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Abstract—Estimating the cardiac motion from ultrasound (US)
images is an ill-posed problem that requires regularization. In a
recent study, it was shown that constraining the cardiac motion
fields to be patch-wise sparse in a learnt overcomplete motion
dictionary is more accurate than local parametric models (affine)
or global functions (B-splines, total variation). In this work, we
extend this method by incorporating temporal smoothness in
a multi-frame optical-flow (OF) strategy. An efficient optimiza-
tion strategy using the constrained split augmented Lagrangian
shrinkage algorithm (C-SALSA) is proposed. The performance is
evaluated on a realistic simulated cardiac dataset with available
ground-truth. A comparison with the pairwise approach shows
the interest of the proposed temporal regularization and multi-
frame strategy in terms of accuracy and computational time.

Index Terms—Optical flow, multi-frame motion estimation,
temporal regularization, ultrasound, echocardiography.

I. INTRODUCTION

Cardiac motion estimation from US images is a well-

established tool for the diagnosis of cardiovascular diseases

[1]. This is mainly due to the practical advantages of US

imaging, such as low cost and safety, but also to its relatively

high frame rates that allow the fast motions of the tissues to be

captured. The most classical cardiac motion estimation tech-

niques fall into the category of speckle tracking methods [2].

These methods seek to match blocks between images using

a similarity measure, e.g., the sum-of-squared-differences [3].

Other widely used approaches are based on parametric models,

such as affine transformations [4], or non-rigid deformation

models, typically B-splines parametrizations [5]. Differential

OF methods have also been successfully used in the context of

echocardiography [6]. The basic assumption of OF, is that the

intensities are constant across consecutive frames. The flow is

then estimated using the spatial and temporal image intensity

variations.

Motion estimation is an ill-posed problem that requires reg-

ularization. One of the most classical regularization strategies

enforces spatial smoothness, usually involving constraints on

the gradient of the motion field [7]. Parametric models also

enable regularization by restricting the number of possible dis-

placements [8]. Recently, sparsity-based regularizations have

been used successfully in various signal and image processing

problems. The key idea is that an image patch can be sparsely

represented in an appropriate learnt dictionary. In the context

of echocardiography, a sparsity-based regularization has been

successfully combined with spatial smoothness constraints to

regularize the cardiac motion estimation problem [9], [10].

In these works, a dictionary of typical cardiac displacement

patterns was learnt using patches of simulated realistic cardiac

motions.

Most of the before-mentioned techniques use only pairs

of consecutive images. One drawback of these pairwise ap-

proaches is that they fail to exploit the temporal information

embedded in the whole image sequence. Nonetheless, the

temporal aspect plays an essential part in motion analysis. This

is especially true in the case of cyclic displacement patterns,

such as cardiac motions. In the context of echocardiography,

some works have sought to incorporate this temporal aspect,

typically, by extending the B-splines basis into the time

domain [5], [11]. This also allows temporal smoothness to be

enforced, which is useful because of the presence of speckle

decorrelation due to, e.g., out-of-plane motions or artefacts.

However, these methods still rely on the choice of a single

reference frame, resulting in a decrease of accuracy for farther

frames in the sequence.

In this work, a new multi-frame OF method for cardiac

motion estimation is introduced. In Section II-A, the temporal

aspect is incorporated by defining a cost function that allows

the motions of an entire image sequence to be estimated

simultaneously. One advantage of the proposed approach is

that it does not depend on the choice of a single reference

frame. Motivated by the success of the sparsity-based regular-

ization studied in [9], the motions are constrained to be sparse

in an appropriate cardiac motion dictionary. In addition, in

Section II-B, we incorporate a priori knowledge about the

temporal evolution of motions by assuming piecewise smooth

trajectories. A robust weighting technique is employed to relax

this constraint for large temporal shifts. In Section II-C, the

resulting problem is solved using an efficient optimization



strategy based on C-SALSA. Finally, experiments using simu-

lated data and concluding remarks are reported in Sections III

and IV.

II. MULTI-FRAME MOTION ESTIMATION

A. Proposed cost function

Let I ∈ R
NM denote a sequence of 2D cardiac images,

with N the number of pixels and M the total number of

frames. The 2D motion fields Xt ∈ R
2N to be estimated

between consecutive frames It and It+1 are concatenated

in a vector X ∈ R
2MN . The proposed motion estimation

method is formulated as an energy minimization with an OF-

based data fidelity term EOF. The proposed regularization

strategy makes use of three different constraints: (i) a temporal

regularization term denoted as ET is introduced in order to

exploit the temporal smoothness of the motions, (ii) a total-

variation regularization ETV is used to ensure spatially smooth

motion fields, and (iii) a sparse regularization term EP exploits

the patch-wise sparsity of X when decomposed on a learnt

dictionary of cardiac motions D ∈ R
2n×2q [9], with 2n

denoting the patch size and 2q the number of atoms in the

dictionary. The motion fields are finally obtained through the

minimization of the resulting energy function as follows

min
Ω,X

EOF(I,X) + λTVETV(X) + λPEP(X,Ω)

