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Abstract—This paper analyzes some emerging tech-
niques from the broad area of Bayesian learning for the
design of iterative receivers for single-carrier transmis-
sions using bit-interleaved coded-modulation (BICM) in
wideband channels. In particular, approximate Bayesian
inference methods, such as expectation propagation (EP),
and iterative signal-recovery methods, such as approxi-
mate message passing (AMP) algorithms are evaluated
as frequency domain equalizers (FDE). These algorithms
show that decoding performance can be improved by
going beyond the established turbo-detection principles,
by iterating over inner detection loops before decoding. A
comparative analysis is performed for the case of quasi-
static wideband communications channels, showing that
the EP-based approach is more advantageous. Moreover,
recent advances in structured learning are revisited for the
iterative EP-based receiver by unfolding the inner detection
loop, and obtaining a deep detection network with learnable
parameters. To this end, a novel, mutual-information de-
pendent learning cost function is proposed, suited to turbo
detectors, and through learning, the detection performance
of the deep EP network is optimized.

Index Terms—SC-FDE, expectation propagation, ap-
proximate message passing, deep unfolding.

I. INTRODUCTION

Single-carrier frequency domain equalization (SC-

FDE) is a fundamental technique for wireless com-

munications over frequency selective channels, like in

current 4G cellular systems. When considered with a bit-

interleaved coded modulation (BICM) scheme, equaliza-

tion can be seen as a Bayesian linear regression problem

with asymptotically independent priors which benefits

from soft channel decoder updates.

There is a long research track addressing this problem

with turbo equalizers [1]–[3], which are derived using

approximate Bayesian inference methods, such as belief

propagation (BP), often with Gaussian-approximation

constraint (GABP), to reduce receiver complexity. Re-

cently, more advanced methods such as expectation

propagation (EP) [4] gained interest in this context [5],

by enabling the use of inner detection loops.

Besides, the need for low cost, sparsity-aware de-

tectors for emerging compressed sensing and massive

multiple-input multiple-output (MIMO) applications has

led to many iterative signal-recovery (i.e. detection)

methods [6]–[9]. Starting with iterative thresholding, an

approximate message passing (AMP) framework was

established, by iteratively performing linear vector esti-

mation and scalar denoising, with variants such as gen-

eralized AMP (GAMP), orthogonal AMP (OAMP) and

vector AMP (VAMP). There has been many theoretical

analyses on these algorithms [9], [10], and some links to

approximate inference algorithms (BP/GABP/EP) [11]

were established. However relative behaviour of these

algorithms in the turbo detection problem considered in

this paper has not been fully investigated.

Moreover, recent advances in deep learning for struc-

tured models allows “unfolding” (also called “un-

rolling”) inference loops into deep feedforward neu-

ral networks [12]. Improved signal-recovery algorithms

were investigated by unfolding AMP-like algorithms

[13]. It has been shown that unfolded BP [14] can

improve inference by applying exponential smoothing

over messages and learning its weights.

Considering these developments, this paper investi-

gates turbo estimation with iterative approximate in-

ference algorithms for the SC-FDE BICM context. In-

deed, AMP-like algorithms are known for reducing

the complexity of approximate inference methods, but

in the considered SC-FDE systems, the approximate

inference techniques can readily be instantiated with

quasi-linear complexity. EP and some AMP-like meth-

ods are shown to have algorithmic equivalences, with

differences caused by implementation heuristics, but the

EP-based receiver achieves a more attractive detection

performance, when calibrated optimally. Finally, deep

unfolding is applied to the EP-based receiver to obtain a

multi-layer detection network. A turbo-receiver oriented

training cost function is proposed to optimize this re-

ceiver’s parameters, with small training complexity.

This paper’s contributions are as follows

1) instantiation of approximate inference and AMP-

like algorithms for SC-FDE BICM,

2) theoretical and numerical comparison of these al-

gorithms for wideband channel equalization,

3) learning for unfolded EP-based turbo-detection to

achieve improved detection performance.

This paper is organized as follows. The system model

is given in section II. Approximate inference algorithms

are given in section III, and their links to AMP-based

receivers is in section IV. A structured learning method-
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ology is proposed in section V to optimize inference.

