
HAL Id: hal-02901590
https://hal.science/hal-02901590

Submitted on 17 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Answering GPSJ Queries in a Polystore: a
Dataspace-Based Approach

Hamdi Ben Hamadou, Enrico Gallinucci, Matteo Golfarelli

To cite this version:
Hamdi Ben Hamadou, Enrico Gallinucci, Matteo Golfarelli. Answering GPSJ Queries in a Polystore:
a Dataspace-Based Approach. 38th International Conference on Conceptual Modeling (ER 2019), Nov
2019, Salvador de Bahia, Brazil. pp.189-203, �10.1007/978-3-030-33223-5_16�. �hal-02901590�

https://hal.science/hal-02901590
https://hal.archives-ouvertes.fr


Official URL 
https://doi.org/10.1007/978-3-030-33223-5_16 

Any correspondence concerning this service should be sent 

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: 
http://oatao.univ-toulouse.fr/26237 

Open  Archive  Toulouse  Archive  Ouverte 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

To cite this version: Ben Hamadou, Hamdi and Gallinucci, 

Enrico and Golfarelli, Matteo Answering GPSJ Queries in a 

Polystore: a Dataspace-Based Approach. (2019) In: 38th 

International Conference on Conceptual Modeling (ER 2019), 4 

November 2019 (Salvador de Bahia, Brazil). 



Answering GPSJ Queries in a Polystore:

A Dataspace-Based Approach

Hamdi Ben Hamadou1 , Enrico Gallinucci2 , and Matteo Golfarelli2(B)

1 Institut de Recherche en Informatique de Toulouse, Toulouse, France
hamdi.ben-hamadou@irit.fr

2 University of Bologna, Cesena, Italy
{enrico.gallinucci,matteo.golfarelli}@unibo.it

Abstract. The discipline of data science is steering analysts away from
traditional data warehousing and towards a more flexible and lightweight
approach to data analysis. The idea is to perform OLAP analyses in a
pay-as-you-go manner across heterogeneous schemas and data models,
where the integration is progressively carried out by the user as the
available data is explored. In this paper, we propose an approach to sup-
port data analysis within a polystore supporting relational, document
and column data models by automatically handling both data model and
schema heterogeneity through a dataspace layer on top of the underlying
databases. The expressiveness we enable corresponds to GPSJ queries,
which are the most common class of queries in OLAP applications. We
rely on Nested Relational Algebra to define a cross-database execution
plan. The plan is composed of several local plans, to be executed on the
distinct databases, and a global plan, which combines and possibly aggre-
gates inter-database data. The system has been prototyped on Apache
Spark.

Keywords: Polystore · NoSQL · Dataspace · GPSJ · Schemaless ·
OLAP

_

1 Introduction

With the rise of Big Data, NoSQL systems have effectively provided different 
ways to address the scalability issues of relational database management systems 
(RDBMSs) and the variety aspect of Big Data. As companies move towards poly-
glot persistence [20] (i.e., employing several DBMSs to exploit the best features 
of each) to optimize the operational workload, new challenges arise from an ana-
lytical perspective, because the analyst needs a transparent way to access these 
fragmented and differently-shaped data. At the same time, the discipline of data 
science is steering analysts away from traditional data warehousing and towards 
a more flexible and lightweight data analysis approach. The idea is to relax the 
rigidity of traditional integration approaches to perform OLAP (OnLine Analyt-
ical Processing) analyses in a pay-as-you-go manner [14], where the integration is
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progressively carried out by the user as the available data is explored. This calls
for new approaches to enable effective analyses on a polyglot system without
performing a complex integration phase.

