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Abstract—This study proposes an elegant spatio-temporal com-
pressed sensing scheme to significantly reduce the amount of data
required to form quantitative acoustic microscopy (QAM) images.
QAM systems form two-dimensional acoustic parameter maps of
thin section of soft tissues. QAM data collection consists in raster
scanning a sample in 2D and digitizing backscattered RF signals
at each scan location. Therefore, the raw QAM data is three-
dimensional and when using this conventional data acquisition
process, data sets can be large causing processing and storage
limitations. Our previous work demonstrated that the amount
of QAM data can be remarkably reduced either spatially or
temporally by using compressive sampling (CS) or finite rate of
innovation (FRI) approaches, respectively. These approaches take
advantage of the properties of QAM data, i.e., the sparsity of 2D
maps and the parametric representation of RF signals. Therefore,
in this study both approaches were combined into a single spatio-
temporal solution. Results yielded a new data volume size of only
2.6% of the data originated by classical sampling techniques
without significant deterioration of the 2D maps.

Index Terms—quantitative acoustic microscopy, compressive
sampling, finite rate of innovation, sparsity, parametric repre-
sentation

I. INTRODUCTION

Quantitative acoustic microscopy (QAM) is an ultrasound
imaging modality using very high frequency ultrasound to
form 2D maps of acoustic properties of soft tissues at mi-
croscopic scales [1], [2]. For our QAM system, thin ex vivo
samples are affixed to a microscopy glass slides and are
raster-scanned (spatial step size of 2 µm) using a 250 MHz
transducer resulting in a 3D RF data cube. Each RF signal
is processed to obtain, for each spatial location, acoustic
parameters, e.g., speed of sound (c). The scanning time is
dependent on the sample size and can range from less than
one minute to possibly tens of minutes. In order to prevent
changes to the sensitive thin sectioned tissue during scanning,
reducing scanning time is an important practical issue. In this
regard, our previous studies were devoted to demonstrating:
i) spatially under sampled measurements, following a spiral
pattern combined with image reconstruction based on approx-
imate message passing (AMP), allow decreasing the number
of acquired RF signals by 40% without degrading the QAM
image quality [3], ii) because QAM RF signals at a given
location follow a parametric form with a limited number of
degrees of freedom, each RF signal can be sampled (and

adequately processed) at a much lower rate (162.5 MHz) than
the Nyquist rate (800 MHz for our QAM system) [4]. The
aim of this study is to combine AMP and FRI for QAM
data to yield far more parsimonious data acquisition and to
demonstrate that the combined approach significantly reduces
QAM data acquisition time and QAM data size at no detriment
to image quality.
The remainder of the paper is organized as follows. Section II
covers the general theories of CS and FRI. Section III in-
troduces the process of combining the spatial and temporal
sparse encoding of QAM data, and subsequently Section IV
details the decoding algorithm to yield 2D acoustic parametric
maps. Section V compares the simulation results and the 2D
map acquired by the traditional approach, and conclusions are
presented in Section VI.

II. THEORETICAL BACKGROUND

A. Compressive sampling

Since its inception, the CS framework [5] has been used
successfully in numerous applications where sparse or com-
pressible signals (or images) can be exactly recovered from
a small set of incoherent measurements (1) by solving a
constrained optimization problem (2).
The CS measurement model is as follows

y = Φx + n (1)

where y ∈ RM is the measurement vector, x ∈ RN is the
signal or image to be reconstructed, Φ is an M × N(M �
N) measurement matrix and n ∈ RM is an additive white
Gaussian noise. As a solver for this underdetermined problem,
`1-norm minimization with relaxed constraints [6] is done as

min
x∈RN

‖x‖1 s.t. ‖y −Φx‖2 ≤ ε (2)

where ε bounds the amount of noise in the measurements and
is tuned to guarantee a perfect recovery with high probability
as long as the measurement matrix satisfies the restricted
isometry property (RIP) [7], and M ≥ C ·Klog(N/K) holds,
where C is a positive constant and K is the number of non zero
coefficients in the vector x. AMP, that turns the reconstruction
algorithm into an iterative denoising process, is an alternative
to solving (2) for recovering an image from compressed



measurements [8]. In this work, an AMP algorithm, as briefly
described in IV-B, is used for CS reconstruction [9], [10].

