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ABSTRACT

This paper studies the interest of using harmonic ultrasound (US)

images in the process of tissue reflectivity function restoration from

RF data. To this end, two direct models (one for fundamental and

another for harmonique images) derived from the equation of US

wave propagation are proposed. In particular, an axially varying at-

tenuation matrix is used within the harmonic image model in order

to account for the attenuation of harmonic echoes. Based on these

two image formation models, a joint deconvolution problem is in-

vestigated. The solution of this problem is obtained by minimizing

a cost function composed of two data fidelity terms representing the

linear and non-linear model components,regularized by an ℓ1-norm

regularization. The tissue reflectivity function minimizing this func-

tion is finally determined using an alternating direction method of

multipliers. The performance of the proposed algorithm is quanti-

tatively and qualitatively evaluated on synthetic data, and compared

with a classical restoration method used for US images.

Index Terms— ultrasound imaging, harmonic ultrasound imag-

ing, optimization, ADMM, joint deconvolution, image restoration.

1. INTRODUCTION

Among all medical imaging modalities, ultrasound (US) imaging is

still the most used in clinics due to its effectiveness, non-ionizing and

low cost characteristics [1]. It serves for clinical diagnosis, mainly

for soft tissues such as cardiovascular applications, various cancer

blood flow velocity assessment and obstetrics. US imaging refers to

a pulse-echo technique where a brightness mode, called B-mode, is

used to visualize the tissues. A short pulse with central frequency

f0 is emitted by a transducer generating a US wave transmitted into

the medium, reflected back to the probe by the scatterers. Radiofre-

quency (RF) signals are then produced by the echoes returning to the

transducer. These raw RF signals are filtered around f0, beamformed

to generate RF lines and further juxtaposed, demodulated and log-

compressed to form the fundamental B-mode image. US waves may

interact non linearly with the medium during propagation causing

distortion of the transmitted wave. This distortion introduces har-

monic components into the spectrum of the received signals. There-

fore, the received RF signals can be filtered around the harmonic

components in order to obtain the so-called harmonic US images.

For blood perfusion measurements and lesion characterization appli-

cations, contrast agents are injected to generate strong nonlinearities.

However, existing studies showed that certain tissues can cause dis-

tortions without the need for contrast agents, enabling the so called

tissue harmonic imaging (THI) [2]. Due to the limited bandwidth of

the transducers, the study of US image harmonics is usually limited

to the first component at 2f0. Several methods have been proposed to

give access to both fundamental and harmonic images such as pulse

inversion [3], system identification [4] and filtering techniques in the

case of low overlap between fundamental and harmonic spectra (see

Fig. 1 for an illustrative example).

THI has several advantages over fundamental US imaging, such

Fig. 1. Illustration of fundamental and harmonic images computed by linear

filtering from the native RF image.

as better spatial resolution, improved contrast to noise ratio and re-

duced near field artifacts. However, the high attenuation with imag-

ing depth is an important drawback. In US imaging, several attempts

were proposed to increase the resolution and the contrast of the im-

ages by improving the beamformer, or restoring the tissue reflectiv-

ity function (TRF) by introducing appropriate post-processings on

RF data (e.g., [5,6]), which is the main objective of this work. More

specifically, this paper accounts for harmonic US imaging in the pro-

cess of TRF restoration, in addition to fundamental RF data.

The remainder of this paper is organized as follows: Section 2 sum-

marizes the US propagation model and its linearization, justifying

the US image models considered in Section 3. Section 4 shows how

to solve the proposed deconvolution problem using an alternating

direction method of multipliers (ADMM). Results on simulated data

are presented in Section 5 whereas conclusion and future works are

reported in Section 6.

2. PROBLEM STATEMENT

2.1. US image formation model

Under the first Born approximation, the full acoustic model allows

the RF signal to be expressed as the convolution between a spatially

varying pulse and the inhomegenity of the field [7–9]. Thereby, con-

volution models are adapted in several ultrasound simulators (see

e.g., [10, 11]). In ultrasound image restoration, this model is usually



simplified to the convolution with a spatially invariant PSF, restrict-

ing the restoration to image segments where this hypothesis roughly

holds [12]. In this work we follow this trend and propose the fol-

lowing image formation models for fundamental and harmonic RF

images

yf = Hfr + nf , (1)

yh = WHhr + nh (2)

where yf and yh ∈ R
N are the observed fundamental and harmonic

RF images, r ∈ R
N is the TRF to be estimated and nf and nh

∈ R
N are white Gaussian additive noises with variances σ2

f and σ2

f .