The main challenges to address in this context are related to the heterogeneity
of the data in terms of data model and schema. Data model heterogeneity is
intrinsic in a polyglot database; it requires to distribute the computation of a
query across the different databases (which adopt different query languages) and
to possibly rely on a middleware to combine and further elaborate the results.
Schema heterogeneity is a common type of heterogeneity in most NoSQL systems
as they abandon the traditional schema-first, data-later approach of RDBMS
(which requires all record in a table to comply with a predefined schema) in
favour of a soft-schema approach, in which each record embeds its own schema
definition. For instance, two records in the same collection may contain different
attributes or the same attributes following different naming conventions. Schema
heterogeneity is mainly due to schema evolution and to the acquisition of data
from sources adopting different schema representations for the same entities.

State-of-the-art proposals for polyglot systems mainly include multistores
(which provide a unique query language to separately query different DBMSs)
and polystores (which additionally enable cross-DBMS query processing) [23].
Current solutions mostly focus on addressing data model heterogeneity and on
optimising the query processing, but they do not consider schema heterogene-
ity. This prevents analysts from taking full advantage of the data, as several
instances may be missed by queries that do not take schema variations into con-
sideration. In this paper we propose an approach to support data analysis within
a polystore by handling both data model and schema heterogeneity through a
dataspace layer on top of the underlying databases. A dataspace is a lightweight
integration approach providing basic query expressive power on a variety of data
sources, bypassing the complexity of traditional integration approaches and pos-
sibly returning best-effort or approximate answers [7]. Consistently with the pay-
as-you-go philosophy, the dataspace is first built by applying simple matching
rules and is progressively enriched by the users as they discover new relationships
among data structures through exploratory queries.

The query expressiveness we enable corresponds to GPSJ queries (i.e., gener-
alized projection, selection and join [12]), i.e., the most common class of queries
in OLAP applications. State-of-the-art works typically delegate to the user the
formulation of adequate queries with the risk of getting inconsistent answers to
the envisioned questions. In contrast, GPSJs enforce a query semantics to pre-
vent the user from getting misleading results leading to ambiguous or potentially
incorrect interpretation in the analytical context. The possibility to extend the
approach to a broader class of queries is considered as future work. For a given
GPSJ, our approach defines a cross-database execution plan in Nested Relational
Algebra (NRA) [24], which is compatible with the expressiveness of document
stores’ query language [3] and SQL (as it is a superset of relational algebra),
with the latter being used by both RDBMSs and column-based systems. The
cross-database execution plan is composed of several local plans, to be executed



on the distinct underlying databases, and a global plan, which combines and
possibly aggregates inter-database data. The resolution of schema heterogeneity
is handled in the local plans, where the knowledge of the dataspace is exploited
to properly query all schema variations of the involved data. This activity is
supported by previous research efforts on enabling schema-independent query-
ing on heterogeneous schemas [1,2,9,10], which focus only on single collections
of records in a particular data model. A prototypical implementation of the
approach has been carried out on Apache Spark [26].

The paper outline is as follows. After discussing related work in Sect. 2, in
Sect. 3 we formalize the dataspace and the query expressiveness. Then we present
the formulation of the execution plan in Sect. 4. Finally, in Sect. 5 we briefly
discuss the prototypical implementation and we draw the conclusions.

2 Related Literature

The importance of transparently querying multistore systems has been high-
lighted by contexts such as federated databases [21] and, more recently, soft-
schema support in NoSQL systems [5]. Here we classify state-of-the-art work by
focusing on the considered levels of data model and schema heterogeneity.

Data Model Transformation. Generally, these works store document data model
into a relational one [6,22]. They offer relational views built on top of the new
relational data model to assist the user while formulating queries. This strategy
implies that several data model transformation should be performed. Hence, this
process requires additional resources, such as an external relational database [15].
Users of these systems have to learn new schemas every time new data are
inserted (or updated) in the collection, because it is necessary to re-generate the
relational views.

Multistore and Polystores. Most of the approaches provide integrated access to a
number of heterogeneous database systems [8,16] through one [16] or more query
language [8] using a middle-ware layer. However, they still require the user to
either define the global schema or to specify a particular data source to use, e.g.,
BigDAWG [8] requires user to use the adequate querying language for each data
model. Furthermore, they consider neither schema mapping during the query
rewriting steps, nor schema heterogeneity.