II. SYSTEM MODEL

This paper considers SC block transmissions using

cyclic prefix. Using a BICM scheme, a Kb-bits informa-

tion block b is encoded and then interleaved into a binary

sequence d of length Kd. A memoryless modulator

ϕ maps this sequence to x ∈ XK , with |X | = M ,

Q = log2 M and K = Kd/Q. This operation maps the

Q-word dk , [dQk, . . . , dQ(k+1)−1] to the symbol xk,

and ϕ−1
q (xk) or dk,q are used to refer to dkQ+q .

Assuming perfect synchronization in both time and

frequency with the transmitter, and ideal channel state

information, the received baseband observations are

y = Hx + w, with, H the channel matrix and w ∼
CN (0K , σ2

wIK) the additive complex circular white

Gaussian noise (AWGN). H is a circulant matrix, whose

first column is h = [h0, . . . , hL−1,01,K−L], L < K
being the channel spread. In the frequency domain,

y = FKy = Hx+w, (1)

where x = FKx, w = FKw and H = FKHFH
K .

FK is the normalized K-DFT matrix whose elements

are [FK ]k,l = exp(−2jπkl/K)/
√
K, and such that

FKFH
K = IK . Thanks to DFT properties, w ∼

CN (0K , σ2
wIK), H = Diag(h) with h =

√
KFKh.

III. APPROXIMATE BAYESIAN INFERENCE

Optimal detection performance is achieved through

joint maximum a posteriori (MAP) estimation of trans-

mitted bits, b̂ = argmaxb p(b|y,H, σ2
w) at the expense

of a prohibitive computational cost of O(2Kb). In this

section, MAP estimation is simplified with deterministic

approximate inference methods such as BP or EP [15].

A. Maximum a posteriori detection with BP (BCJR)

Belief propagation (BP) achieves exact MAP per-

formance on computational graphs without loops, and

otherwise, loopy BP provides sub-optimal iterative ap-

proximations, which, for BICM yields turbo detection

algorithms, i.e. iterative joint detection and decoding [2].

Through the bit-wise asymptotic independence, MAP

detector estimates the posterior PDF

pDET(dk) ∝ p(y|H, σ2
w,d)pa(d) ↓ dk, (2)

where pa(d) =
∏

k pa(dk) =
∏

k pDEC(dk)/pe(dk) is

the fully-factorized extrinsic PDF, estimated at the MAP

decoder, and ↓ dk denotes marginalization on dk. The

posterior estimate at the MAP decoder is

pDEC(dk) ∝ p(b|d)pe(d) ↓ dk, (3)

with pe(d) =
∏

k pe(dk) =
∏

k pDET(dk)/pa(dk) being

the fully-factorized extrinsic PDF of the MAP detector.

After iterations of this turbo process, the MAP decoder

estimates the posterior PDF pDEC(b) ∝ p(b|d)pe(d) ↓ b

on b, yielding an estimate b̂.

BP (BJCR) � MAP
Decoder

GABP
MMSE

Equ.
Soft

Demap.
� MAP

Decoder

DL-EP
MMSE

Equ.
�

EP
Demap.

� MAP
Decoder

MAP Detector

Fig. 1. Turbo-equalization: BP and GABP vs. double-loop EP.

In practice, the decoder and the detector exchange ex-

trinsic information through log likelihood ratios (LLRs)

of coded bits d. A priori, extrinsic and a posteriori

LLRs are respectively denoted La(·), Le(·) and L(·),
with respect to the detector. Prior LLRs characterize the

prior PDF pa(dk), as follows

p(τ)a (dk) ∝
∑

α∈X P(τ)
k (α)δ(ϕ(dk)− α), (4)

P(τ)
k (α) ∝ ∏Q−1

q=0 exp(−ϕ−1
q (α)L

(τ)
a (dk,q)),

where P(τ)
k is a probability mass function (PMF) on xk

and τ = 0, . . . , T is the ongoing turbo-iteration index.

The MAP detector in eq. (2) can be implemented with

a BCJR algorithm with a computational complexity of

O(KML). This is prohibitive for high order constel-

lations or for channels with large delay spread. In the

following, the use of a MAP decoder is maintained.