Hf and Hh ∈ R
N×N are block circulant with circulant blocks ma-

trices accounting for the fundamental and harmonic system PSF and

N is the number of image samples. Due to the attenuation of the

harmonic image with depth, we consider in the second model a di-

agonal matrix W ∈ R
N×N that accounts for the level of attenuation

at each depth (the construction of this matrix will be explained later).

2.2. TRF estimation

The objective of this work is to estimate the TRF from the funda-

mental and harmonic RF signal, based on the direct models in (2).

Using a Bayesian perspective, we propose to estimate the TRF us-

ing the standard MAP estimator, i.e., by minimizing the posterior

distribution determines using Bayes rule as follows

p(r|yf ,yh) ∝ p(yf |r)p(yh|r)p(r) (3)

where p(r) is the prior probability density function of r and the two

likelihood functions are given by:

yf |r,∼ N (Hfr, σ
2

fIN )

yh|r,∼ N (WHhr, σ
2

hIN )
(4)

where IN is the N ×N identity matrix and N stands for the Gaus-

sian distribution. Assuming independence between the two additive

noises nf and nh, the negative log-posterior of r can be obtained as

− log p(r|yf ,yh) ∝
1

2
‖yf −Hfr‖

2

︸ ︷︷ ︸

Fundamental data fidelity term

+
1

2
‖yh −WHhr‖

2

︸ ︷︷ ︸

Harmonic data fidelity term

+ log(p(r))
︸ ︷︷ ︸

regularization

(5)

In this work, we consider a Laplacian prior distribution p(r),
leading to an ℓ1-norm regularization term in the function to minimize

(see, e.g., [13,14] for a similar choice). Finally, the TRF image r can

be estimated by solving the following optimization problem

min
r

1

2
‖yf −Hfr‖

2

2 + ‖yh −WHhr‖
2

2 + µ‖r‖1 (6)

where µ is a hyperparameter weighting the contribution of the sparse

regularization with respect to the two data fidelity terms.

3. OPTIMIZATION

To solve the joint deconvolution problem presented in the previous

section, i.e., to determine the TRF from fundamental and harmonic

RF images minimizing (6), we propose to use an algorithm based

on the alternating direction method of multipliers (ADMM) [15,16].

ADMM is a general optimization framework able to solve the fol-

lowing problem

min
u,v

f1(u) + f2(v)

s.t. Au+Bv = c (7)

where f1 and f2 are closed convex functions and A,B, u,v and

c are matrices and vectors of correct sizes. In order to adapt our

problem to the ADMM framework, we rewrite (6) as follows

min
u,v

1

2
‖yf −Hfu‖

2

2 +
1

2
‖yh −Wz‖22 + µ‖w‖1 (8)

with







f1(u) =
1

2
‖yf −Hfu‖

2

2

f2(v) =
1

2
‖yh −Wz‖22 + µ‖w‖1

z = Hhr,w = u = r

v =

[
w

z

]

and







A =

[
IN
Hh

]

B =

[
−IN 0
0 −IN

]

c = 0N

An iterative alternating minimization method over the vari-

ables u and v can then be applied to the augmented Lagrangian

LA(u,v,λ) associated with (8) defined as

LA(u,v,λ) = f1(u) + f2(v) +
β

2
‖Au+Bv

k +
λk

β
‖22 (9)

where β is a regularization parameter for the linear constraint, and

λ =
[
λ1

λ2

]

∈ R
2N is the vector of Lagrangian multipliers. The

solution of this problem can be iteratively obtained using 3 steps:

estimate u, estimate v and update the Lagrangian vector λ, as sum-

marized in Algo. 1.

Algorithm 1: ADMM algorithm for TRF estimation

Input: yf , yh, Hf , Hh.

