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Sylvie Le Hégarat-Mascle
SATIE UMR 8029

Paris-Saclay University
sylvie.le-hegarat@u-psud.fr

Vincent Despiegel
IDEMIA

vincent.despiegel@idemia.com

Abstract—The joint use of dynamic, egocentric view cameras
and of traditional overview surveillance cameras in high-risk
contexts has become a promising avenue for advancing public
safety and security applications, as it provides more accurate
localization and finer analysis of individual interactions. How-
ever, the strong scene scale changes, occlusions and appearance
variations make the egocentric data association more difficult
than the standard across-views data association. To address this
issue, we propose to use two independent geometric priors and
integrate them with the classic appearance cues into the objection
function of data association algorithm. Our results show that
the proposed method achieves significant improvement in terms
of the association accuracy. We highlight the attractive use of
geometric priors in across-views data association and its potential
for supporting pedestrian tracking in this context.

Index Terms—Across-views data association, Geometry priors,
Egocentric views

I. INTRODUCTION

Tracking pedestrians is a paramount task in computer vision,
which enables us to identify, analyze and predict human
interactions and activities in various contexts. In a multi-person
tracking context, data association (DA) becomes a fundamental
step, which refers to matching observations related to the
same object. A large body of literature is devoted to DA
(see for example [1] for a comprehensive survey), since
this term encompasses actually multiple procedures. Most of
them focus on across-time DA which matches a temporal
sequence of observations for single-camera systems. One of
the common difficulties for across-time DA is handling the
occlusions which occur frequently in single-camera systems.
An alternative approach is to employ multi-view systems and
to perform across-views DA by matching observations in the
views of different cameras.

Recently, egocentric (first-view) visual data became a rich
source of information for safety and security applications,
ranging from public photos in urban settings to wearable
cameras used by law enforcement agents (LEA). The joint
use with an overview/hovering camera has the potential to
support a more accurate pedestrian localization, as well as
a finer analysis of interactions occurring among the visible
participants. Although multi-views DA may be performed
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among three or more cameras, we restrict our work to deal
with the problem of data association between an egocentric
camera and an overview/hovering camera with overlapping
fields of view, as this is the standard scenario occurring in
realistic situations.

Despite the challenges raised by across-views association
due to strong visual appearance variations, the detection errors
are better coped with in the case of overlapping fields of
view, in which the additional geometric constraint can be
provided. Geometry and appearance wise, egocentric DA is
more difficult than standard across-views DA due to scene
scale changes. However, this context still allows for relating
directly visual information between the views. Recently pro-
posed top-to-egocentric view DA strategies are strictly based
on the consistency of higher level scene content extracted in
individual views [2], [3], but they require video recordings in
order to perform the across-views association in the temporal
domain, while we can rely only on image pairs.

There are multiple avenues for enforcing the additional
geometry consistency on the appearance similarity in DA.
Typically, one may extend an across-time global optimization
to multiple views [4], [5], or cast the DA as a global energy
minimization [6]. The basic idea is to combine into a single
objective function two penalty terms, one derived from appear-
ance and one from geometry. However, the quality of the two
terms usually suffers from unreliability due to different sources
of errors. A fundamental challenge is then represented by how
to combine two different terms in presence of imprecision.

In this work, we explore different approaches to use the
geometric priors for DA in egocentric views. Specifically, we
study how the geometric consistency cues can help improve
the classical appearance cues. The benefit of this study is
twofold. First, we derive a reliable multi-views DA by estimat-
ing 3D locations and spatial relationships among the observed
pedestrians. This study is motivated by the S2UCRE project,
aiming to highlight perpetrators in body-camera images ac-
quired by LEA, with the support of security camera footage
from the same area. Beyond this task, an improvement in DA
performance may be further integrated into tracking algorithms
for initializing 3D tracks and then generating accurate 3D
observations for track extension.
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II. DATA ASSOCIATION

A. Sources of error

Let us summarize below the main sources of error that
impact directly the association, in order to understand better
how they may be addressed.
Appearance In terms of visual cues, a pedestrian association
between an egocentric and an overview camera is hampered
by multiple factors which affect also the standard multi-
views association, such as the strong pose and illumination
variations. Two factors however increase the difficulty of the
task, namely the scale variations and the stronger occlusions
occurring in the first-view camera. The latter requires that
DA be flexible in terms of not associating a potentially high
number of targets which are present only in the overview
camera.
Geometry The relative pose estimation between the cameras
may potentially assist significantly the association by restrict-
ing the matching candidates to a small subset of detections
in the other view. The challenges of this step are twofold.
Firstly, depending on the alignment of the pedestrians with
respect to the cameras, the potential match subset may still
contain multiple detections - especially in crowded areas. The
geometry constraints are thus not meant to solve entirely the
DA, but rather to complement an appearance based constraint.
Secondly, the pose estimation is built up on identifying in-
variant low-level visual cues, and this process suffers occa-
sionally from the same limitations mentioned in the previous
paragraph. This implies that the relevance of the geometrical
constraints depends on the spatial configuration of the cameras
and of the dynamic objects in the scene.