B. Expectation Propagation (EP)

To alleviate the computational costs of MAP detec-

tion, filter-based turbo equalizers were explored, with

minimum mean squared-error (MMSE)-like criteria and

interference cancellation, using GABP [1], [3]. Nev-

ertheless, the decoding threshold of the GABP is far

from those of joint MAP detector, especially in highly

selective channels. Non-linear approaches were evalu-

ated to improve turbo equalization, by using detection

information (“decision feedback”) on symbols, on top

of decoder information.

Among those, interesting structures were given by the

EP framework, a more general approximate inference

algorithm [4], compared to GABP. EP attributes a family

of probability distributions to each factor involved in the

inference. The posterior estimates of these factors are

approximated by the reverse information projection [15]

onto their respective family of distributions, to enable

computing closed-form marginals.

When working with variables that follow Gaussian

distribution, EP yields MMSE-like filtering and interfer-

ence cancellation structure. Moreover, the structure of

the covariance matrix of these PDFs has an impact on

the detection complexity and performance. One practical

example is the scalar EP (SEP), which considers variable

PDFs to be fully-factorized with a scalar covariance (i.e.

white estimation noise). Scalar EP (SEP) is used for

low-complexity turbo equalization in [5], as it can be

implemented with fast Fourier transforms (FFT).



This receiver performs inner self-iterations s =
0, . . . ,S over filtering and demapping. In this loop, first,

the demapper estimates posterior symbols distribution

D(τ,s)
k (α) ∝ exp

(

−|xe(τ,s)
k − α|2/ve(τ,s)

)

P(τ,s)
k (α),

with the mean and variance of the PMF D(τ,s)
k being

µ
d(τ,s)
k , ED[xk] =

∑

α∈X αD(τ,s)
k (α),

γd(τ,s) , K−1
∑

k VarD[xk].
(5)

The soft feedback to the receiver is obtained in this

case by the division of the PDF CN (µd
p,k, γ

d
p), by the

equalized symbol PDF CN (xe
p,k, v

e
p), yielding

x
⋆(τ,s+1)
k

v⋆(τ,s+1)
,

µ
d(τ,s)
k

γd(τ,s)
− x

e(τ,s)
k

ve(τ,s)
, (6)

1/v⋆(τ,s+1) , 1/γd(τ,s) − 1/ve(τ,s). (7)

However, using these raw estimates may lead to unde-

sirable local extrema [15], hence smoothing is used

x
d(τ,s)
k = (1− β)x

⋆(τ,s)
k + βx

d(τ,s−1)
k , (8)

vd(τ,s) = (1− β)v⋆(τ,s) + βvd(τ,s−1), (9)

with 0 ≤ β ≤ 1. Next, MMSE-like filtering is used

ξ(τ,s) = K−1
∑

k |hk|2/(σ2
w + vd(τ,s)|hk|2),

f (τ,s)

k
= hk/[ξ

(τ,s)(σ2
w + vd(τ,s)|hk|2)],

x
e(τ,s)
k = x

d(τ,s)
k + f (τ,s)

k

∗(y
k
− hkx

d(τ,s)
k ), (10)

ve(τ,s) = 1/ξ(τ,s) − vd(τ,s),

which completes an inner iteration.

At the final self-iteration, extrinsic LLRs are

L(τ)
e (dk,q) = ln

∑

α∈X 0
q
D(τ,S)

k (α)
∑

α∈X 1
q
D(τ,S)

k (α)
− L(τ)

a (dk,q), (11)

with X b
q = {α ∈ X : ϕ−1

q (x) = b}, b ∈ F2. These LLRs

are then processed by the MAP decoder to produce the

next turbo iteration’s prior LLRs L
(τ+1)
a (dk,q).

This double-loop scalar EP (DL-SEP) receiver has a

complexity of O(SK log2 K), and interference cancella-

tion with extrinsic feedback instead of APP significantly

improves the convergence speed and the asymptotic

performance [5]. When S = 0, DL-SEP coincides with

GABP [3] and the structural differences between such

structures is shown on Fig. 1.

IV. LINKS WITH APPROXIMATE MESSAGE PASSING

There is a great number of contributions on iterative

message-passing algorithms for low complexity parsimo-

nious detection. This section discusses the extension of

these algorithms for SC-FDE BICM detection, and es-

tablishes their theoretical links to the inference methods.

These algorithms have roughly the same computational

cost order of O(SK log2 K).

