START_REF] Thomas | Certification cost estimates for future communication radio platforms[END_REF]. While this expense may be acceptable to some extent for large transport aircraft (given the perception of risk in this category), it is a major hindrance to the advancement of technology -especially avionics -in normal category airplanes and rotorcraft. The availability of cost-effective qualified avionics solutions for these categories could prevent several general aviation (GA) accidents, such as controlled flight into terrain in poor weather or loss of control. This challenge has received increased visibility in recent years, owing to the growth of rapidly emerging and innovative markets such as urban air mobility (UAM) and unmanned aircraft systems (UAS).

Manufacturers and component suppliers developing avionics solutions for GA, UAS/UAM are cooperating with certification authorities to develop alternative means of compliance for software assurance other than DO-178C. The recently created EUROCAE and RTCA joint working group WG-117 is targeting to develop a software standard that will be specific to lower risk UAS and GA applications [START_REF]New working group: Wg-117 / topics on software advancement[END_REF]. ASTM International has released standards on the following topics intended to streamline avionics certification: system-level verification to assure safety of the intended function (ASTM F3153 [START_REF]Standard Specification for Verification of Avionics Systems[END_REF]), run-time assurance of complex functions (ASTM F3269 [START_REF]Standard Practice for Methods to Safely Bound Flight Behavior of Unmanned Aircraft Systems Containing Complex Functions[END_REF]), dependability of software used in UAS (ASTM F3201 [START_REF]Standard Practice for Ensuring Dependability of Software Used in Unmanned Aircraft Systems (UAS)[END_REF]). These standardization development efforts target applicants with little or no experience with certification, especially in the aerospace industry. At the same time, it is also expected that software certification for high-risk operations in UAS/UAM will still require conformity to DO-178C processes.

Many developers also use rapid prototyping methods during their research, development and flight testing phases. With constrained resources, a lack of knowledge and a still developing certification environment for their products, these companies are looking for processes as agile as their development cycles. However, certain DO-178C objectives make it difficult to reuse software previously developed out of DO-178C context. For example, in case of poor traceability between requirements of all levels down to source code, it may be easier to redo the development from scratch, rather than re-engineer trace data, improve requirements and rework source code accordingly. This aspect also contributes towards the lean though scalable development life cycle for prototype and experimental airborne software. For such categories of software products, we deem it beneficial to establish a lean but scalable software development life cycle, which helps to achieve a high level of software quality and provides a basis for potential reuse of experimental software for further certification in accordance with DO-178C.

Use of advanced development techniques like model-based design [START_REF] Marcil | MBD, OOT and Code Generation: A Cost-Effective Way to Speed Up HMI Certification[END_REF] or agile process models [START_REF] Coe | A model-based agile process for DO-178C certification[END_REF] along with automation of development and verification activities with qualified tools [START_REF] Hochstrasser | A process-oriented build tool for safety-critical model-based software development[END_REF] can help to reduce the development effort while achieving full compliance with DO-178C and DO-331. Below, we discuss the lean model-based software development life cycle (custom workflow), which utilizes these advance techniques along with a further reduction of the development effort by introducing the custom subset of DO-178C and DO-331 objectives. We selected the objectives for the custom subset based on criteria of importance, automation and reuse with the following goals:

1) Reduce non-critical process activities to minimize development efforts while maintaining a software quality level similar to DO-178C level C. 2) Enable the completion of software development to achieve full compliance with DO-178C per level C or higher in the future without wide rework of the data produced using the custom workflow. This paper is structured in the following sections. Section II describes the methodology for the selection of the custom subset of objectives. In section III, a general overview of the workflow to satisfy the selected objective using MathWorks and own tools is given. This is followed by an explanation of in-house processes and tools to facilitate the custom workflow in sections III-A to III-D. Section IV describes the achieved level of compliance to DO-178C and DO-331 using the custom workflow. A case study is performed by developing an Autopilot Manual Disconnection System (AMDS) using the proposed workflow and is described in section V. Section VI discusses the planned enhancement for the custom workflow. At the end, conclusions are given in section VII.