B. Performing the optimization

The optimization process may be generally modeled in
a similar manner to the temporal data association as a Set
Partition Problem, which is NP-complete [7]. However, the
two frame assignment problem considered here may be solved
exactly in polynomial time by the Kuhn-Munkres, or Hungar-
ian algorithm [8], [9], [10], that we recall in the following
paragraphs.

Given two sets of detections from two views, denoted by
P1 = {pi}16i6M and P2 = {pj}16j6N , the association
is represented by a M × N matrix of binary elements,
denoted as {xij , i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}}, subject to
some constraints. As some individuals may be present only in
one view, the choice of non association should be taken into
account. The association solutions are thus designed as one to
at most one, meaning that an individual in a view is associated
to maximum one individual in the other view. This leads to the
association matrix containing at maximum one non-null value
per row and per column. Let cij denote the association costs
(i.e. the measure of dissimilarity) between the i-th individual

in the first view and j-th individual in the second view. The
optimization problem is then defined as

min
M∑
i=1

N∑
j=1

cijxij

subject to
M∑
i=1

xij 6 1,∀j and
N∑
j=1

xij 6 1,∀i.

(1)

In order to quantify the benefit of a non association with
respect to a costly association, a cost of non association is
defined so that whenever an association cost is larger it,
the optimization process is encouraged to reject it and to
highlight a false association. Consequently, the dimension of
the association matrix is extended to (M+N)×(M+N) with
xij = 1, representing a non-association for object i if j > N
or for object j if i > M . The cost of non association is thus
incorporated into the cost matrix A(M+N)×(M+N) used in the
Hungarian algorithm as follows:

Aij =

{
cij if 1 6 i 6M , 1 6 j ≤ N
γ otherwise,

(2)

where γ is a threshold representing the non association cost.
The cost function cij plays a core role on the performance of

association. The basic approach of relying on single cues such
as the 2D appearance features may be not robust due to the
visual ambiguity between individuals. Although it requires a
spatial calibration of cameras, the 3D geometric priors relating
two views helps overcome visual ambiguity. In the following,
we first introduce the costs based on the appearance cues.
Different geometric priors are then explored and proposed to
be integrated with the appearance cues into the cost functions
in order to improve the performance of data association.

III. ASSOCIATION COST FUNCTIONS

A. Appearance based costs

The association costs based on appearance rely on the
feature descriptors which are used as a representation for
individuals. The cost values are then derived as distances
between feature descriptors. These descriptors can be divided
into two groups: traditional ones based on color, texture
or shape information and learning based representations
extracted by a deep neural network.

1) Baseline representation: First, let us consider a tradi-
tional descriptor based on the color histogram, that we couple
with the χ2 Bin Ratio-Based Distance [11] for the distance
measure. Let hi ∈ <n denote a L2 normalized histogram
with n bins used as descriptor of the object i, and hj ∈ <n
describing an object j. Then, the χ2 Bin Ratio-Based Distance
between hi and hj is defined as [11]:

dhist = dχ2 − 1

2

∥∥hi + hj
∥∥2
2

n∑
k=1

(hik − h
j
k)

2hikh
j
k

(hik + hjk)
3

(3)

where dχ2 = 1
2

∑n
k=1

(hi
k−h

j
k)

2

hj
k+h

j
k

.



(a) Top view (b) Egocentric view

(c) 3D visualization of projection rays.

Fig. 1: Illustration of geometric distance prior. (a) and (b)
show a synchronised pair of frames from the static overview
camera and the egocentric camera. (c) visualizes the cameras
(two polygons) and the projection rays (green lines) which
intersect in 3D for a correct association across two views,
marked by red rectangle on (a) and (b).

2) Learning approach: Secondly, let us consider a deep
convolutional neural network based pedestrian reidentification
algorithm. Specifically, similarly to face recognition algo-
rithms as [12], a feature extractor is trained as a classifier
on internal pedestrian datasets, the last layer is extracted and
pedestrian recognition can be performed on those features
using cosine similarity.