Multimodel Systems. These systems offer a single platform to store and query
data in different data models (e.g., OrientDB, http://orientdb.com/orientdb/).
Multimodel systems excel in term of data governance, management, and access.
However, they are limited to a pre-defined set of data models and extending
support to new data models is challenging.

Schema-Independent Querying. In document-based stores structural heterogene-
ity points to the existence of several paths to access the same attribute. A trans-
parent querying mechanisms to overcome this heterogeneity is introduced in [2].
A recent research work [9] resolves the problem of having semantically equivalent



attributes but with a different naming convention, as highlighted in [25], using
a set of schema mappings. Most of these approaches consider the heterogeneity
problem inside one collection at a time for a particular data model only. More-
over, the same information could be represented using different data types, and
transcoding functions are required to resolve this heterogeneity [11].

Schema Inference. A second line of work focuses on the representation of the
different schemas within the same collection of documents. In [25] the authors
recommend summarizing all document schemas under a skeleton to discover the
existence of fields or sub-schemas inside the collection. In [13] the authors suggest
extracting collection structures to help developers in the process of designing
their applications. The limitation with such a logical view is that it requires a
manual process in order to build the desired queries by including the desired
attributes and all their possible navigational paths.

All mentioned works handle either data model or schema heterogeneity. To
the best of our knowledge, this is the first work to handle both of them.

3 Dataspace and Query Modeling

In this work we consider a polystore comprising databases in three data mod-
els: relational, document-based and column-based1. Our running example is a
variation of Unibench [18], i.e., a benchmark multimodel dataset based on an
e-commerce application. The conceptual schema is shown in Fig. 1. With respect
to Unibench we exclude the graph and key-value databases and we extend the
benchmark by injecting some heterogeneity into the schemas. We remark that
schema heterogeneity is possible only in the document-based and column-based
data models. In particular, we cover the following kinds of schema heterogeneity.

– Missing attributes: attributes that exist in some records and not in others
(e.g., the gender and birthday of the Client are not always specified).

– Different data types: attributes with varying data types (e.g., the id in Client

is a number, but the personId in Order is stored as string).
– Semantic equivalence: attributes with varying naming conventions (e.g., order-

Line.cost and orderLine.price in Order are alternative attributes representing
the same information).

In the polystore, the data is split among a set of databases DB. We exploit the
concept of dataspace to provide a global representation of the available attributes
in the different databases and to hide the underlying schema heterogeneity. In
particular, the dataspace plays the role of the abstraction level enabling the user
to formulate queries. As data model heterogeneity entails terminology hetero-
geneity, Table 1 explains the terminology used in the remainder of the paper to
generally refer to schema elements (e.g., tables, columns), independently of their
declination in the different data models. The basic information we consider is
the attribute, which we define as follows.

1 We remark that column-based NoSQL systems (e.g., BigTable [4]) are different from
column-oriented DBMS (e.g., Vertica).
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Fig. 1. Running example of a multi-store e-commerce application, based on Unibench
[18]; orderLine is an array in the Order collection whose objects come in two schema
variations (i.e., attributes from orderLine.productID to orderLine.brand are alternative
to those from orderLine.pid to orderLine.make).

Table 1. The adopted terminology VS the terminology used in different data models.

Relational Column-based Document-based Reference term

Table Column-family Collection Collection

Tuple Object Document Record

Attribute Column Attribute Attribute

Attribute name Column name Path Name

Definition 1 (Attribute). Given a polystore DB, we define an attribute as
a = (dm, db, col, name), where dm = [relational|column|document] is the data
model, db ∈ DB is the database name, col is the collection name in db, name is
the name of the attribute in the collection col.