+ λTET(X) + λ1‖Ω‖1 (1)

where Ω ∈ R
2q×p contains the sparse codes associated with all

the patches in the sequence. Note that in (1), the sparsity of the

vectors in Ω is enforced using the ℓ1-norm. The regularization

parameters allowing the influence of each energy term to be

controlled are denoted as λTV, λP, λT and λ1.

As in [9], the dictionary D is learnt beforehand from a set of

training cardiac motion fields (see Section III-A). Following

[9], the online dictionary learning method [12] is used for

learning the dictionary. The motion fields are then estimated

by minimizing (1). The data fidelity term and the proposed

regularizations are detailed in the following.

1) OF-based data fidelity: The data fidelity term is based

on the OF method [7]. In this work, we propose a multi-frame

formulation using all the images in the sequence simultane-

ously, i.e.,

EOF(I,X) =
1

2
‖Y +AX‖2F (2)

where ‖.‖F denotes the Frobenius norm and Y ∈ R
NM is

a vector containing the temporal derivatives of the intensities

∂tIt ∈ R
N with t = 1, ...,M , A ∈ R

MN×2MN is a block

diagonal matrix whose blocks are ∇It
T ∈ R

N×2N where

∇ indicates the spatial gradient operator. Note that the term

(2) incorporates the OF data fidelity terms of all consecutive

frames and thus does not require the choice of a single

reference frame.

2) Sparse and spatial regularizations: The terms ETV and

EP enforce spatial smoothness and sparsity for all the motions

in X simultaneously. The spatial regularization is based on a

classical total-variation defined using the following form

ETV(X) = ‖∇hX‖2F + ‖∇vX‖2F (3)

where ∇h and ∇v indicate the horizontal and vertical gradient

components. The pairwise sparse regularization used in [9], is

also reformulated for the entire sequence, i.e.,

EP(X,Ω) = ‖P(X)−DΩ‖2F (4)

where P(.) : RMN 7→ R
2n×p is an operator that extracts p

overlapping patches of size 2n from X .

B. Temporal regularization

The aim of the temporal regularization term ET is to enforce

piecewise smooth trajectories for the pixels inside the my-

ocardium. This is achieved by constraining the displacement

of each pixel at a time instant t to be close to the displacement

of the corresponding pixel in adjacent frames, while allowing

some temporal discontinuities (due, for example, to frame rate

limitations). In this work, we propose to enforce temporal

smoothness using the previous and forward frames simultane-

ously. This choice allows us to avoid biased estimates towards

the end (or beginning) of the sequence.

Let Xb and Xf be the time shifted versions of X containing

all the backward and forward motions in the sequence. One

way of enforcing smooth trajectories, consists in imposing

a constant velocity. More precisely, one can use a finite

difference approximation of the second derivatives of the

motions [13], leading to

ET(X) =
∑

i

[ 2X(i′) − Xb(i) − Xf (i
′′) ]2 (5)

where the indexes i′ and i′′ correspond to the positions of the

pixel i in the frames t and t + 1, i.e., i′ = i + Xb(i) and

i′′ = i′ +X(i′). This change in the pixel positions causes a

non linearity, which is bypassed by using an approximation

based on the 1st order Taylor expansion of the term Xi′ .

Furthermore, we propose to cope with temporal discontinuities

by using a robust weighting approach. Specifically, a weight

matrix W ∈ R
MN×MN is introduced in order to assign lower

weights to the pixels with large shifts in the displacements.

The temporal smoothness constraint is thus relaxed for large

temporal discontinuities, e.g., at end-systole. More specifically,

the weights are computed for the current residual using the

Lorentzian weight function, which is a redescending M-

estimator that allows the influence of the discontinuities to

be decreased to zero. After applying the Taylor expansion

and introducing W , the regularization term is reformulated

as follows

ET(X) = ‖W 1/2[2X − (Xb − 2XT
b Xb +Xf )]‖

2
F (6)

where the pixel index i′′ has now been dropped from Xf . Note

that W is computed iteratively using the previous residual

value, i.e., e = 2X−(Xb−2LXT
b Xb+Xf ), such that W =

diag([w(e1), ..., w(eMN )]) where w denotes the Lorentzian

weight function.



C. Proposed optimization strategy

Problem (1) is solved using the C-SALSA algorithm [14].