B. Geometric costs
We present two different ways to apply the geometric priors

for the considered data association problem. One of them is
derived from the geometric distance and the other a basic
geometric constraint which are presented in the following.
Geometric distance As the rays from two different views for a
same object intersect in the 3D location of object, it is possible
to discriminate between true and false elementary association
based on the geometric distance between rays which pass
through the camera center and the object, as shown in Fig. 1.
Assuming that the camera parameters are available, namely,
the 3D rotation matrix R ∈ <3×3, the camera center c ∈ <3

and the intrinsic matrix K ∈ <3×3, we have the following
relationship between image pixel (u, v) and 3D point q ∈ <3

λ

uv
1

 = KR(q− c) =

fx 0 cx
0 fy cy
0 0 1

R(q− c). (4)

Then, the ray which passes through the camera center c and
object q can be expressed as

r = c+ t(q− c) = c+ λtRT


u−cx
fx
v−cy
fy

1

 = c+ sn, (5)

where s = λt is constant on scale, and n is the direction
vector.

Let pi = (ui, vi) and pj = (uj , vj) denote the pixels on
the image plane of two cameras. The distance between their
corresponding projection rays ri and rj is

dgeo(ri, rj) =

∣∣−−−→c1c2 · (ni × nj)
∣∣

‖ni × nj‖
, (6)

where −−−→c1c2 represents the baseline connecting two camera
centers, ni and nj are the direction vector in Eq. (5).
Cheirality constraint A basic constraint provided by the
geometric priors is that the detected object should be located
in front of both cameras if the association is correct. This
property is denoted as cheirality [13] in the computer vi-
sion community. We note that the cheirality constraint is an
additional piece of information, different from the distance
between the 3D rays itself, as the latter does not provide
any cues about the relative location of the pedestrian with
respect to the cameras. In addition, it is independent on the
metric scale factor (used to convert distances in metric units),
that may be unavailable when the relative pose between the
cameras is computed only up to scale. Given the pixels on the
image plane of two cameras pi and pj , the 3D point q can be
obtained by triangulation[14]. The constraint is then expressed
as z(q, c1) > 0∧z(q, c2) > 0 where z(q, c) denotes the depth
value of the 3D point q in the reference system of the camera
c and ∧ stands for the AND logical operator. If the metric
scale is available, and due to the uncertainty of the geometry
estimations, we tighten the camera front constraint as follows,
in order to avoid considering the first-view camera wearer as
a potential association:

z(q, c1) > 0.5 ∧ z(q, c2) > 0.5. (7)

This crisp constraint can be easily taken into account by setting
the corresponding cost in the association matrix to a value
β � 1 when the cheirality constraint does not hold.

C. Fusion costs

Whenever moving cameras are considered, a data associ-
ation strategy that relies on a single appearance based cost
is often not robust. It is possible to improve the association
accuracy by aggregating costs from different cues and relying
both on appearance and geometry consistency. The general
idea is to combine different costs into a single one that can
be directly introduced in the cost matrix. For such a purpose,
there exist a large number of combination rules, ranging from
the generally applicable ones such as sum, weighted sum,
product or min/max, up to domain specific strategies such
as belief combination [15]. In multi-views DA as well, the
existing literature has underlined the difficulty of combining
appearance cues with very simple additional information, such
as coarse spatio-temporal cues [16]. For data fusion, it is not
straightforward to identify an effective combination without
prior knowledge about the characteristics of individual sources.
In order to explore an efficient combination of association
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Fig. 2: Distribution of true association and false association for different costs before normalization: (a) appearance costs based
on color histogram; (b) appearance costs based on learned approach; (c) geometric costs.
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Fig. 3: Distribution of true association and false association for different costs after normalization: (a) appearance costs based
on color histogram; (b) appearance costs based on learned approach; (c) geometric costs.

costs, we investigate first the statistical distribution of indi-
vidual costs for the true and false associations separately.

As the distribution of true associations and false associations
for the appearance based costs and the geometric costs are
heterogeneous as shown in Fig.2, it is necessary to normalize
different costs before combining them. Depending on the
considered costs, different normalization techniques are used.
Specifically, the appearance based cost using the learning ap-
proach is derived from the cosine similarity, called snn, which
ranges in [−1, 1], Min-max normalization is thus applied as
suggest in [17]. By subtracting the normalized similarity from
1, we obtain the normalized distance for the appearance based
cost using learning approach, denoted by d′nn = 1

2 (1− snn).
For the distance metric ranging in [0,+∞), such as the color
histogram distance and the geometric distance, we transform
them in the range of [0, 1] with a tanh function, which allows
to preserve the influence of small values and reduce that of
large values. The normalized distance is then computed as
d