We refer to A∗ as the set of all attributes within all databases in the poly-
store DB; given an attribute a, we use db(a), col(a), name(a) and array(a)
to respectively refer to its database db, its collection col, its name name and
(possibly) the array attribute in which it is contained. In fact, attributes in
document-based stores can appear in a nested form. In such cases, the name of
the attribute corresponds to a path in dot notation that contains the ordered
list of array attributes and ends with the attribute itself; accessing a simple
attribute requires to unnest all the arrays in which it is contained.

Example 1. With respect to Fig. 1, consider the following reference attributes:

– a1 : (relational, Company, Client, id)
– a2 : (relational, Company, Client, firstName)
– a3 : (relational, Company, Client, lastName)
– a4 : (document, Stores, Order, personID)
– a5 : (document, Stores, Order, orderLine)
– a6 : (document, Stores, Order, orderLine.productID)

– a7 : (document, Stores, Order, orderLine.pid)

– a8 : (document, Stores, Order, orderLine.price)

– a9 : (document, Stores, Order, orderLine.cost)

– a10 : (document, Stores, Order, orderLine.brand)

– a11 : (document, Stores, Order, orderLine.make)



It is db(a4) = Stores and col(a4) = Order; also, array(a6) = array(a7) =
array(a8) = array(a9) = a5; attributes a6, a8 and a10 belong to the first
schema variation of orderLine, while attributes a7, a9 and a11 belong to the
second schema variation of orderLine.

In a polystore, attributes do not provide a global representation that hides the
inherent schema heterogeneity as several syntactically different attributes may
represent the same type of information. Relationships between attributes can be
either manually inserted or automatically discovered. The automatic retrieval of
such relationships is out of scope in this paper. Nonetheless, the literature on
this topic is abundant; we refer the reader to a survey on common techniques for
schema matching [17] and to an existing work for automatic discovery of primary-
foreign key relationships [19]. Whether they are obtained either automatically or
manually, which is likely when an incremental approach is adopted, relationships
can be formalized as follows:

Definition 2 (Mapping). A mapping is a relationship between two attributes
a

′

and a
′′

. We define a mapping as m = (a
′

, a
′′

, φ, ϕ, ψ), where a
′

, a
′′

∈ A∗,
φ = [sameAs|fk] is the type of the mapping, and ϕ is a transcoding function to
express a′ values in a′′ format (if necessary; otherwise, ϕ = I() where I() is
the identity function). Finally, ψ is the semantics describing the meaning of the
relationship (limitedly to fk mappings).

The mapping type sameAs resolves semantic equivalence by indicating that
there is an exact match between a

′

and a
′′

, i.e., both attributes represent the
same information for a given entity; a sameAs mapping can exist only if, for any
given record, a

′

and a
′′

never coexist. Conversely, fk indicates that the values in a
′

correspond to the values in a
′′

(i.e., a relationship that, in RDBMSs, is modeled
as a

′

being a foreign key to a
′′

). Consequently, a
′′

must be a key; for the sake of
simplicity, all keys are not composite. Mappings are assumed to be consistent;
for example if ∃ m

′

= (a
′

, a
′′

, fk, ϕ, ψ), then ∄ m
′′

= (a
′

, a
′′

, sameAs, ϕ′).
The sameAs mappings are used to capture schema heterogeneity within a

collection (thus, db(a
′

) = db(a
′′

) and col(a
′

) = col(a
′′

)) whereas fk mappings are
used to establish join relationships between collections (thus, col(a

′

) �= col(a
′′

)).
The semantics is necessary when the same attribute is referenced by several
fk mappings to disambiguate the relationships. Note that while fk mappings
are oriented, sameAs mappings are not oriented in principle, but they become
oriented in practice when we consider the function ϕ that transcodes from a′ to
a′′ and not viceversa.

Example 2. Consider the following mappings between the attributes defined in
Example 1: m1 = (a4, a1, fk, toInt(), “client order”), m2 = (a6, a7, sameAs, I()),
m3 = (a8, a9, sameAs, I()), m4 = (a10, a11, sameAs, I()).

