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The discipline of data science is steering analysts away from traditional data warehousing and towards a more flexible and lightweight approach to data analysis. The idea is to perform OLAP analyses in a pay-as-you-go manner across heterogeneous schemas and data models, where the integration is progressively carried out by the user as the available data is explored. In this paper, we propose an approach to support data analysis within a polystore supporting relational, document and column data models by automatically handling both data model and schema heterogeneity through a dataspace layer on top of the underlying databases. The expressiveness we enable corresponds to GPSJ queries, which are the most common class of queries in OLAP applications. We rely on Nested Relational Algebra to define a cross-database execution plan. The plan is composed of several local plans, to be executed on the distinct databases, and a global plan, which combines and possibly aggregates inter-database data. The system has been prototyped on Apache Spark.

Introduction

With the rise of Big Data, NoSQL systems have effectively provided different ways to address the scalability issues of relational database management systems (RDBMSs) and the variety aspect of Big Data. As companies move towards polyglot persistence [START_REF] Sadalage | NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence[END_REF] (i.e., employing several DBMSs to exploit the best features of each) to optimize the operational workload, new challenges arise from an analytical perspective, because the analyst needs a transparent way to access these fragmented and differently-shaped data. At the same time, the discipline of data science is steering analysts away from traditional data warehousing and towards a more flexible and lightweight data analysis approach. The idea is to relax the rigidity of traditional integration approaches to perform OLAP (OnLine Analytical Processing) analyses in a pay-as-you-go manner [START_REF] Jeffery | Pay-as-you-go user feedback for dataspace systems[END_REF], where the integration is progressively carried out by the user as the available data is explored. This calls for new approaches to enable effective analyses on a polyglot system without performing a complex integration phase.

The main challenges to address in this context are related to the heterogeneity of the data in terms of data model and schema. Data model heterogeneity is intrinsic in a polyglot database; it requires to distribute the computation of a query across the different databases (which adopt different query languages) and to possibly rely on a middleware to combine and further elaborate the results. Schema heterogeneity is a common type of heterogeneity in most NoSQL systems as they abandon the traditional schema-first, data-later approach of RDBMS (which requires all record in a table to comply with a predefined schema) in favour of a soft-schema approach, in which each record embeds its own schema definition. For instance, two records in the same collection may contain different attributes or the same attributes following different naming conventions. Schema heterogeneity is mainly due to schema evolution and to the acquisition of data from sources adopting different schema representations for the same entities.

State-of-the-art proposals for polyglot systems mainly include multistores (which provide a unique query language to separately query different DBMSs) and polystores (which additionally enable cross-DBMS query processing) [START_REF] Tan | Enabling query processing across heterogeneous data models: a survey[END_REF]. Current solutions mostly focus on addressing data model heterogeneity and on optimising the query processing, but they do not consider schema heterogeneity. This prevents analysts from taking full advantage of the data, as several instances may be missed by queries that do not take schema variations into consideration. In this paper we propose an approach to support data analysis within a polystore by handling both data model and schema heterogeneity through a dataspace layer on top of the underlying databases. A dataspace is a lightweight integration approach providing basic query expressive power on a variety of data sources, bypassing the complexity of traditional integration approaches and possibly returning best-effort or approximate answers [START_REF] Franklin | From databases to dataspaces: a new abstraction for information management[END_REF]. Consistently with the payas-you-go philosophy, the dataspace is first built by applying simple matching rules and is progressively enriched by the users as they discover new relationships among data structures through exploratory queries.