1. Set k = 0, choose µ > 0,β > 0 u0, v0

2. Repeat until stopping criterion is satisfied

// Estimate u (closed-form solution in

the Fourier domain)

3. uk+1 ∈ min
u

1

2
‖yf −Hfu‖

2

2 +
β

2
‖Au+Bv

k +
λk

β
‖22

// Estimate v =

[
w

z

]

// Estimate w using soft thresholding

4. wk+1 ∈ min
w

µ‖w‖1 +
β

2
‖uk+1 −w +

λk
1

β
‖22

// Estimate z (closed-form solution in

the Fourier domain)

5.

zk+1 ∈ min
z

1

2
‖yh −Wz‖22 +

β

2
‖Hhu

k+1 − z+
λk

2

β
‖22

// Update the Lagrangian multiplier

6. λk+1 = λk + β(Auk+1 +Bvk+1)

4. SIMULATION RESULTS

The proposed joint deconvolution method was first tested on syn-

thetic data. A controlled ground truth TRF was computed from a



(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) Simulated fundamental image yf , (b) simulated harmonic image

yh, (c) attenuation map used to simulate the harmonic image in (b), whose

values are equal to 1 (no attenuation) close to the probe and to 0.3 (high at-

tenuation) at the bottom of the image, d) TRF mimicking a human kidney

(r of size 1150 × 300 pixels), (e) TRF estimated by LASSO from the fun-

damental US image in (a), (f) TRF estimated by the proposed method from

fundamental and harmonic US images in (a) et (b). Note that all the images

are shown in B-mode for better visualisation.

slice of a kidney magnetic resonance image, by generating 105 scat-

ters with random Gaussian amplitudes. The size of the TRF image

considered in this experiment was 1150 × 300 pixels. Fundamen-

tal (yf ) and harmonic (yh) RF images were then simulated by 2D

convolution between the TRF and two spatially invariant PSFs Hf

and Hh, with central frequencies of 3.5MHz and 7MHz respec-

tively. The resulting images were contaminated with additive white

Gaussian noise corresponding to an SNR of 50 dB. We notice that

the algorithm can deal with higher noise level. The results obtained

using the proposed algorithm were compared to the conventional de-

convolution problem where only the fundamental data fidelity term

was considered. This classical method (referred to as LASSO) esti-

mates the TRF by solving the following optimization problem

min
r

1

2
‖yf −Hfr‖

2

2 + µ‖r‖1. (10)

To simulate the depth attenuation of the harmonic RF image, we use

an exponential attenuation map shown in Fig. 2(c), corresponding

to W in (6). The resulting fundamental and harmonic images are

shown in Figs. 2(a) and (b). The original TRF and the estimated

obtained using the proposed method and LASSO are shown in in

Figs. 2 (d), (e) and (f) respectively. Zooms corresponding to the

red rectangle are also displayed for better visualization. A visual in-

spection of these TRF allows us to appreciate qualitatively the better

accuracy of the proposed method compared to LASSO. To confirm

these qualitative results, three quantitative measures of performance

were computed between the estimated and true TRFs: the root mean

square error (RMSE), the structural similarity index (SSIM) [17],

and the improvement signal-to-noise ratio (ISNR) [18]. The results

are provided in Table Tab. 4 showing clearly the interest of the pro-

posed method compared to classical deconvolution.

SSIM(%) RMSE ISNR(dB)

Lasso 63.95 0.0952 5.1116

Proposed method 81.60 0.0635 8.6267

Table 1. Quantitative results corresponding to the selected regions (in red)

of images in Figs. 2(d), (e) and (f).

5. CONCLUSION

The objective of this work was to study the potential interest of con-

sidering a harmonic RF image in the process of TRF restoration in

US imaging. Despite its high attenuation with depth and its low

SNR, the harmonic image has a better spatial resolution than the fun-

damental image typically used in US image restoration. Combining

this harmonic image with its fundamental counterpart provides in-

teresting deconvolution results taking into account the properties of

both images. Future works will be devoted to apply the proposed ap-

proach to in vivo data with a non-supervised approach. In this case,

the problem can be formulated as a blind deconvoltion problem into

which a PSF estimation step has to be implemented either in a pre-

processing step or jointly with the TRF estimation. Considering a

spatially varying PSF in order to better match the direct models to

practical situations is also an interesting prospect.
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