The presence of several attributes that semantically represent the same con-
cept can be hidden by an abstract representation called feature, which is based
on the sameAs mappings.



Definition 3 (Feature). A feature is a representation of a set of attributes in
the polystore that semantically model the same concept. We define a feature as
f = (name, a,M), where a is the representative attribute of the feature, name
is the name of the feature (possibly different from name(a)), and M is a set
of sameAs mappings, in the form (a′, a, sameAs, ϕ), linking all the feature’s
attributes to the representative attribute a. M = ∅ when a concept is modeled
by a single attribute.

The name of each feature is derived from the names of the represented
attributes. However, it is up to the end user to specify a different name.

Example 3. Given the mappings in Example 2 we obtain the following features:

– f1 = (id, a1, ∅)
– f2 = (firstName, a2, ∅)
– f3 = (lastName, a3, ∅)
– f4 = (personId, a4, ∅)

– f5 = (orderLine, a5, ∅)
– f6 = (orderLine.productID, a6, {m2})
– f7 = (orderLine.price, a8, {m3})
– f8 = (orderLine.brand, a10, {m4})

We refer to attr(f) as the set of attributes represented by f (i.e., the represen-
tative attribute plus those derived from the mappings). An attribute is always
represented by one and only one feature; thus, for any two features f

′

and f
′′

,
it is attr(f

′

)∩attr(f
′′

) = ∅. We refer to the feature of an attribute a as feat(a)
and to the name of a feature as name(f).

Ultimately, we simply define the dataspace as follows.

Definition 4 (Dataspace). A dataspace D is a set of features.

We remark that, since features represent only attributes, there is no notion
of collection in the dataspace (i.e., at the feature level). This is a substantial
difference with a traditional integration approach, which would have required
to define global collections and to model them (and their respective attributes)
consistently with the modelings used in the different databases. Instead, fea-
tures simply highlight the semantically distinct concepts that are available in
the dataspace. In the next Section we explain the query mechanism based on
the dataspace of features.

The query expressiveness that we consider covers a wide class of queries by
composing three basic SQL operators: selection, join and generalized projection.
The combination of these three operators determines GPSJ (Generalized Pro-
jection / Selection / Join) queries that were first studied in [12]. We provide the
following definition of a query, which is based on the features of the dataspace.

Definition 5 (Query). Given a dataspace D, we define a query as q =
(qπ, qγ , qσ), where: qπ ⊆ D specifies the features to be projected; qγ specifies
optional aggregations as a set of couples (f, op), where f ∈ D and op is an
aggregation function; qσ is an optional set of selection predicates in the form of
triplets (f, ω, v), where f ∈ D, ω ∈ {=;>;<; �=;≥;≤} and v is a value.
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Fig. 2. Query execution process: the query q (formulated on the dataspace) is trans-
lated into a set of local queries (ql1 . . . ql4) to be executed in separate databases, and a
global query (qg) that operates in the middleware on the results of the local queries.

GPSJ queries are the most common class of queries in OLAP applications.
Attributes in qγ are measures of the event that is the target of the OLAP anal-
ysis. The single events are measured at the finest level of granularity, possibly
filtered by conditions expressed on qσ and then grouped at the coarser granularity
defined by qπ. It is not mandatory that all the three operators are present, thus
simple selection queries and join queries are also covered. We refer to feat(q) as
the set of features involved in q; also, we will use attr(q) as short for attr(feat(q)).

Example 4. Let us suppose that we want to measure the average price order-

Line.price of the products orderLine.productID of brand orderLine.brand “ABC”
by a client called “John Smith” from the dataspace D. Therefore the group-by
set is qπ = {f6}; the aggregation set is qγ = {(f7, avg)} and the set of selection
predicates is qσ = {(f2, =, “John”), (f3, =, “Smith”), (f8, =, “ABC”)}.