The query expressiveness we enable corresponds to GPSJ queries (i.e., generalized projection, selection and join [START_REF] Gupta | Aggregate-query processing in data warehousing environments[END_REF]), i.e., the most common class of queries in OLAP applications. State-of-the-art works typically delegate to the user the formulation of adequate queries with the risk of getting inconsistent answers to the envisioned questions. In contrast, GPSJs enforce a query semantics to prevent the user from getting misleading results leading to ambiguous or potentially incorrect interpretation in the analytical context. The possibility to extend the approach to a broader class of queries is considered as future work. For a given GPSJ, our approach defines a cross-database execution plan in Nested Relational Algebra (NRA) [START_REF] Thomas | Nested relational structures[END_REF], which is compatible with the expressiveness of document stores' query language [START_REF] Botoeva | Expressivity and complexity of MongoDB queries[END_REF] and SQL (as it is a superset of relational algebra), with the latter being used by both RDBMSs and column-based systems. The cross-database execution plan is composed of several local plans, to be executed on the distinct underlying databases, and a global plan, which combines and possibly aggregates inter-database data. The resolution of schema heterogeneity is handled in the local plans, where the knowledge of the dataspace is exploited to properly query all schema variations of the involved data. This activity is supported by previous research efforts on enabling schema-independent querying on heterogeneous schemas [START_REF] Hamadou | Schema-independent querying for heterogeneous collections in NoSQL document stores[END_REF][START_REF] Hamadou | Towards schemaindependent querying on document data stores[END_REF][START_REF] Gallinucci | Variety-aware OLAP of document-oriented databases[END_REF][START_REF] Gallinucci | Approximate OLAP of document-oriented databases: a variety-aware approach[END_REF], which focus only on single collections of records in a particular data model. A prototypical implementation of the approach has been carried out on Apache Spark [START_REF] Zaharia | Apache Spark: a unified engine for big data processing[END_REF].

The paper outline is as follows. After discussing related work in Sect. 2, in Sect. 3 we formalize the dataspace and the query expressiveness. Then we present the formulation of the execution plan in Sect. 4. Finally, in Sect. 5 we briefly discuss the prototypical implementation and we draw the conclusions.

Related Literature

The importance of transparently querying multistore systems has been highlighted by contexts such as federated databases [START_REF] Sheth | Federated database systems for managing distributed, heterogeneous, and autonomous databases[END_REF] and, more recently, softschema support in NoSQL systems [START_REF] Corbellini | Persisting bigdata: the NoSQL landscape[END_REF]. Here we classify state-of-the-art work by focusing on the considered levels of data model and schema heterogeneity.

Data Model Transformation. Generally, these works store document data model into a relational one [START_REF] Discala | Automatic generation of normalized relational schemas from nested key-value data[END_REF][START_REF] Tahara | Sinew: a SQL system for multi-structured data[END_REF]. They offer relational views built on top of the new relational data model to assist the user while formulating queries. This strategy implies that several data model transformation should be performed. Hence, this process requires additional resources, such as an external relational database [START_REF] Lefevre | MISO: souping up big data query processing with a multistore system[END_REF]. Users of these systems have to learn new schemas every time new data are inserted (or updated) in the collection, because it is necessary to re-generate the relational views.

Multistore and Polystores. Most of the approaches provide integrated access to a number of heterogeneous database systems [START_REF] Gadepally | The BigDAWG polystore system and architecture[END_REF][START_REF] Ong | The SQL++ semi-structured data model and query language: a capabilities survey of SQL-on-Hadoop, NoSQL and NewSQL databases[END_REF] through one [START_REF] Ong | The SQL++ semi-structured data model and query language: a capabilities survey of SQL-on-Hadoop, NoSQL and NewSQL databases[END_REF] or more query language [START_REF] Gadepally | The BigDAWG polystore system and architecture[END_REF] using a middle-ware layer. However, they still require the user to either define the global schema or to specify a particular data source to use, e.g., BigDAWG [START_REF] Gadepally | The BigDAWG polystore system and architecture[END_REF] requires user to use the adequate querying language for each data model. Furthermore, they consider neither schema mapping during the query rewriting steps, nor schema heterogeneity.

Multimodel Systems. These systems offer a single platform to store and query data in different data models (e.g., OrientDB, http://orientdb.com/orientdb/). Multimodel systems excel in term of data governance, management, and access. However, they are limited to a pre-defined set of data models and extending support to new data models is challenging.