II. OBJECTIVES SELECTION CONCEPT

We considered the following criteria to select the DO-178C and DO-331 objectives for the custom subset:

• Importance of the objective 4 . Level of potential reuse was considered as another factor due to the increased value of the artifacts, which can be leveraged without major modification across multiple projects. The value of such artifacts and corresponding objectives versus efforts spent for their development is multiplied by reuse and therefore such objectives are considered more relevant to the custom subset. For example, certain parts of project development and verification plans and standards can be written in a generic way to be reusable for other development projects being implemented in a similar environment.

We evaluated DO-178C and DO-331 objectives and assigned each objective with a high, medium and low level of applicability for each selection criteria. Based on the total score qualitatively assessed as a combination of all three criteria levels, we selected DO-331 and DO-178C objectives for the custom workflow. This qualitative assessment was based on consensus between the authors. Fig. 1 and2 show the summary of the selected DO-331 objectives applicable to MBS components and DO-178C objectives applicable to manually coded low-level software (LLS) components respectively. Some of the objectives are not applicable to the custom workflow and shown as N/A on the figures. For example, certification liaison objectives are not applicable because a formal certification process is not implemented in the custom workflow. These figures also indicate the compliance level achieved for each objective in the implemented custom workflow. This is further discussed in section IV. Planning activities can require significant manual effort but the reusability of artifacts across different projects is high as mentioned in section II. For our lean custom workflow, planning activities include defining the life cycle in form of an interactive user guide detailing the activities to be performed. This guide also includes the description of the tools to be used and how to use them for MBS and LLS components. Another aspect of the planning process are software development standards. For MBS, DO-331 also requires a Software Model Standard. As a part of this, Modeling Guidelines based on a subset of MathWorks modeling guidelines [START_REF]Modeling guidelines[END_REF] are developed at our institute for Design Models. These are models which are used to generate source code directly. Additional guidelines are also added to overwrite or further restrict functionalities based on experience gathered during previous projects (e.g. for testing or to avoid rounding errors and overflows). Naming Conventions are also developed at our institute for consistency and compliance with MISRA C [START_REF]Guidelines for the Use of the C Language in Critical Systems[END_REF] and the Modeling Guidelines with a focus on flight dynamics and control.

Development Activities' entry point are textual requirements authored in Polarion. In model-based development, a textual requirement may represent different levels of system and software requirements, depending on the selected scenario of model usage as described in DO-331 MB.1.6.3. The custom workflow is implemented based on the MB Example 5 practice (see DO-331 Table MB.1-1) for MBS components. We capture system requirements in textual format and further implement Fig. 3. Development and verification workflow using MathWorks based toolchain for safety critical systems them as Design Models in Simulink for the MBS part (implementing functional capabilities) and refine textual software requirements for the LLS part (scheduling layer, hardware interfaces). Simulink models represent low-level requirements and software architecture. Source code is then automatically generated from Design Models using Embedded Coder. Further details about the modeling environment used for Design Models can be found in [START_REF] Hochstrasser | Aspects of a consistent modeling environment for do-331 design model development of flight control algorithms[END_REF].

For the LLS part, source code is manually written based on the refined LLS requirements and intended to be generally reused across projects implemented on the same hardware. Finally, LLS code is integrated with the auto-generated code for MBS code and compiled to get target compatible object code.

Verification activities can be greatly automated and performed early for MBS using Design Models. DO-331 allows simulations as means of compliance for the key objectives in table MB.A-3 (Verification of Outputs of Software Requirement Process) and further objectives in table MB.A-4 (Verification of Outputs of Software Design Process). Example of these objectives include high-level requirement comply with system requirements, requirements are accurate and consistent, algorithms are correct). Requirement-based simulation cases can be further fully reused for software-in-the-loop (SIL) and Hardware-in-the-loop (HIL) testing of the executable ob-ject code to satisfy some objectives of table MB.A-6 (Testing of Outputs of Integration Process). Using Simulink Test6 for simulation and testing helps achieving objectives in table MB.A-7 (Verification of Verification Process Results) by facilitating structural coverage collection, requirement traceability, and reviewing and managing test results. Reusability of test cases for HIL using Simulink Test is further discussed in subsection III-D.