AMP algorithms do not address (de)mapping aspects

of turbo detection, and they output APP symbol es-

timates. If these are directly fed to a soft-demapper,

the decoding performance is significantly degraded [5],

hence here, the final APP estimation step is replaced

with extrinsic bit LLR demapper.

A. Generalized Approximate Message Passing (GAMP)

Early AMP-like techniques are built around iterative

thresholding which successively applies non-linear es-

timators and interference cancellers. AMP is derived

by applying central-limit theorem to BP messages and

keeping first order terms of its Taylor series expansion,

and it was later extended to GAMP [7] to handle more

general inference models. It is also possible to derive

GAMP from EP with similar approximations [11] .

A GAMP based FDE has been formulated in [16],

ξ(τ,s) = K−1
∑

k |hk|2/(σ2
w + γd(τ,s)|hk|2),

f (τ,s)

k
= hk/[ξ

(τ,s)(σ2
w + γd(τ,s)|hk|2)], (12)

ǫ
d(τ,s)
k = γd(τ,s)/ve(τ,s−1)(x

e(τ,s−1)
k − µd(τ,s−1)

k
),

x
e(τ,s)
k = µd(τ,s)

k
+ f (τ,s)

k

∗(y
k
− hk(µ

d(τ,s)
k

− ǫ
d(τ,s)
k )),

ve(τ,s) = 1/ξ(τ,s).

This algorithm uses interference cancellation with APP

PMF statistics, but the Onsager reaction term [6] appears

as a bias compensator on the feedback with ǫdk. This

quantity is proportional to the estimation error between

the linear and the non-linear components of the previous

iteration. Hence GAMP is an APP-based interference

canceller that aims to decorrelate posterior estimates.

B. Orthogonal Approximate Message Passing (OAMP)

OAMP [8] extends AMP, with a decorrelated linear

component, and a divergence-free non-linear component

(i.e. its derivative’s expected-value is null). There are

many estimators based on zero-forcing or matched-

filtering which satisfy these conditions, but the optimal

solution in the MMSE sense, coincides with a scalar EP-

like algorithm. Here, OAMP is cast into SC FDE model

ξ(τ,s) = K−1
∑

k |hk|2/(σ2
w + v̂⋆(τ,s)|hk|2),

f (τ,s)

k
= hk/[ξ

(τ,s)(σ2
w + v̂⋆(τ,s)|hk|2)], (13)

x
e(τ,s)
k = x

⋆(τ,s)
k + f (τ,s)

k

∗(y
k
− hkx

⋆(τ,s)
k ),

ve(τ,s) = 1/ξ(τ,s) − v̂⋆(τ,s),

with v̂⋆(τ,s) , [
∑

k |yk−hkx
⋆(τ,s)
k |2−Kσ2

w]/
∑

k |hk|2.

The major differences of OAMP to DL-SEP are the

lack of damping and the use of an ML estimator to

estimate feedback’s variance.

C. Vector Approximate Message Passing (VAMP)

Another EP-related AMP derivation is given by VAMP

[9], with a general MMSE implementation (similar to
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Fig. 2. BER for coded 8-PSK, with static BER-optimized damping (at left). Impact of damping on BER (at right).

OAMP) directly derived from EP. The main distinguish-

ing aspect of VAMP is its singular value decomposition

(SVD) implementation and its damping heuristics [9].

MMSE-based VAMP, implemented in the frequency-

domain model is equivalent to the DL-SEP except for

the damping. VAMP damping procedure (eqs. (26)-(27)

in [9]) applies exponential smoothing on the non-linear

APP estimate µd
k, and on the linear estimate’s precision

1/ve, unlike DL-SEP which smooths extrinsic non-linear

estimate’s mean and variance.