Schema-Independent Querying. In document-based stores structural heterogeneity points to the existence of several paths to access the same attribute. A transparent querying mechanisms to overcome this heterogeneity is introduced in [START_REF] Hamadou | Towards schemaindependent querying on document data stores[END_REF]. A recent research work [START_REF] Gallinucci | Variety-aware OLAP of document-oriented databases[END_REF] resolves the problem of having semantically equivalent attributes but with a different naming convention, as highlighted in [START_REF] Wang | Schema management for document stores[END_REF], using a set of schema mappings. Most of these approaches consider the heterogeneity problem inside one collection at a time for a particular data model only. Moreover, the same information could be represented using different data types, and transcoding functions are required to resolve this heterogeneity [START_REF] Golfarelli | OLAP query reformulation in peer-to-peer data warehousing[END_REF]. Schema Inference. A second line of work focuses on the representation of the different schemas within the same collection of documents. In [START_REF] Wang | Schema management for document stores[END_REF] the authors recommend summarizing all document schemas under a skeleton to discover the existence of fields or sub-schemas inside the collection. In [START_REF] Herrero | NOSQL design for analytical workloads: variability matters[END_REF] the authors suggest extracting collection structures to help developers in the process of designing their applications. The limitation with such a logical view is that it requires a manual process in order to build the desired queries by including the desired attributes and all their possible navigational paths.

All mentioned works handle either data model or schema heterogeneity. To the best of our knowledge, this is the first work to handle both of them.

Dataspace and Query Modeling

In this work we consider a polystore comprising databases in three data models: relational, document-based and column-based1 . Our running example is a variation of Unibench [START_REF] Rolls | Unibench: a tool for automated and collaborative benchmarking[END_REF], i.e., a benchmark multimodel dataset based on an e-commerce application. The conceptual schema is shown in Fig. 1. With respect to Unibench we exclude the graph and key-value databases and we extend the benchmark by injecting some heterogeneity into the schemas. We remark that schema heterogeneity is possible only in the document-based and column-based data models. In particular, we cover the following kinds of schema heterogeneity.

-Missing attributes: attributes that exist in some records and not in others (e.g., the gender and birthday of the Client are not always specified). -Different data types: attributes with varying data types (e.g., the id in Client is a number, but the personId in Order is stored as string). -Semantic equivalence: attributes with varying naming conventions (e.g., order-Line.cost and orderLine.price in Order are alternative attributes representing the same information).

In the polystore, the data is split among a set of databases DB. We exploit the concept of dataspace to provide a global representation of the available attributes in the different databases and to hide the underlying schema heterogeneity. In particular, the dataspace plays the role of the abstraction level enabling the user to formulate queries. As data model heterogeneity entails terminology heterogeneity, Table 1 explains the terminology used in the remainder of the paper to generally refer to schema elements (e.g., tables, columns), independently of their declination in the different data models. The basic information we consider is the attribute, which we define as follows. Running example of a multi-store e-commerce application, based on Unibench [START_REF] Rolls | Unibench: a tool for automated and collaborative benchmarking[END_REF]; orderLine is an array in the Order collection whose objects come in two schema variations (i.e., attributes from orderLine.productID to orderLine.brand are alternative to those from orderLine.pid to orderLine.make).

Table 1. The adopted terminology VS the terminology used in different data models.

Relational

Column-based Document-based Reference term Definition 1 (Attribute). Given a polystore DB, we define an attribute as a = (dm, db, col, name), where dm = [relational|column|document] is the data model, db ∈ DB is the database name, col is the collection name in db, name is the name of the attribute in the collection col.

We refer to A * as the set of all attributes within all databases in the polystore DB; given an attribute a, we use db(a), col(a), name(a) and array(a) to respectively refer to its database db, its collection col, its name name and (possibly) the array attribute in which it is contained. In fact, attributes in document-based stores can appear in a nested form. In such cases, the name of the attribute corresponds to a path in dot notation that contains the ordered list of array attributes and ends with the attribute itself; accessing a simple attribute requires to unnest all the arrays in which it is contained. It is db(a 4 ) = Stores and col(a 4 ) = Order; also, array(a 6 ) = array(a 7 ) = array(a 8 ) = array(a 9 ) = a 5 ; attributes a 6 , a 8 and a 10 belong to the first schema variation of orderLine, while attributes a 7 , a 9 and a 11 belong to the second schema variation of orderLine.