Checking models during development for design errors using Simulink Design Verifier 7 and for conformance to the Software Model Standard using Simulink Check 8 helps fulfilling other objectives of MB.A-3 and MB.A-4 (Verification of Outputs of Software Design Process). Furthermore, some objectives corresponding to the verification of source code (both manually coded for LLS and auto-generated for MBS) in table A-5/MB.A-5 (Verification of Outputs of Software Coding and Integration Process) are automated using static code analysis techniques for compliance with standards like MISRA C, detecting run-time errors and for proving absence of some run-time error through Polyspace Bug Finder and Polyspace Code Prover. Additionally for MBS, objectives for source code compliance to low-level requirements and software architecture in table MB.A-5 are by Simulink Code Inspector.

Configuration management activities are implemented by using Polarion for requirements management and GitLab for other artifacts. These tools implement essential activities required for the DO-178C/DO-331 Control Category 2: identification, traceability and change tracking. More stringent activities required for the DO-178C/DO-331 Control Category 1 may hinder rapid prototyping and are not included in the custom workflow.

Quality assurance activities are implemented using the tool mrails described below and are limited to tracking the completion status of the planned activities. For example, the left panel of the mrails status overview window presented in Fig. 3 shows the status of the planned workflow activities.

The proposed custom workflow enables high automation in both development and verification activities owing to MBD, which puts the foundation for a lean workflow based on DO-178C. Few examples of MBD for safety critical systems in literature are [START_REF] Estrada | Best practices for developing do-178 compliant software using model-based design[END_REF]- [START_REF] Erkkinen | Safety-critical software development using automatic production code generation[END_REF].

In the following subsections, we will discuss the specific solutions employed at the institute which facilitate the implementation of the lean custom workflow in addition to the MathWorks tools mentioned above.

A. Requirements Management

This section presents the requirement management setup for our custom workflow. We used the tool Polarion, which is a web-based application life cycle management solution by Siemens Digital Industry Software, to manage the textual requirements and their trace data. While writing the requirements, we applied the FRETISH language of the tool FRET (Formal Requirements Elicitation Tool) as much as possible.

It was developed at NASA Ames Research Center and was presented in [START_REF] Giannakopoulou | Formal requirements elicitation with fret[END_REF]. The tool SimPol, which was developed at our institute, is used to create bidirectional traceability between requirements on Polarion and Design Models and test cases in Simulink Test. Further details in the context of requirement derivation, simulation and validation are discussed in [START_REF] Schmiechen | Traceable and model-based requirements derivation, simulation, and validation using matlab simulink and polarion requirements[END_REF], [START_REF] Meidinger | A model-based requirement validation process for handling qualities of evtols[END_REF].

Artifact Hierarchy for our custom workflow is shown in Fig. 4. It includes the work item types (e.g. requirements) but also the link roles. Lower level requirements refine upper level requirements, however, as a simplification, it is also possible that requirements refine those from the next but one level (e.g. from software to system) or that requirements refine other requirements from the same level (e.g. component) because a higher level of detail is necessary within one level. Even though the arrows are only pointing in one direction, the traces are still bidirectional (e.g. forward trace: refines / backward trace: is refined by). Additionally, review checklists are used to hold traceability evidence based on the automatic trace reports described below. The other verification objectives of tables A-3/MB.A-3 and A-4/MB.A-4 of DO-178C/DO-331, which require manual review, can be included in the review checklist when increasing the compliance level with respect to the standard.

Cross-Platform Artifact Linking is done with SimPol between the requirements on Polarion and the Design Models and test cases in MATLAB/Simulink. The tool creates model and test case surrogate work items as described in Fig. 4, which serve as a representation on Polarion for the actual models and test cases. Automatic highlighting of links where either side has changed enables an impact analysis of such changes. The available links can also be used to identify the impact of changes to other work items before the changes are even made.