4 Execution Plan Formulation

The execution of the query requires the definition of an execution plan that
potentially includes different databases. We model the execution plan in NRA,
as it is compatible with SQL and document stores’ query languages [3]. Given
a query execution plan, we distinguish between the single local plans (i.e., the
parts that can be executed directly on a single database) and the global plan (i.e.,
the part to be executed in the middleware to join the data coming from different
databases). While the local plans directly access the collections of the polystore,
the global plan accesses the intermediary results of the local plans (i.e., views on
the single databases). An intuition of the process is given in Fig. 2. We remark
that schema variability is managed by the local plans.

4.1 Determining the Query Graph

The information necessary to build the query plan can be modeled by means of a
supporting structure we call datagraph. Indeed, a query involves a set of features
which, in turn, represent several attributes in the dataspace. The datagraph is
used to find the connections between these attributes and to obtain the execution
plan for a given query.
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Definition 6 (Datagraph). The datagraph G is a graph G = (A∗, E) where
A∗ is the set of all the attributes of all databases (representing the vertexes of
the graph) and E is the set of edges connecting the attributes.

An edge e ∈ E between two attributes a
′

and a
′′

indicates the existence of a
relationship, which is described by its type, i.e., type(e); its value is one of the
following three:

– sibling: represented as a
′

↔ a
′′

, it indicates that a
′

and a
′′

are in the same
collection and at the same nesting level;

– nested: represented as a
′ n
−→ a

′′

, it indicates that a
′

is nested inside a
′′

;

– fk: represented as a
′ fk
−→ a

′′

, it indicates that the values of a
′′

are referred to
the values of a

′

.

Edges of type sibling and nested are automatically derived from the schema,
while those of type fk can be either derived from the original schemas or defined
by the user through mappings. Noticeably, nested edges can only come from
databases whose data model supports nested attributes (i.e., document- and
column-based). Figure 3 shows a portion of the datagraph representing the
attributes from Example 1. The existence of a directed path from a

′

to a
′′

,
represented as a

′

⇒ a
′′

, implies the existence of a -to-one (i.e., either one-to-one
or many-to-one) relationship from a

′

to a
′′

through a chain of join and unnesting
operations. For instance, it is a9 ⇒ a2, while a1 �⇒ a4.

Definition 7 (Query graph). Given a datagraph G and a query q, we define
the query graph Gq = (A′ ⊆ A∗, E′ ⊆ E) as the minimally connected subgraph
of G such that i) A′ ⊇ attr(q), and ii) there exists A′′ ⊆ A′ s.t. A′′ �= ∅, A′′ ⊇
qγ ,∀(a ∈ A′′, a′ ∈ A′), it is a ⇒ a

′

.

Condition (i) ensures that all attributes belonging to the features involved in
the query are included in A′. Condition (ii) entails the answerability of query q
on D with the GPSJ semantics, that is, there exist one or more attributes rep-
resenting the events at the finest level of granularity (i.e., a -to-one relationship
exists with all the others attributes in q). More than one query graphs could
exist for a given query as more than one -to-one paths could exist each associ-
ated to a different semantics (e.g., a sale could be associated to both the date of
sale and date of shipping). In this case the user is asked to identify the adequate
query graph to execute.



Fig. 4. Sample execution plan for a generic GPSJ; different shades of grey represent
different databases.

Algorithm 1. Definition of the NRA execution plan for a query q.
Input q = (qπ, qγ , qσ): a query; Gq = (A′, E′) the query graph for q.
Output P : the NRA plan of q.
1: P ← ∅

2: LP ← ∅ ⊲ Empty array of local plans
3: GPq ← partitionQueryGraph(Gq)

4: for all GP i
q ∈ GPq do ⊲ One local plan is created for every partition of Gq

5: CP ← ∅ ⊲ Empty array of collection plans
6: C ← identifyAccessedCollections(GP i

q )

7: for all col ∈ C do ⊲ One collection plans is created for every partition of GP i
q

8: CPcol ← defineCollectionPlan(col, GP i
q )

9: LPi ← defineLocalJoins(CP, GP i
q )

10: P ← defineGlobalP lan(LP, Gq)
11: return P

4.2 Defining the Nested Relational Algebra Execution Plan

The full structure of a GPSJ query is shown in Fig. 4 and, as discussed in Sect. 3,
is composed of an aggregation2, over a set of joins, over a set of filtering opera-
tors. The process to translate a query graph Gq into an NRA execution plan is
described by Algorithm1 and requires to: (1) partition Gq in several subgraphs,
each corresponding to a local plan (line 1); (2) define each local plan (lines 4–9);
(3) collate the local plans into the global one (line 3).