In a polystore, attributes do not provide a global representation that hides the inherent schema heterogeneity as several syntactically different attributes may represent the same type of information. Relationships between attributes can be either manually inserted or automatically discovered. The automatic retrieval of such relationships is out of scope in this paper. Nonetheless, the literature on this topic is abundant; we refer the reader to a survey on common techniques for schema matching [START_REF] Rahm | A survey of approaches to automatic schema matching[END_REF] and to an existing work for automatic discovery of primaryforeign key relationships [START_REF] Rostin | A machine learning approach to foreign key discovery[END_REF]. Whether they are obtained either automatically or manually, which is likely when an incremental approach is adopted, relationships can be formalized as follows:

Definition 2 (Mapping). A mapping is a relationship between two attributes a ′ and a ′′ . We define a mapping as m = (a ′ , a ′′ , φ, ϕ, ψ), where a ′ , a ′′ ∈ A * , φ = [sameAs|fk] is the type of the mapping, and ϕ is a transcoding function to express a ′ values in a ′′ format (if necessary; otherwise, ϕ = I() where I() is the identity function). Finally, ψ is the semantics describing the meaning of the relationship (limitedly to fk mappings).

The mapping type sameAs resolves semantic equivalence by indicating that there is an exact match between a ′ and a ′′ , i.e., both attributes represent the same information for a given entity; a sameAs mapping can exist only if, for any given record, a ′ and a ′′ never coexist. Conversely, fk indicates that the values in a ′ correspond to the values in a ′′ (i.e., a relationship that, in RDBMSs, is modeled as a

′ being a foreign key to a ′′ ). Consequently, a ′′ must be a key; for the sake of simplicity, all keys are not composite. Mappings are assumed to be consistent; for example if ∃ m ′ = (a ′ , a ′′ , fk, ϕ, ψ), then ∄ m ′′ = (a ′ , a ′′ , sameAs, ϕ ′ ). The sameAs mappings are used to capture schema heterogeneity within a collection (thus, db(a ′ ) = db(a ′′ ) and col(a ′ ) = col(a ′′ )) whereas fk mappings are used to establish join relationships between collections (thus, col(a ′ ) = col(a ′′ )). The semantics is necessary when the same attribute is referenced by several fk mappings to disambiguate the relationships. Note that while fk mappings are oriented, sameAs mappings are not oriented in principle, but they become oriented in practice when we consider the function ϕ that transcodes from a ′ to a ′′ and not viceversa.

Example 2. Consider the following mappings between the attributes defined in Example 1: m 1 = (a 4 , a 1 , fk, toInt(), "client order"), m 2 = (a 6 , a 7 , sameAs, I()), m 3 = (a 8 , a 9 , sameAs, I()), m 4 = (a 10 , a 11 , sameAs, I()).

The presence of several attributes that semantically represent the same concept can be hidden by an abstract representation called feature, which is based on the sameAs mappings.

Definition 3 (Feature).

A feature is a representation of a set of attributes in the polystore that semantically model the same concept. We define a feature as f = (name, a, M ), where a is the representative attribute of the feature, name is the name of the feature (possibly different from name(a)), and M is a set of sameAs mappings, in the form (a ′ , a, sameAs, ϕ), linking all the feature's attributes to the representative attribute a. M = ∅ when a concept is modeled by a single attribute.

The name of each feature is derived from the names of the represented attributes. However, it is up to the end user to specify a different name.

Example 3. Given the mappings in Example 2 we obtain the following features:

-

f 1 = (id, a 1 , ∅) -f 2 = (firstName, a 2 , ∅) -f 3 = (lastName, a 3 , ∅) -f 4 = (personId, a 4 , ∅) -f 5 = (orderLine, a 5 , ∅) -f 6 = (orderLine.productID, a 6 , {m 2 }) -f 7 = (orderLine.price, a 8 , {m 3 }) -f 8 = (orderLine.brand, a 10 , {m 4 })
We refer to attr(f ) as the set of attributes represented by f (i.e., the representative attribute plus those derived from the mappings). An attribute is always represented by one and only one feature; thus, for any two features f ′ and f ′′ , it is attr(f ′ ) ∩ attr(f ′′ ) = ∅. We refer to the feature of an attribute a as f eat(a) and to the name of a feature as name(f ).

Ultimately, we simply define the dataspace as follows.