In accordance with the wording of DO-331, the Design Models have the link role implements to software requirements and to those component and system requirements that are allocated to software. Model-based test cases have the link role verifies to requirements on Polarion. An overview of the steps to link between Polarion and Simulink Test is given in Fig. 5. In the first two steps, the requirements on Polarion are linked with the Design Models in Simulink and the test cases in the Simulink Test Manager. The link from model-based test case to Design Model is already established during the creation of the test case and its harness. The third step is to upload the test run records to Polarion. A custom routine processes the records from Simulink Test Manager into an XML file. A custom extension on the Polarion server processes this XML file, creates the test run records and links them to the test case surrogates.

Automatic Trace Reports can be generated on Polarion with a custom widget as soon as the work items are created and linked with each other. These reports correspond to parts of Trace Data required by section 11.21 of DO-178C. In addition to the actual trace table, the report also consists of a pie-chart with the distribution of the trace status of the work items for a quick overview. Derived requirements, which are identified by a custom field, are one example where it is justified that a requirement does not have an upstream trace.

The custom widget was inspired by a widget for test case coverage that is part of the default Polarion installation, however, our widget was developed to be applicable to our requirement traceability and even more use cases. It also supports checking traces in both directions (e.g. also from lower to higher level requirements).

B. Automation of Life cycle Activities

A process-oriented build tool (mrails) for MBS using the MathWorks toolchain was developed at our institute by Hochstrasser [START_REF] Hochstrasser | A process-oriented build tool for safety-critical model-based software development[END_REF] which greatly reduces the efforts required for certification-ready software development by automating the life cycle activities discussed in section III. In Fig. 3, activities supported and automated by mrails in the overall workflow are highlighted.

For the development of Design Models, mrails integrates the modeling environment and supports the creation of 'readyby-construct' building elements such as reusable models, or Simulink bus objects compatible with Modeling Guidelines. Mrails also automates the execution of verification activities, named jobs, for Design Models and auto-generated source code. Furthermore, it supports the generation of manual reviews lists for verification such as to check compliance with Modeling Guidelines which cannot be automated by Simulink Check.

In case of software changes after certification, the question which artifacts needs to be reevaluated often leads to a 'Big Freeze' problem (i.e. baselining the software) [START_REF] Hochstrasser | Application of a process-oriented build tool for flight controller development along a DO-178C/DO-331 process[END_REF]. A solution to this is implemented in mrails. For all jobs, an artifact dependency graph is generated between the manually modifiable source files like requirements, models and the auto-generated derived artifacts like reports, test results. Mrails uses the dependency graph to perform a change impact analysis. This analysis identifies the affected artifacts that are needed to be regenerated. Running the analysis again only generates the missing or outdated artifacts, which is faster than to brute-force regenerate all artifacts. This feature of mrails facilitates the continuous and incremental certification approaches mentioned in [START_REF] Comar | Open-do: An open-source initiative for the development of safety-critical software[END_REF].

Mrails provides a web-based interface summarizing the results of jobs along with the status showing the validity of dependent artifacts (i.e. whether the source has changed and the artifacts are outdated). The advantage of this interface is that it can be used outside the MATLAB environment and helps in the reviewing process. In [START_REF] Hochstrasser | Application of a process-oriented build tool for flight controller development along a DO-178C/DO-331 process[END_REF], an example using mrails for flight control development is provided. Mrails interacts well with Continuous Integration (CI) by providing a simple MATLAB command-line interface that can be easily used on a CI server.

C. Continuous Integration

Continuous Integration (CI) is a common practice nowadays in software development. It provides the benefit of integrating features more frequently, e.g. daily, by automating building and testing as much as possible and detects integration errors in early stages. In our model-based software development process, we use CI to extensively automate the execution of model static analysis, simulation-based testing, unit testing and static analysis of manual source code. With Mrails, which was described in section III-B, the CI requires only minimum configuration since most of the tasks are as simple as running a job in Mrails. While many CI tools and services, e.g. Jenkins9 , Travis CI10 , provide similar generic features that are used in our process, we have chosen Gitlab CI/CD as CI tool because it is natively supported by the source control tool GitLab that was already in use at our institute.