′

hist = tanh(dhist) for the color histogram distance and
d

′

geo = tanh(dgeo) for the geometric distance.
The distribution of costs after normalization is shown in

Fig. 3. We note that the appearance based costs follow a bell-
shaped distribution, while the distribution of the normalized
geometric cost exhibits different behaviour. The potential
variation of the appearance based distributions requires that the
weights in a sum combination dgeo,app+ = wgeod

′
geo+wappd

′
app

be tuned accordingly, along with the non-association cost γ.
The product combination however is particularly adapted to
the profile of the geometric distances. The fusion costs based
on the production combination is defined as:

dgeo,app∗ = d′geod
′
app (8)

D. Generality of combination rule

The considered combination rule is intended to be applied
to an arbitrary pair of synchronized images, as for example
a photo of an event taken by a participant at ground level,
along with the corresponding photo from a static overview
camera. One may wonder in this case whether the assumptions
made to support the cost aggregation strategy in Eq. 8 would
be generally valid. Although the distributions presented in
Fig. 3 are generated from data acquired in a specific location
with the same camera pair, we expect that for various scenes
the distances for true/false associations will follow the same
families of distributions. Moreover, the product rule does not
involve any parameters that require tuning depending on the
slightly varying parameters of the distance distributions. The
only parameter of the method which depends on the experi-
mental conditions is the non-association cost γ (Eq. 2). The
choice of γ allows also for favoring pedestrian associations
with the risk of generating false matches (high value of γ)
versus enforcing a stricter matching policy with the risk of
missing some harder associations (low value of γ).



IV. EXPERIMENTS

A. Testing scenario

We collected an outdoor scene dataset containing 143 pairs
of synchronised images containing 1109 pedestrian occur-
rences, for which the number of the observed persons in
each pair of images ranges from 5 to 13. These images
are acquired using a smartphone and a GoPro camera in an
open outdoor environment. We annotated the ground truth
for pedestrian detections and association labels, in order to
evaluate the performance of the different association strategies
we considered*. The GoPro camera is fixed on the upper floor
of a building, while the phone is held by a moving pedestrian.
In our experiments, we evaluate the association performance
for the geometric costs, appearance based costs, as well as for
different combination rules. We also study the influence of the
cheirality constraint on the association performance.

Geometric Priors. We compute the intrinsic parameters of
the cameras, and evaluate the extrinsic parameters (rotation
matrix and center) of the static camera using PnP [18]. To
obtain the extrinsic parameters of the mobile camera in the
fixed reference system, we first compute relative rotation and
translation between the mobile and static cameras [19] and
then combine the relative pose with the extrinsic parameters
of the static camera. The scene scale is determined by the
constraint of mobile camera height with respect to the ground.
The height is set to 1.5m by considering the mobile camera
is held at eye level by a person whose height is 1.60m, and
that the distance from eyes to the top of head is about 0.1m.

Person detection and association. For each pair of image,
we apply separately two different pedestrian detectors. The
baseline we consider in this work for extracting the bounding
boxes of pedestrians is the widely popular object detector
YOLO [20]. The second detector is related to the represen-
tation extraction algorithm introduced in Section III-A2.

Regarding the appearance cost term, the baseline, denoted
as Hist, is a color histogram distance computed as follows.
For each bounding box, we consider 32 bins in the HSV
color space, where we used 8 bins for partitioning the H
channel values, and 2 bins for S and V channels respectively.
The cost is computed using the χ2-BRD histogram distance
(Section III). The second appearance cost, denoted as NN, is
related to the angle between vector representations of the de-
tections computed by the learning algorithm (Section III-A2).
For the geometric distance measure, we consider the top-center
point of bounding box for projecting it in 3D.

The cost matrix is fed with different distance measures
for all detected bounding boxes. Following our analysis of
the distribution of correct and incorrect association distances,
the non association cost is set to γ = 0.25 for the sum
combination, and to γ = 0.1 for the product combination
respectively. Finally the Hungarian algorithm [8] is applied to
this computed cost matrix. The solution provides the optimal
association solution.

*Dataset contact form: http://hebergement.u-psud.fr/emi/S2UCRE/

B. Evaluation and results

To determine if the predicted bounding box is true or
false, we set the threshold to 0.3 for Intersection over Union
(IoU) between the predicted bounding box and the ground
truth bounding box. The evaluation for the performance of
association is based on the average accuracy over all dataset.
For each image pair in dataset, the association accuracy is:

Accuracy =
# true positives + # true negatives

# of unique persons
(9)

In the reported data, the different methods being evaluated are
denoted as:
• Geometry only: the association cost is only the normal-

ized geometric distance d
′

geo

• Appearance only: the association cost is only the appear-
ance based distance, either Hist (d

′

hist) or NN (d
′

nn)
• Sum combination: the association cost is a weighted sum

of geometry and appearance costs (wi = 0.5)
• Product combination: the association cost is a product of

geometry and appearance costs
Additionally, for each method we perform the association with
and without the cheirality constraint.