Query Graph Partitioning. Intuitively, a local plan includes all and only the
operators that apply to the same database. More formally, this corresponds to
partitioning Gq based on the edges of type fk in E′ (denoted as E′

glo) such that

a
′ fk
−→ a

′′

and db(a
′

) �= db(a
′′

) (see Fig. 3). Let us define GPq as the set of parti-
tions, where |GPq| = |E′

glo|+1. Noticeably, if two edges in E′
glo refer to the same

database db, it will determine two local plans. For instance, with reference to the
running example, this happens if both Client and Vendor tables are accessed on
the relational database through the Stores collection in the document database.

2 We define the aggregation with the operator γ declared as X
γ

Y , where X is the
group-by set (i.e., a set of features) and Y is the set of aggregations (where each
aggregation is composed of a feature and an aggregation function).



Local Plan Definition. At this point, for each query graph partition GP i
q , we

define the corresponding local plan by applying in sequence the following steps.

1. Identify accessed collection Similarly to the query graph partitioning step,
the collections to be accessed are identified by partitioning Gi

q based on the
edges of type fk. It is possible that the same collection needs to be accessed
twice (e.g., given a collection of cities, both the birth city and the residence
of customers are requested by the query); this happens when Gi

q includes two
fk edges between the same collections and with different semantics.

2. Define collection plan For each collection col we define a plan by applying in
sequence the following steps.
(a) Collection accesses A collection access C(col) is added to the local plan

to denote the collection to be accessed.
(b) Unnest operators Given a feature f ∈ feat(q), it may happen that some

of the attr(f) belong to a nested structure. To retrieve them it is manda-
tory to flatten the structure by recursively unnesting the arrays. More
formally, if ∃ a ∈ attr(f) | array(a) �= ∅, the unnest operator µ on
array(a) is necessary. For instance, given a

′′′

∈ attr(f) in the collection
col, if array(a

′′′

) = a
′′

, array(a
′′

) = a
′

and array(a
′

) = ∅, then C(col)
in the local plan becomes µa

′′ (µa
′ (C(col))). Notice that, due to schema

heterogeneity, several arrays may need to be unnested, thus the unnesting
rule is applied to each a ∈ attr(f).

(c) Selection operators for each feature f ∈ feat(qσ), a selection operator σp

must be added to the local plan, where p = (f, ω, v) is the selection pred-
icate on f . Clearly, p must be actually formulated on attr(f); however,
if |attr(f)| > 1 due to schema heterogeneity, the same predicate must
be applied to several attributes. The predicate must be true for any of
the schema variations of f . Each record fits a specific schema variation
including only one of the attributes in attr(f), thus p is defined as a dis-
junction of conditions on attr(f): p = (

∨

∀ai∈attr(f) ϕai
(name(ai)), ω, v),

where ϕ is the function transcoding ai into the representative attribute of
f . For the sake of optimization, a single selection operation is generated
for predicates that must be applied to the same collection, e.g., given
p1 = {f

′

, ω1, v1} and p2 = {f
′′

, ω2, v2}, if col(attr(f
′

)) = col(attr(f
′′

))
then the applied selection operator is σp1∧p2

.
(d) Projection operators The role of projection operator is threefold: (1)

it keeps only the features required by the following join and aggre-
gation operators; (2) it solves the semantic equivalence by combining
all the attributes in attr(f) and renaming them in name(f); (3) it
solves data format heterogeneity by applying ϕ to transcode values from
the original format to the one of the representative attribute. Consider
Fπ = {feat(qπ) ∪ feat(qγ) ∪ F⊲⊳} the set of features to be projected,
where F⊲⊳ is the set of features whose attributes are involved in fk edges
in Gq. Also, consider F col