C-SALSA is based on the alternating direction method of mul-

tipliers (ADMM), which iterates between simple optimization

sub-problems. This approach provides a flexible framework

that allows us to deal with the different regularization terms

considered in this work. Furthermore, it allows us to cope with

the high dimensionality of the unknown matrices X and Ω,

as well as the presence of the non-quadratic term ‖Ω‖1.

The sub-problems are formulated by introducing 7 auxiliary

variables that stand for the motion fields in X and the sparse

codes Ω. The optimization problem (1) is reformulated as

follows

min
V1−V5

1

2
‖Y +AV1‖

2
F + λTV(‖∇hV21‖

2
F + ‖∇vV22‖

2
F )

+λP‖P(V31)−DV32‖
2
F + λ‖V4‖1 + λTET(V5)

(7)

subject to

V1 = X

V21 = ∇hX V32 = Ω

V22 = ∇vX and V4 = Ω.

V31 = X

V5 = X

(8)

The augmented Lagrangian associated with the problem (7) is

defined as follows

L(X̃,V ,G) = E(V ) +
µ

2
‖HX̃ − V −G‖2F (9)

where the auxiliary variables are concatenated in V , X̃

contains X and Ω, the matrix H stands for the corresponding

identity or gradient operators, G contains the Lagrange mul-

tipliers corresponding to V , µ > 0 is the penalty parameter,

and E(V ) is the cost function associated with the problem

(7). Finally, the minimization is carried out by iterating be-

tween optimizations with respect to each variable (or auxiliary

variable) and updating the Lagrange multipliers in G. The

different iterations of the C-SALSA scheme are summarized

in Algorithm 1.

Algorithm 1: Motion estimation using C-SALSA

Input : Images I , regularization parameters λTV, λP, λ, λT ,

penalty µ and initializations V
0, G0, X̃0.

1 for k = 1, ..., kmax do
%Motions and sparse codes

2 X̃
k
∈ argmin

X̃

L(X̃,V k−1,Gk−1);

%Proximal computations

3 V
k
∈ argmin

V

L(X̃k,V ,Gk−1);

%Lagrange multipliers

4 G
k = G

k−1
− (HX̃

k
− V

k);
5 end

Output: The motions X and the associated sparse codes Ω.

III. EXPERIMENTS

In this section, the proposed multi-frame approach is tested

using a realistic simulated cardiac US sequence. We focus on

the comparison of the proposed approach with the pairwise

method studied in [9]. In addition, the impact of the temporal

regularization term is investigated. The comparison is based

on the endpoint error [15] between the estimated motion fields

and the ground-truth. The different regularization parameters

involved in all tested methods were tuned to provide the best

performance.

A. Dataset

In this work we use a realistic cardiac US dataset with

available ground-truth1. The true motion fields provide the

possibility of training the motion dictionaries as well as

evaluating the motion estimation accuracy. In this work, the

dictionaries are learnt using the LADdist sequence, and the

tests are conducted on the LADprox sequence of the same

dataset. The sequences contain 34 frames of size 224 × 208
(pixel size 0.7×0.6mm) with a frame rate of 22Hz (see Fig. 2-

a for an example).

B. Motion estimation results

The errors obtained for the proposed multi-frame and

pairwise approaches are reported in Table. I. The proposed

multi-frame method with temporal regularization is referred

to as Multi-frame TR, whereas the proposed method without

temporal regularization is denoted as Multi-frame. One can see

from this table that the proposed approaches lead to smaller

global errors for this sequence. In addition, the use of the

temporal regularization yields the best performance. Notice

that the multi-frame approaches required significantly shorter

execution times when compared to the pairwise method.

Method Pairwise Multi-frame Multi-frame TR

Errors 0.14±0.11 0.12±0.11 0.11±0.10

Time (s) 52.33 10.27 12.54

TABLE I: Means ± stds of the endpoint errors for the

LADprox sequence and the average execution times per frame.

Fig. 1 shows the temporal evolution of the mean errors

for the LADprox sequence. This figure shows that the pro-

posed multi-frame approaches (with and without temporal

regularization) outperform the pairwise method over the entire

cardiac cycle (excluding the first frame). A relatively larger

improvement can be observed in the systole phase, where

the displacements have higher magnitudes. Overall, the multi-

frame approach with temporal regularization leads to the best

performance.

The systolic motion field obtained using the Multi-frame TR

approach is displayed in Fig. 2-a. One can see from this figure

that the estimated displacements are consistent with the inward

systolic motions of the myocardium. In order to have more

1The data and related papers can be found at https://team.inri
a.fr/asclepios/data/straus/



Fig. 1: Comparison of the mean errors vs time for the pro-

posed multi-frame method with temporal regularization (TR),

without temporal regularization and the pairwise method of

[9].