One important consideration is that the final result of
the DA algorithm is influenced at the same time by the
association step, but also by the detection algorithm. The
coupling between the two steps may be quite complex: a
high precision/low recall detector causes inevitably missed
associations, while a high recall/low precision detector may
allow for a good final result only if the non-association
cost and a good distance matrix help in rejecting the false
positive detections. In order to avoid the influence caused
by the difference in performance between the detectors, we
first evaluate the association accuracy without considering
the performance of detection and then evaluate the global
detection and association pipeline.

TABLE I: Association accuracy.

Cost Function Accuracy

Method Cheirality YOLO + Ours + Ours +
constraint Hist Hist NN

Geometry only No 0.610 0.654 0.654
Yes 0.851 0.849 0.849

Appearance only No 0.574 0.537 0.665
Yes 0.628 0.579 0.820

Sum combination No 0.724 0.782 0.709
Yes 0.864 0.895 0.890

Product combination No 0.614 0.660 0.707
Yes 0.839 0.831 0.896

Association evaluation We focus first on evaluating the per-
formance of the DA step specifically. To this aim, we consider
the default detection thresholds for the two detectors, which
allow for a reasonable compromise between precision and
recall. For the used dataset, we report that PrY OLO = 92.2%,
ReY OLO = 72.9%, PrOurs = 97.6%, ReOurs = 84.3%.

The number of unique persons in Eq. 9 is considered as
the number of correct detections provided by the detectors in

http://hebergement.u-psud.fr/emi/S2UCRE/


the DA input. This allows for a maximum DA accuracy of
100% independently of the detector performance. The perfor-
mance of association following the different cost functions is
summarised in Table I.

TABLE II: Global method accuracy (the two detectors are
tuned for the same recall level)

Cost Function Accuracy∗

Method Cheirality YOLO∗ + Ours +
constraint Hist NN

Geometry only No 0.571 0.599
Yes 0.684 0.742

Appearance only No 0.360 0.648
Yes 0.482 0.751

Sum combination No 0.611 0.709
Yes 0.714 0.784

Product combination No 0.550 0.639
Yes 0.663 0.779

Global evaluation In the second part of the experiments,
we compare the entire detection and association pipeline. By
considering this time the number of unique persons in Eq. 9
as the number of correct ground truth pedestrians, we account
for errors in detection and in association. Otherwise stated, the
accuracy level is bounded by the detector recall in this case.
Let us denote Accuracy∗ this stricter accuracy measure.

In order to provide a fair comparison, we tune YOLO
to have a similar recall as the second detector (i.e. 85%);
consequently, YOLO’s precision falls down to 49.8% due to
the higher rate of false positives. The performance of each of
the two entire pipelines is presented in Table II.

C. Discussion of results

The overall results highlight clearly that geometric priors
improve significantly the performance of the association based
on appearance in two different ways. The first one is by
performing the combination rules for geometric cost and
appearance based cost, and the second one is the use of the
cheirality constraint. Both priors contribute in independent
ways to filtering the detection associations, while requiring
different preliminary steps for their use (a relative camera
pose estimation in the case of the cheirality constraint, and
an additional PnP+scale estimation for the 3D distance prior).

Regarding the combination rules, the performance improve-
ment varies depending on the specific feature extractors. If
the appearance based distance provides a good separability,
as in the case of the NN descriptor, then the use of the
product aggregation is effective and avoids further parameter
tuning. In the case of a less discriminative distance, such as
the histogram-based distance in our case, the sum rule may
provide a better performance while requiring at the same time
a more careful tuning of the cost weights and non-association
cost. Finally, Table II presents the global performance of a
detection-association pipeline in which the accuracy measure
is affected by the two steps in different ways. In this case too,
the experiments underline the significant positive impact in all
situations of the additional geometry information.

V. CONCLUSION

This work explores the integration of geometric priors
in pedestrian localization problem formulated as multi-views
data association. Our work evaluates the performance of DA
independently, and also by considering the detection step per-
formance as well in a complete system. We study the expected
distribution of the different appearance-based distances and
of the proposed geometric distance, which should serve as
a guideline for adapting this algorithm in a specific context.
Further works will consider more specific combination rules
and the integration of additional sensor information (e.g. IMU,
GPS), as well as the use of our DA method in a tracking
algorithm in case of video data processing.
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