Definition 4 (Dataspace). A dataspace D is a set of features.

We remark that, since features represent only attributes, there is no notion of collection in the dataspace (i.e., at the feature level). This is a substantial difference with a traditional integration approach, which would have required to define global collections and to model them (and their respective attributes) consistently with the modelings used in the different databases. Instead, features simply highlight the semantically distinct concepts that are available in the dataspace. In the next Section we explain the query mechanism based on the dataspace of features.

The query expressiveness that we consider covers a wide class of queries by composing three basic SQL operators: selection, join and generalized projection. The combination of these three operators determines GPSJ (Generalized Projection / Selection / Join) queries that were first studied in [START_REF] Gupta | Aggregate-query processing in data warehousing environments[END_REF]. We provide the following definition of a query, which is based on the features of the dataspace. Definition 5 (Query). Given a dataspace D, we define a query as q = (q π , q γ , q σ ), where: q π ⊆ D specifies the features to be projected; q γ specifies optional aggregations as a set of couples (f, op), where f ∈ D and op is an aggregation function; q σ is an optional set of selection predicates in the form of triplets (f, ω, v), where f ∈ D, ω ∈ {=; >; <; =; ≥; ≤} and v is a value. Middleware q l4 q l3 q l2 q l1 q g Dataspace Query rewriting q q l1 q l2 q l3 q l4 q g

query results local queries execution global query execution data flow metadata flow

Legend:

Fig. 2. Query execution process: the query q (formulated on the dataspace) is translated into a set of local queries (q l1 . . . q l4 ) to be executed in separate databases, and a global query (q g ) that operates in the middleware on the results of the local queries.

GPSJ queries are the most common class of queries in OLAP applications. Attributes in q γ are measures of the event that is the target of the OLAP analysis. The single events are measured at the finest level of granularity, possibly filtered by conditions expressed on q σ and then grouped at the coarser granularity defined by q π . It is not mandatory that all the three operators are present, thus simple selection queries and join queries are also covered. We refer to f eat(q) as the set of features involved in q; also, we will use attr(q) as short for attr(f eat(q)).

Example 4. Let us suppose that we want to measure the average price order-Line.price of the products orderLine.productID of brand orderLine.brand "ABC" by a client called "John Smith" from the dataspace D. Therefore the group-by set is q π = {f 6 }; the aggregation set is q γ = {(f 7 , avg)} and the set of selection predicates is q σ = {(f 2 , =, "John"), (f 3 , =, "Smith"), (f 8 , =, "ABC")}.

Execution Plan Formulation

The execution of the query requires the definition of an execution plan that potentially includes different databases. We model the execution plan in NRA, as it is compatible with SQL and document stores' query languages [START_REF] Botoeva | Expressivity and complexity of MongoDB queries[END_REF]. Given a query execution plan, we distinguish between the single local plans (i.e., the parts that can be executed directly on a single database) and the global plan (i.e., the part to be executed in the middleware to join the data coming from different databases). While the local plans directly access the collections of the polystore, the global plan accesses the intermediary results of the local plans (i.e., views on the single databases). An intuition of the process is given in Fig. 2. We remark that schema variability is managed by the local plans.

Determining the Query Graph

The information necessary to build the query plan can be modeled by means of a supporting structure we call datagraph. Indeed, a query involves a set of features which, in turn, represent several attributes in the dataspace. The datagraph is used to find the connections between these attributes and to obtain the execution plan for a given query. and GP 2 q highlighted; bold circles correspond to representative attributes of a feature.

Definition 6 (Datagraph).

The datagraph G is a graph G = (A * , E) where A * is the set of all the attributes of all databases (representing the vertexes of the graph) and E is the set of edges connecting the attributes.