π = {f ∈ Fπ | attr(f) ∈ col}. |F col
π | projections

are added to the previously defined access plan for col. The projection for
f ∈ F col

π is defined as
(
∨

∀ai∈attr(f) ϕai
(name(ai))

)

/ name(f). The role



of
∨

is to select the only non-null value among attr(f); it is expressed
with the CASE statement in SQL, or with the $ifNull operator in the Mon-
goDB query language. Finally, “/” represents the renaming of the result
with the feature’s name.

3. Define local joins For each edge a
′ fk

−→ a
′′

in a query graph partition Gi
q,

a join operator ⊲⊳name(feat(a′ ))=name(feat(a′′ )) is added to join the different
collection plans. Please note that for the sake of simplicity we did not consider
projections aimed at removing features that are necessary only for joins.

Global Plan Definition. Similarly to the addition of local joins, a join operator

⊲⊳name(feat(a′ ))=name(feat(a′′ )) is added for each edge a
′ fk
−→ a

′′

between two query
graph partitions to join the different local plans. We remark that the optimiza-
tion of join ordering is out of the scope of this paper. Ultimately, the aggregation
operator qπ

γ
qγ

after the last join operator, where qπ is the group-by set of the
query and qγ is the set of aggregations functions applied on the features. We
remind the reader that the final aggregation or projection is optional.

Example 5. The execution plan of the query in Example 4 is shown in Fig. 4.
Noticeably, the aggregation and global join operators directly reference the
resolved feature names.

Fig. 5. Execution plan of the query in Example 4.

5 Discussion and Conclusions

Data science and BI 2.0 expect more flexible and lightweight approaches to data
analysis. Our proposal extends previous polystore solutions by handling schema
heterogeneity and ensuring consistent answer for GPSJ queries, i.e., a wide class
of queries that is the most common in OLAP.



Although the main contribution of this paper is the introduction of the formal
framework, we carried out a preliminary experimentation through a prototype to
verify the correctness and effectiveness of our findings. With reference to Fig. 2
we adopted Spark SQL as the middleware, MySQL, MongoDB and Cassandra as
relational, document-based and column-based DBMSs, respectively. The poly-
store we implemented is based on Unibench and has been extended with schema
heterogeneity. All the classes of heterogeneity discussed in the paper have been
injected and two different schemata for the Order collection are present. Maximal
schema cardinality is 142k records for the Order and Invoice collections. We also
defined the minimal set of features to answer a workload of 4 queries. In partic-
ular, query in Example 4 (whose plan is reported in Fig. 5) retrieves 23% of the
orders, and allows to transparently access the related order lines that are evenly
distributed on different schemata of the document DB. Overall query execution
requires 6.9 s: 0.2ṡ are necessary to create the plans, 1.2 s to run in parallel the
local plans, 2.7 s to generate Spark dataframes and 2.8 s to run the global one.
Other queries perform at comparable times and all results correctly correspond
to those of a manual execution.

Future extensions will cover different aspects. First, we plan to cover hori-
zontal partitioning of the data, that is, the same collection can span on several
collections on potentially different DBs. This introduces a new level of hetero-
geneity, as features may represent attributes that do not belong to the same col-
lection. We will also extend our approach (1) to support additional data models
(e.g., key-value and graph), and (2) to enable a broader set of queries than GPSJs
(e.g., [1]). In terms of effectiveness, we will consider the introduction of KPIs to
provide further insights to the user with respect to the underlying heterogeneity
of the data (e.g., [10]). Finally, we intend to run larger experimentation over real
datasets to better study the efficiency and boundaries of our approach.
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