D. Conclusions on AMP-like algorithms

AMP-like methods have been derived to reduce the

complexity of original inference algorithms, but for the

considered communications problem, inference methods

have similar complexity. Bit error rate (BER) perfor-

mance of turbo receivers based on AMP-like algorithms

and inference methods are provided in Fig. 2, with a

block length K = 256 and a recursive systematic con-

volutional (RSC) channel code [1, 5/7]8, in the Proakis

C channel [0.23, 0.46, 0.69, 0.46, 0.23].
GABP and BCJR algorithms provide respectively an

upper and a lower bound on achievable BER perfor-

mance as conventional methods. Receivers that involve

damping parameters are optimized, by brute-force, for

each value of SNR, S and T . Self-iterated receivers

considerably improve the detection performance, and

DL-SEP achieves the lowest error rates among alterna-

tives. While GAMP, OAMP and VAMP approach DL-

SEP performance as self-iterations increase, GAMP has

slower convergence speed and OAMP has a diversity loss

at high SNR, due to the sub-optimal feedback variance

estimation. The right side of Fig. 2 shows the sensitivity

of BER to the changes in a static β, showing that there

are locally robust optimum damping values.

V. UNFOLDING THE GRAPH: DEEP EP NETWORK

A. Motivations for deep learning at the physical layer

As physical layer emitters are man-made, model-based

algorithms for receivers are expected to be robust if

suitable physical channel models are available. Purely

data-based deep learning strategies have been investi-

gated for designing communication systems with auto-

encoders, however practical interests remain limited,

especially in the coding area, where training costs can

be prohibitive [17]. Instead, model-oriented learning is

more practical, when considered for optimizing existing

algorithms’ hyperparameters, or to account for poorly

modelled channel, correlations, and system phenomena.

Deep unfolding [12] is one such strategy, which rep-

resents iterative algorithms as multi-layer deep feedfor-

ward networks, with parameters to be optimized. It has

been applied to BP with exponential smoothing for im-

proved channel decoding [14], and for unfolded-OAMP

for MIMO detection [18], where the attenuation of non-

linear estimations is trained. These works have shown

performance benefits of learning damping parameters.

On the other hand, when the “raw” VAMP algorithm

(no damping) is unfolded, the resulting deep network,

where filters are replaced by fully connected layers, out-

perform conventional residual deep networks [13]. More-

over, analytically computed VAMP parameters yield the

same performance as the trained VAMP network [13].

This suggests that raw VAMP/OAMP/SEP-like algo-

rithms (β = 0) already yield near-optimal parameters for

such structures, when channel parameters are available,

and learning the involved filter/convolutional weights

and non-linear parameters appears to be unnecessary.

However, as Fig. 2 attests, exponential smoothing

improves these algorithms, and the BER sensitivity is

a smooth function with a local extrema on β. Hence,

unfolding the detection graph of DL-SEP is investigated,

by considering each self-iteration as a neural layer, and

learning parameters θθθ = [β(1), . . . , β(S)] as shown in

Figs. 3 and 4. The corresponding neural structure is akin

to a network of convolutional layers, where layer outputs

are linearly mixed with its inputs, with weight β.

B. Learning for the deep EP network

To optimize DL-SEP, a loss function L is proposed,

to track the turbo detection dynamics at the detector,

considering the decoder outputs. The main idea is to use
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a loss metric, correlated to the output BER, along with a

quality indicator on a priori LLRs fed from the decoder.

The binary-cross entropy between a soft-bit outputs of

DL-SEP with the transmitted bits is given as

ℓ(dk,q, d̂k,q) , − log
(

(d̂k,q)
(1−dk,q)(1− d̂k,q)

dk,q

)

,

where d̂k,q , 1/(1+exp(−Le(dk,q)) is the soft bit, and

this loss function corresponds to the Kullback-Leibler

divergence between transmitted and estimated bits. Then,

inspired from EXIT function synthesis methodology

[19], the neural network is fed with a set of N sample

codewords of Gaussian-distributed prior LLRs, corre-

sponding to a prior information IA, La(dk,q, IA)[n] ∼
N ((1 − 2dk,q)µa, 2µa), n = 1, . . . , N , with µa =
J−1(Ia) and J(µ) , 1 − EL∼N (µ,2µ)[log2(1 + e−L)].
Then the detector’s extrinsic LLRs, for these samples,

are Le(d)[IA, n], and the learning cost function is

L(d, d̂, IA) ,
1

QNK

∑

k,q

∑

n

ℓ(dk,q, d̂k,q[IA, n]), (14)

where d̂k,q[IA, n] is the soft-bit related to Le(d)[IA, n].
This loss function enables learning optimal values of θθθ

for a given IA, and there is a bijective mapping between

IA and the prior variance va(τ) , K−1
∑

k Var
P

(τ)
k

[xk],

where P(τ)
k is the PMF in eq. (4). Thus, trained param-

eters are tabulated as a function of va ∈ [0, σ2
x], and the

receiver adjusts its weights θθθ(τ), with the measured va(τ)

and linear interpolation, at the ongoing turbo-iteration τ .