B. Finite Rate of Innovation

FRI signals, which are fully described by a limited number
of parameters [11], can be recovered from a small set of
samples acquired at the innovation rate ρ defined as

ρ = lim
τ→∞

1

τ
Cx(−τ

2
,
τ

2
) (3)

where Cx[ta, tb] represents a counting function that counts
the number of parameters of x(t) over the interval of time
[ta, tb]. Interestingly, it has been shown that efficient recovery
schemes are possible even in the case of non-bandlimited
signals such as stream of Diracs, nonuniform splines and
piecewise polynomials [11]. The key concept making the
approach feasible is that the aforementioned class of signals
can commonly be modeled as union of subspaces instead of
a single linear vector space forcing an input signal to be
bandlimited. A typical FRI signal is defined as

x(t) =
∑
m∈Z

L−1∑
l=0

alh(t− tl −mτ) (4)

The signal above can be interpreted as living in a shift-
invariant subspace spanned by a set of parameters, i.e., time
instances {tl}L−1l=0 and amplitudes {al}L−1l=0 with a known basis
h(t) that is not necessarily band-limited. As such, given the
basis function as a prior information, the novel sampling
process carries out an uniform sampling at a dramatically
reduced sampling rate, i.e., the rate of innovation.

xn = (x ∗ g)(t)|t=nT =

〈
x(t), ϕ(

t

T
− n)

〉
(5)

where ϕ(t), as a scaled and time reversed version of g(t), is
called a sampling kernel and satisfies the generalized Strang-
Fix conditions [12]. Retrieving {al, tl}L−1l=0 from xn is a
standard problem in spectral analysis [13], and can be solved
using conventional techniques such as the annihilating filter
method [11].

III. SPATIO-TEMPORAL SPARSE ENCODING

Hereafter, the two frameworks (i.e., CS using AMP and
FRI) are combined to achieve spatio-temporal undersampling
of QAM data. The CS measurement in space uses a spiral
scanning pattern because it is practical and could be easily
implemented on typical QAM motor stages (instead of an
impractical random-based measurement causing huge inef-
ficiency). Fig. 1 illustrates the successive sampling process
performed by CS and FRI frameworks. Firstly, the spiral
pattern scanning is performed pointwise; only RF signals from
these scan locations are retained, and are sampled using the
FRI framework. As a result, the total amount of collected data
was significantly reduced as depicted in the right cartoon in
Fig. 1. As a final validation step, the 2D maps reconstructed
from the CS data are quantitatively compared to the 2D maps
obtained using the original fully sampled data.

A. Scanning pattern in spatial domain

CS measurement is basically established on an incoherent
sampling, which proves to be generally satisfied by random
linear combinations of the input data. However, there are
many cases where it is inapplicable to build a random matrix
approach in hardware due to practical issues such as high
computational complexity or huge memory buffering. Inspired
by previous CS literature [14], [15], in [3] we investigated
the implementable sensing patterns for QAM systems and
verified that the spiral pattern guarantees good recovery of
QAM images.

B. Sampling kernel in time domain

QAM RF signals are made up of two primary reflections due
to the water-tissue and tissue-glass interfaces, which can be
modeled by the sum of two time-delayed, amplitude-decayed
and frequency-dependent attenuated versions of a reference
RF pulse as follow

x(t) = a1h(t− t1) + a2h
∗(t− t2) (6)

where the symbol ∗ stands for frequency-dependent atten-
uation. Since the information of the pulse shape h(t) is
commonly known as the characteristic of the transducer, (6)
can be treated as an FRI signal defined in Section II-B. The
sampling procedure used in this work is similar to the one
proposed in [16]. The main idea is to sample uniformly the
demodulated QAM signal using a finite support Sum of Sincs
(SoS) sampling kernel and to relate these samples, through
a linear model to the Fourier series coefficients X[k]. In the
Fourier domain, the SoS sampling kernel (denoted by ϕ(t) in
the time domain) is given by

Φ(ω) =
τ√
2π

∑
k∈Z

bksinc

(
ω
2π
τ

− k
)
, (7)

where bk is a smoothing window and has symmetric numbers
of odd length for allowing a real valued analog filter. The dis-
crete sequence of each RF signal is acquired by the following
sampling process.

x[n] = 〈x(t), ϕ(t− nT )〉

=
∑
k∈Z

X[k]e
j2πknT

τ Φ∗
[2πk

τ

]
,

(8)

where (·)∗ symbolizes complex conjugation [4].

IV. RECONSTRUCTION OF 2D ACOUSTIC MAPS

The reconstruction of 2D map begins by an auto-regressive
(AR) parameter estimation [17] from the cubic data set, the
result of which is equivalent to CS measurement in spatial do-
main as shown in Fig. 2(b). Therefore, the CS undersampling
problem is solved by the AMP algorithm.