Docker 11 containers are used to guarantee that the software testing environment is clean and reproducible. MATLAB Parallel Server can be applied to parallelize time-consuming simulations, such as Monte Carlo simulation. Currently, the CI servers are running on discarded desktop computers at the institute. However, one can also choose to run them in the cloud with Docker and Docker Machine 12 and gain scalability with minimum additional effort. Fig. 6 the overview of the CI process. Based on the contents of a new commit from the developers to the source control server, certain series of tests, which are mostly in the form of Mrails jobs, are triggered. The test results are automatically fed back to the developers via GitLab and to Polarion via the pre-configured links between the requirements, Design Models and the test cases that are described in section III-A. A git branch merge into the release or master branch will be rejected if the tests do not pass. This guarantees the quality of the software and allows merges to be performed more often without waiting for manual review. HIL simulations operate a unit-under-test within a representation of its real-world environment [START_REF] Bacic | On hardware-in-the-loop simulation[END_REF]. Therefore, a target which executes the developed software is connected to a real-time simulation of the later environment the target will be operating in. The basic concept of HIL uses the target's original interfaces for input stimulation from the simulation environment as well as for collecting the target's output into the simulation environment. Thus, a HIL simulation allows to evaluate the target's integrity under real world conditions like input-output interaction, real-time behavior, interface delays and jitters.

Certain objectives in DO-178C pertaining to the verification of Executable Object Code cannot be satisfied with simulation alone and need to be executed on the target environment [START_REF]Complete verification and validation for do-178c[END_REF]. A classical approach is the definition and creation of HIL test cases for requirements-based testing. These test cases are run in HIL simulation and demonstrate, if passed, that the software satisfies the requirements and can be considered as successfully verified [START_REF] Ray | Chapter 6 -functional and nonfunctional design verification for embedded software systems[END_REF].

Since HIL testing is a time-consuming process [START_REF] Ray | Chapter 6 -functional and nonfunctional design verification for embedded software systems[END_REF], already available test cases from previous verification methods are reused to reduce the implementation effort.

As already introduced in section III-A, test cases are created in Simulink Test and linked to the corresponding requirement.

These test cases are used to verify the functional software requirements implemented by the Design Model in Simulink via MIL simulations. To avoid additional effort in creating dedicated test cases for HIL simulation, thus also reducing an error prone manual transfer between MIL and HIL simulation test cases, Simulink Test Manger is used to execute identical MIL test cases in HIL. Besides streamlining the verification process by reducing manual effort, another benefit is that traceability between requirements and HIL test cases is automatically ensured as the test case itself is already linked to the requirement.

In order to be able to apply the same test case as MIL in HIL simulation, the connection of test case vectors to the Design Model's inputs and outputs, is substituted by a hardware interface between the development environment which is running the Simulink Test Manager and the HIL realtime simulation as shown in Fig. 7. We have used UDP communication between the Simulink Test Manager which is running the test cases test sequence and the HIL real-time simulation. UDP was selected as a standardized interface between physical machines which can be easily adapted to test cases depending on their input and output vectors also known as test data. Simulink furthermore directly provides a block-set for UDP communication. In our example, it is assumed that both the development environment and the HIL real-time simulation are on different computing units or physical machines. The software running on the target platform is receiving the same stimuli from the HIL realtime simulation as the design model receives during MIL simulation. The same holds for its outputs. Using this method, the MIL and HIL test case results are obtained from an identical test case and the results of both tests are supposed to be equivalent as long as the software is implemented correctly.

IV. LEVEL OF COMPLIANCE

DO-178C and DO-331 specify various activities, which should be implemented to achieve the objectives of these standards. The artifacts to be produced during the activities is specified in section 11 of DO-178C and DO-331. Some of the required activities and elements of the artifacts have considered as not applicable to the custom workflow. While implementing the custom workflow, we identified and assessed such inapplicable activities and artifact elements. If they were considered as reproducible without major rework of preexisting artifacts, we excluded them from the custom workflow. Examples are:

• Elements of the planning data intended for a formal certification process with certification authorities do not apply to the custom workflow (e.g. certification considerations and schedule, system and software description). • Activities of the configuration management process specific to the operation phase of the aircraft (e.g. software part numbering, load control and aircraft configuration records). We also omitted some activities, which cannot be efficiently automated with the tool, however, can be reproduced without major rework afterwards for formal certification. For example:

• Completeness of traceability between requirements, models, test cases and results was verified in the custom workflow using automated trace reports. However, manual verification of trace data for consistency and correctness was skipped as a time-consuming manual task, which can be implemented afterwards for formal certification. • Verification activities for LLS requirements which cannot be automated and need extensive manual review. Omitted activities or artifact elements resulted in partial compliance for some of the objectives implemented in the custom workflow. We identified the following levels of compliance for the selected objectives:

• Full when all activities associated with the objective implemented and artifacts produced • Partial when some activities associated with the objective are not fully implemented or artifact elements not produced. A summary of the compliance level achieved in the custom workflow is shown in Fig. 1 for DO-331 and Fig. 2 for DO-178C.

V. A CASE STUDY

The custom workflow explained above was applied to the development of an experimental Autopilot Manual Disconnection System (AMDS). The simplicity of the system ensured that a complete workflow from aircraft requirement authoring in Polarion down to HIL testing could be demonstrated with limited project resources.

Using AMDS, the pilot has aircraft command priority over the autopilot by having the ability to manually disconnect the autopilot at any time during the flight. External interfaces of AMDS are shown in Fig. 8. The pilots interact with the AMDS using two pushbuttons, one on each of the control inceptor. Under normal mode of operation, if any of the pushbutton is pressed, the system disconnects the autopilot within 100 ms by controlling the transmission clutch.

A control unit with two isolated and independent channels simultaneously processing the desired function is used. This redundancy ensures that a single failure doesn't lead to loss of primary function. The control unit also implements features typical for airborne controllers, including comprehensive builtin tests and operation-safe maintenance capabilities.

We developed the AMDS software according to the custom workflow and tools discussed in section III. After eliciting the requirements on Polarion as described in section III-A, the AMDS functionality is implemented in Simulink, whereas test cases assessing the temporal behavior and mode logics based on requirements are authored in Simulink Test. Trace data is created between Simulink models and Simulink test cases, and requirements on Polarion using SimPol.

During the development, we used mrails described in section III-B to execute code generation and all the model and code verification activities shown in Fig. 3 (excluding HIL testing which is implemented in a real-time environment). A snippet of mrails' status overview showing model coverage is given in Fig. 9. After pushing to Gitlab, the CI executes the whole set of tests and static checks to make sure that the modifications are ready to be merged.

The auto-generated software (MBS) is integrated with LLS and hardware which are reused from the real flight control computer (FCC) described in [START_REF] Nürnberger | Execution time analysis and optimisation techniques in the model-based development of a flight control software[END_REF]. Building the final loadable executable object code including both MBS and LLS parts is implemented in CI.

To satisfy target specific objectives of requirement-based testing, HIL simulations are performed using TechSAT ADS2 13 . As described in section III-D, MIL test cases are reused for HIL simulations using the UDP interface between HIL and Simulink environment. Equivalence between MIL, SIL and HIL cases have shown that the implemented software works as expected in the target environment and complies with requirements.

By implementing the proposed workflow for the AMDS

VI. FUTURE WORK

In future work we are planning on upgrading the developed prototype to DO-178C/DO-331 level A and estimate the efforts required to close the gap between the custom workflow and formal DO-178C/DO-331 certification. Another work in progress is applying the custom workflow to a more complex control system to study the compatibility of the approach with a full-scale development project.

For requirements management, we will evaluate the possibility to integrate FRET into Polarion as an extension. We will also apply the analysis capabilities of FRET for linear temporal logics. The custom widget of the automatic trace reports can also be used for coverage reports of model-based validation which will be part of our extended custom workflow. The uploaded test run records on Polarion are also not yet used for automatic verification reports but this will be implemented in the near future. It is also possible to configure Polarion to link manually written C/Java/XML code to work items. These links have not yet been included in the trace reports but they are planned for implementation in the future.

For CI integration, we plan to include automatic HIL tests on the HIL testbed with target hardware in the CI.

VII. CONCLUSIONS

The paper has introduced a lean, highly-automated and scalable software development workflow intended for prototype and experimental airborne systems. The proposed workflow is based on the subset of DO-178C and DO-331 objectives which we selected based on criteria of importance, available automation and reuse potential to streamline the development. Extensive automation of development and verification activities using the qualified model-based commercial toolchain along with the own custom tools and continuous integration environment was leveraged to reduce manual development effort while maintaining a high software quality. This custom workflow is aimed to be used a basis for potential future certification in full compliance with DO-178C/DO-331 without wide rework of the produced data.