Training is carried out with the ADAM optimizer [20],

with an initial learning rate of 0.025 and mini-batches

consisting of 200 samples of:

• a value of σ2
w, from uniformly distributed SNRc =

20 log10 σx/σw, on an interval of interest,

• a dummy codeword d from 2Kd i.i.d. possibilities,

• a noise vector w and a channel realization H,

5 10 15 20 25 30
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Fig. 5. Comparison, in Proakis C with coded 8-PSK, of DL-SEP with
static damping and 3 self-iters. and Learned-DL-SEP with 3 layers.

• prior LLR codeword La(d, Ia)[n] realizations, with

n = 1, . . . , N samples.

This learning strategy enables fine optimization of the

DL-SEP algorithm, when considered as a deep network.

C. Numerical results

Hence, we investigate the proposed unfolded DL-

SEP, to check whether deep learning can automatically

optimize DL-SEP parameters to predict its optimum

behaviour. For considering a highly-selective situation,

training is considered in the fixed Proakis C channel,

with K = 256, RSC [1, 5/7]8 and SNRc ∈ [5, 20] dB.

Prior LLRs realization samples of N = 25 is found

to be sufficient, with 150 training iterations, to have

a precision within 0.05 on β. Weights are learned for

IA ∈ {0, 0.33, 0.67, 0.78, 0.89, 0.94, 0.99, 1}.

The performance of “Learned-DL-SEP” is shown in

Fig. 5 along with DL-SEP with static damping β (across

self-iterations), with β varying between 0 and 1 with

0.1 steps. While DL-SEP with low damping has good

detection threshold, it suffers from error propagation at

high SNR, oppositely high damping slows down conver-

gence. “Learned-DL-SEP” manages thus to dynamically

adapt to the situation, as deep learning allows us to

find optimal values of β(s,τ) as a function of va(τ)

(dynamic damping). In Fig. 5, DL-SEP appears to reach

the convex-hull of its feasible set of BER performance.

In the end, the “learned-DL-SEP” with 3 layers, is within

1.5 dB of BCJR, at BER = 10−3 for T = 5.
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To pursue the analysis of the Deep EP network,

training is now carried out on a Rayleigh fading chan-

nel with uniform power profile with L = 5 (denoted

UniRay5), and hence, the learning process accounts for

many different channel realizations. In previous works, it

was noted that training in variable channels still ensures

good detection performance for difficult channels (ill-

conditioned channel matrix) [21]. In this work, we are

also interested in seeing how would a network, trained in

a difficult channel, would perform in random channels.

To evaluate this, in Fig. 6, the performance of Proakis-

C-trained network and UniRay5-trained network are

compared in both Proakis C and UniRay5 validation sets.

It is shown that while UniRay5-trained network performs

within 0.3-0.5 dB of the Proakis C trained network’s

BER, in the Proakis C channel, the Proakis-C-trained

network performs identically to the UniRay5-trained

network. Fig. 7 shows the power spectral density of 200

random UniRay5 channels, and the Proakis C channel;

the latter has a significant spectral null region. This

suggests that training sets with highly selective, difficult

channels should possibly enable a learned receiver to

perform near-optimally also in less selective channels.

VI. CONCLUSION

Similarities between EP-based approximate-inference

and AMP-like algorithms are laid out, and for the consid-

ered frequency domain equalization problem, EP-based

inference is shown to reach lower error rates among

other self-iterated turbo-receivers. These structures are

applicable to many single-carrier communications sys-

tems, such as SC-FDE or SC-FDMA, and it can also be

extended multi-user or MIMO systems [22].

Deep unfolding is shown to be a means to optimize

the performance of this receiver with relative ease, and a

reasonable complexity. This is enabled by the proposed

turbo-oriented learning loss function, whose utility goes

beyond the scope of this paper, to any soft-input soft-

output detector. Finally, the impact of choosing the

training set in more or less mild conditions is shown

to impact the scope of optimality of such receivers.
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