RF signal

FRI sampling

Target object CS Spiral scanning CS-FRI undersampled
discrete cubic data set

Saved By CS

Fig. 1. The block diagram describes the undersampling process based on the spiral pattern and FRI sampling in spatial and temporal domain respectively.
The right cartoon clearly demonstrates the space saved by the proposed sampling scheme.

A. Acoustic parameter estimation
From (8), using the observation x[n] and the prior knowl-

edge Φ[k], the Fourier coefficients X[k] are identified. Sub-
sequently, normalizing X[k] with the Fourier coefficients of
the known pulses, i.e., H[k], the following AR model is
formulated as

N [k] =
n∑
l=1

al{exp[2π∆f(−βl − j∆tl)/τ ]}k =
n∑
l=1

alλ
k
l

(9)

Unknown parameters (λl and a1) are determined by solving
(9) (see [17] for details), and then the speed of sound (SOS) c
is calculated by c = cw

imga(logλ1)
imga(logλ1)+imga(logλ2)

, where cw is the
speed of sound in water.

B. Wavelet based Cauchy-AMP
The estimated SOS map is still incomplete due to under-

sampling carried out by the spiral scanning, and thus we
accomplish the recovery process using AMP algorithm as
follows

θt+1
x = ηt

(
(ΦW�1)Tzt + θtx

)
zt = y − (ΦW�1)θtx

+
1

δ
zt−1

〈
η′t−1

(
(ΦW−1)Tzt−1 + θt−1x

)〉 (10)

where Φ represents the spiral pattern, W is the wavelet trans-
form employed as a sparsifying basis, and thus x = W−1θx.
η, which is a denoising function, is implemented as a Cauchy
prior based Maximum A-Posteriori (MAP) estimator as [10]

ŵ = η(v) =
v

3
+ s+ t, ŵ

′
= η

′
(v) =

1

3
+ s

′
+ t

′
(11)

where the estimate ŵ of clean wavelet coefficients w is
acquired by denoising v corrupted by additive Gaussian noise,
i.e., v = w+ n. On the other hand, s and t rely on v and σ2

n.

V. SIMULATION RESULTS

A 2D SOS map of a chicken tendon tissue (Fig. 2) was
reconstructed using the proposed approach (i.e., Fig. 1) from
the compressed spiral cubic data set (40% less spatial data
than classical raster scan and sampling rate of only 6.5% of
the currently used rate as shown in the Table I). The spiral
scanning pattern of Fig. 1 would allow to reduce the scan time
by far more than 40% because of the continuous motion of the
motors which is made possible through the smoothness of the
spiral. Furthermore, significantly compressed data volume, i.e.,
2.6% compared to conventional method, could contribute to
saving the required data storage space. In spite of the enormous
decrease of data acquisitions, in the resulting images in Fig.
2 (g), no critical image degradation is perceived. The metrics
in Table I support the visual evaluation.

VI. CONCLUSIONS

In this study, two approaches of CS and FRI sampling were
combined, resulting into both shorter acquisition times and
reduced amount of acquired data compared to the classical
QAM sampling scheme. To confirm the preliminary results
obtained in post-processing, hardware implementation on our
QAM scanner will be carried out as a future work.
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Fig. 2. The first row of the figure shows the recovery process of the SOS 2D map of a chicken tendon tissue. (a) is the original 2D map yielded by the
conventional method, (b) is an intermediate result produced by estimating the SOS of the RF signals reflected from the only positions scanned by the spiral
pattern, and finally (c) is the complete FRI-CS recovery result. The second row compares the SOS 2D map formed by the conventional approach (d) with the
images (e-g) recovered from different methods.
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[4] J. Kim, D. Kouamé, A. Basarab, J. Mamou, and A. Achim, “Reconstruc-
tion of quantitative acoustic microscopy images from rf signals sampled
at innovation rate,” in 2018 IEEE International Ultrasonics Symposium
(IUS), pp. 1–4, IEEE, 2018.

[5] D. L. Donoho, “Compressed sensing,” Information Theory, IEEE Trans-
actions on, vol. 52, no. 4, pp. 1289–1306, 2006.

[6] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling
[a sensing/sampling paradigm that goes against the common knowledge
in data acquisition],” IEEE signal processing magazine, vol. 25, no. 2,
pp. 21–30, 2008.

[7] E. Candès and J. Romberg, “Sparsity and incoherence in compressive
sampling,” Inverse problems, vol. 23, no. 3, p. 969, 2007.

[8] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-
rithms for compressed sensing,” Proceedings of the National Academy
of Sciences, vol. 106, no. 45, pp. 18914–18919, 2009.

[9] J.-H. Kim, A. Basarab, P. R. Hill, D. R. Bull, D. Kouamé, and A. Achim,
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