Using the proposed custom workflow, we developed a small system prototype to study the advantages and limitations of this method. We showed that development fulfilling the selected DO-178C objectives using the custom workflow can reduce development efforts by about 50% comparing to average metrics observed in the industry for DO-178C level software. Yet, a high software quality was achieved with respect to the number of bugs detected and compliance to coding guidelines.

We plan in our future work to estimate the efforts needed to close the gap between the custom workflow and level A software development and also explore the relevance of the workflow to a full-scale development of a complex system.

Fig. 1 .

 1 Fig. 1. DO-331 Compliance Summary for Model-based Software

Fig. 2 .

 2 Fig. 2. DO-178C Compliance Summary for Low-level Software

4 .

 4 Fig. 5. Requirement, Model and Test Case Linking

Fig. 6 .

 6 Fig. 6. Continuous Integration Overview

Fig. 7 .

 7 Fig. 7. HIL Environment

Fig. 8 .

 8 Fig. 8. External Interfaces of AMDS

Fig. 9 .

 9 Fig. 9. Mrails Status Window

•

 Level of automation for objective implementation• Level of potential reuse of objective data (artifacts)

	Importance of the objective was evaluated based on
	following factors:
	1) In DO-178C, the objectives that need to be satisfied
	during software development depend on software Levels
	A to E resulting from the safety assessment process.
	Level A corresponds to the most critical Catastrophic
	failure condition category and requires most objectives
	to be satisfied with maximum rigor while Level E corre-
	sponds to No Safety Effect and requires no objectives to
	be satisfied. Objectives applicable to all software levels
	from A to D are considered more important than the
	objective assigned to only higher levels (i.e. level C or
	higher). Examples include the definition of high-level
	software requirements and testing of executable object
	code for compliance with high-level requirements.
	2) Relevance of the objectives to other aerospace and
	non-aerospace software development standards (ASTM
	F3201 [7], ISO 26262-6 [11], ISO 26262-8 [12], EN
	50128 [13] have been considered). For example, trace-
	ability down to source code is not required by DO-
	178C/DO-331 for Level D, but EN 50128 and ISO
	26262-8 recommend the complete traceability down to
	source code.
	Level of automation was another key factor for selecting
	the objectives for the custom subset. If the objective can
	be automated using a tool, it can help to improve overall
	software quality without significant increase of manual efforts.
	Examples include:
	• Requirements verification objectives (tables MB.A-3 and
	MB.A-4 of DO-331) which can be substantially au-
	tomated for model-based software (MBS) components
	leveraging model simulation. Test cases and procedures
	developed for model simulation can be further seamlessly
	reused for executable code testing.
	• Code verification objectives (table A-5/MB.A-5 of DO-
	178C/DO-331). These objectives are not applicable to
	lower software levels (Level D and below) and hence
	are not assigned with high importance as per the cri-
	teria above. However, they can be efficiently automated
	leveraging Simulink Code Inspector 1 [14], Polyspace Bug
	Finder 2 and Polyspace Code Prover 3 tools with very little
	additional manual effort.
	• Objectives for code structural coverage (table MB.A-7
	of DO-331), which can be automated for MBS code,
	reusing the test cases for model simulation and applying
	the Simulink Coverage tool

https://www.mathworks.com/products/simulink-code-inspector.html

https://www.mathworks.com/products/polyspace-bug-finder

https://www.mathworks.com/products/polyspace-code-prover

https://www.mathworks.com/products/simulink-coverage

https://www.ansys.com/products/embedded-software/ansys-scade-suite

https://www.mathworks.com/products/simulink-test.html

https://www.mathworks.com/products/simulink-design-verifier

https://www.mathworks.com/products/simulink-check

https://www.jenkins.io/

https://travis-ci.com/

https://www.docker.com/

https://docs.docker.com/machine/

https://techsat.com/technology-and-products/ads2/