Fig. 2: (a) Estimated motion field for a systolic frame. (b) The

estimated trajectories of a point in the basal segment of the

myocardium vs the ground-truth. The position of the point is

indicated by a red square in (a).

insight into the effect of the temporal regularization, Fig. 2-b

also shows the obtained trajectories for a point in the basal

segment of the myocardium. This figure shows that the Multi-

frame TR approach yields a trajectory that is significantly

closer to the ground-truth when compared to those obtained

with the other approaches. One can also see that the pairwise

method provides the least accurate trajectory for this point.

IV. CONCLUSIONS

This paper introduced a new multi-frame approach with

sparse and temporal regularizations for cardiac motion esti-

mation in US images. The proposed approach used a regu-

larization imposing sparsity in a learnt dictionary of typical

cardiac motions. A weighted temporal regularization term

enforcing piecewise smooth trajectories was also proposed.

Finally, temporal consistency was incorporated by estimating

the motions of an entire sequence at once without relying on a

single reference frame. An efficient optimization strategy using

the C-SALSA scheme was designed to solve the optimization

problem resulting from the different regularizations. The pro-

posed method was tested using a dataset of realistic cardiac US

simulations. Experimental results showed an improvement in

the motion estimation accuracy with a reduced computational

time in comparison with a pairwise method also employing a

dictionary learning-based regularization.

REFERENCES

[1] C. Cottrell and J. N. Kirkpatrick, “Echocardiographic strain imaging and
its use in the clinical setting,” Expert Review of Cardiovascular Therapy,
vol. 8, no. 1, pp. 93–102, 2010.

[2] D. Boukerroui, J. A. Noble, and M. Brady, “Velocity estimation in
ultrasound images: A block matching approach,” in Proc. Int. Conf.

Inform. Process. Med. Imaging, Ambleside, UK, July 2003, pp. 586–
598.

[3] F. Yeung, S. F. Levinson, and K. J. Parker, “Multilevel and motion
model-based ultrasonic speckle tracking algorithms,” Ultrasound in

Medicine & Biology, vol. 24, no. 3, pp. 427–442, 1998.
[4] M. Suhling et al., “Myocardial motion analysis from B-mode echocar-

diograms,” IEEE Trans. Image Process., vol. 14, no. 4, pp. 525–536,
2005.

[5] M. Ledesma-Carbayo et al., “Spatio-temporal nonrigid registration for
ultrasound cardiac motion estimation,” IEEE Trans. Med. Imag., vol. 24,
no. 9, pp. 1113–1126, 2005.

[6] P. Baraldi, A. Sarti, C. Lamberti, A. Prandini, and F. Sgallari, “Evalua-
tion of differential optical flow techniques on synthesized echo images,”
IEEE Trans. Biomed. Eng., vol. 43, no. 3, pp. 259–272, 1996.

[7] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial

Intell., vol. 17, no. 1, pp. 185–203, 1981.
[8] A. Elen et al., “Three-dimensional cardiac strain estimation using spatio-

temporal elastic registration of ultrasound images: A feasibility study,”
IEEE Trans. Med. Imag., vol. 27, no. 11, pp. 1580–1591, 2008.

[9] N. Ouzir, A. Basarab, H. Liebgott, B. Harbaoui, and J.-Y. Tourneret,
“Motion estimation in echocardiography using sparse representation and
dictionary learning,” IEEE Trans. Image Process., vol. 27, no. 1, pp. 64–
77, Jan 2018.

[10] N. Ouzir, A. Basarab, O. Lairez, and J.-Y. Tourneret, “Robust optical
flow estimation in cardiac ultrasound images using a sparse represen-
tation,” IEEE Trans. Med. Imag., vol. 38, no. 3, pp. 741–752, March
2019.

[11] M. De Craene et al., “Temporal diffeomorphic free-form deformation:
Application to motion and strain estimation from 3D echocardiography,”
Med. Image Analysis, vol. 16, no. 2, pp. 427–450, 2012.

[12] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” in Proc. 26th Int. Conf. Mach. Learning (ICML ’09),
Montreal, Quebec, Canada, 2009, pp. 689–696.

[13] S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer, “Modeling temporal
coherence for optical flow,” in Proc. Int. Conf. Computer Vision,
Barcelona, Spain, Nov. 2011, pp. 1116–1123.

[14] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An aug-
mented lagrangian approach to the constrained optimization formulation
of imaging inverse problems,” IEEE Trans. Image Process., vol. 20,
no. 3, pp. 681–695, March 2011.

[15] M. Alessandrini, A. Basarab, H. Liebgott, and O. Bernard, “Myocardial
motion estimation from medical images using the monogenic signal,”
IEEE Trans. Image Process., vol. 22, no. 3, pp. 1084–1095, 2013.