An edge e ∈ E between two attributes a ′ and a ′′ indicates the existence of a relationship, which is described by its type, i.e., type(e); its value is one of the following three:

sibling: represented as a ′ ↔ a ′′ , it indicates that a ′ and a ′′ are in the same collection and at the same nesting level; nested: represented as a

′ n -→ a ′′ , it indicates that a ′ is nested inside a ′′ ; -fk: represented as a ′ fk -→ a ′′ , it indicates that the values of a ′′ are referred to the values of a ′ .
Edges of type sibling and nested are automatically derived from the schema, while those of type fk can be either derived from the original schemas or defined by the user through mappings. Noticeably, nested edges can only come from databases whose data model supports nested attributes (i.e., document-and column-based). Figure 3 shows a portion of the datagraph representing the attributes from Example 1. The existence of a directed path from a ′ to a ′′ , represented as a ′ ⇒ a ′′ , implies the existence of a -to-one (i.e., either one-to-one or many-to-one) relationship from a ′ to a ′′ through a chain of join and unnesting operations. For instance, it is a 9 ⇒ a 2 , while a 1 ⇒ a 4 . Definition 7 (Query graph). Given a datagraph G and a query q, we define the query graph G q = (A ′ ⊆ A * , E ′ ⊆ E) as the minimally connected subgraph of G such that i) A ′ ⊇ attr(q), and ii) there exists

A ′′ ⊆ A ′ s.t. A ′′ = ∅, A ′′ ⊇ q γ , ∀(a ∈ A ′′ , a ′ ∈ A ′ ), it is a ⇒ a ′ .
Condition (i) ensures that all attributes belonging to the features involved in the query are included in A ′ . Condition (ii) entails the answerability of query q on D with the GPSJ semantics, that is, there exist one or more attributes representing the events at the finest level of granularity (i.e., a -to-one relationship exists with all the others attributes in q). More than one query graphs could exist for a given query as more than one -to-one paths could exist each associated to a different semantics (e.g., a sale could be associated to both the date of sale and date of shipping). In this case the user is asked to identify the adequate query graph to execute. Algorithm 1. Definition of the NRA execution plan for a query q.

Input q = (q π , q γ , q σ ): a query; G q = (A ′ , E ′ ) the query graph for q. Output P : the NRA plan of q.

1: P ← ∅ 2: LP ← ∅ ⊲ Empty array of local plans 3: GP q ← partitionQueryGraph(G q ) 4: for all GP i q ∈ GP q do ⊲ One local plan is created for every partition of G q

5:

CP ← ∅ ⊲ Empty array of collection plans

6:

C ← identif yAccessedCollections(GP i q )

7:

for all col ∈ C do ⊲ One collection plans is created for every partition of GP i q 8:

CP col ← def ineCollectionP lan(col, GP i q )

9:

LP i ← def ineLocalJoins(CP, GP i q )
10: P ← def ineGlobalP lan(LP, G q ) 11: return P

Defining the Nested Relational Algebra Execution Plan

The full structure of a GPSJ query is shown in Fig. 4 and, as discussed in Sect. 3, is composed of an aggregation2 , over a set of joins, over a set of filtering operators. The process to translate a query graph G q into an NRA execution plan is described by Algorithm 1 and requires to: (1) partition G q in several subgraphs, each corresponding to a local plan (line 1); (2) define each local plan (lines 4-9);

(3) collate the local plans into the global one (line 3).

Query Graph Partitioning. Intuitively, a local plan includes all and only the operators that apply to the same database. More formally, this corresponds to partitioning G q based on the edges of type fk in E ′ (denoted as E ′ glo ) such that a ′ fk -→ a ′′ and db(a ′ ) = db(a ′′ ) (see Fig. 3). Let us define GP q as the set of partitions, where |GP q | = |E ′ glo | + 1. Noticeably, if two edges in E ′ glo refer to the same database db, it will determine two local plans. For instance, with reference to the running example, this happens if both Client and Vendor tables are accessed on the relational database through the Stores collection in the document database.

Local Plan Definition. At this point, for each query graph partition GP i q , we define the corresponding local plan by applying in sequence the following steps.

1. Identify accessed collection Similarly to the query graph partitioning step, the collections to be accessed are identified by partitioning G i q based on the edges of type fk. It is possible that the same collection needs to be accessed twice (e.g., given a collection of cities, both the birth city and the residence of customers are requested by the query); this happens when G i q includes two fk edges between the same collections and with different semantics. 2. Define collection plan For each collection col we define a plan by applying in sequence the following steps.

(a) Collection accesses A collection access C(col) is added to the local plan to denote the collection to be accessed. (b) Unnest operators Given a feature f ∈ f eat(q), it may happen that some of the attr(f ) belong to a nested structure. To retrieve them it is mandatory to flatten the structure by recursively unnesting the arrays. More formally, if ∃ a ∈ attr(f ) | array(a) = ∅, the unnest operator µ on array(a) is necessary. For instance, given a ′′′ ∈ attr(f ) in the collection col, if array(a ′′′ ) = a ′′ , array(a ′′ ) = a ′ and array(a ′ ) = ∅, then C(col) in the local plan becomes µ a ′′ (µ a ′ (C(col))). Notice that, due to schema heterogeneity, several arrays may need to be unnested, thus the unnesting rule is applied to each a ∈ attr(f ). (c) Selection operators for each feature f ∈ f eat(q σ ), a selection operator σ p must be added to the local plan, where p = (f, ω, v) is the selection predicate on f . Clearly, p must be actually formulated on attr(f ); however, if |attr(f )| > 1 due to schema heterogeneity, the same predicate must be applied to several attributes. The predicate must be true for any of the schema variations of f . Each record fits a specific schema variation including only one of the attributes in attr(f ), thus p is defined as a disjunction of conditions on attr(f ): p = ( ∀a i ∈attr(f ) ϕ a i (name(a i )), ω, v), where ϕ is the function transcoding a i into the representative attribute of f . For the sake of optimization, a single selection operation is generated for predicates that must be applied to the same collection, e.g., given

p 1 = {f ′ , ω 1 , v 1 } and p 2 = {f ′′ , ω 2 , v 2 }, if col(attr(f ′ )) = col(attr(f ′′ )) then the applied selection operator is σ p 1 ∧p 2 .
(d) Projection operators The role of projection operator is threefold: [START_REF] Hamadou | Schema-independent querying for heterogeneous collections in NoSQL document stores[END_REF] it keeps only the features required by the following join and aggregation operators; (2) it solves the semantic equivalence by combining all the attributes in attr(f ) and renaming them in name(f ); (3) it solves data format heterogeneity by applying ϕ to transcode values from the original format to the one of the representative attribute. Consider F π = {f eat(q π ) ∪ f eat(q γ ) ∪ F ⊲⊳ } the set of features to be projected, where F ⊲⊳ is the set of features whose attributes are involved in fk edges in G q . Also, consider F col π = {f ∈ F π | attr(f ) ∈ col}. |F col π | projections are added to the previously defined access plan for col. The projection for f ∈ F col π is defined as ∀a i ∈attr(f ) ϕ a i (name(a i )) / name(f ). The role of is to select the only non-null value among attr(f ); it is expressed with the CASE statement in SQL, or with the $ifNull operator in the Mon-goDB query language. Finally, "/" represents the renaming of the result with the feature's name. 3. Define local joins For each edge a ′ fk -→ a ′′ in a query graph partition G i q , a join operator ⊲⊳ name(f eat(a ′ ))=name(f eat(a ′′ )) is added to join the different collection plans. Please note that for the sake of simplicity we did not consider projections aimed at removing features that are necessary only for joins.

Global Plan Definition. Similarly to the addition of local joins, a join operator ⊲⊳ name(f eat(a ′ ))=name(f eat(a ′′ )) is added for each edge a ′ fk -→ a ′′ between two query graph partitions to join the different local plans. We remark that the optimization of join ordering is out of the scope of this paper. Ultimately, the aggregation operator q π γ q γ after the last join operator, where q π is the group-by set of the query and q γ is the set of aggregations functions applied on the features. We remind the reader that the final aggregation or projection is optional. 

Discussion and Conclusions

Data science and BI 2.0 expect more flexible and lightweight approaches to data analysis. Our proposal extends previous polystore solutions by handling schema heterogeneity and ensuring consistent answer for GPSJ queries, i.e., a wide class of queries that is the most common in OLAP.

Although the main contribution of this paper is the introduction of the formal framework, we carried out a preliminary experimentation through a prototype to verify the correctness and effectiveness of our findings. With reference to Fig. 2 we adopted Spark SQL as the middleware, MySQL, MongoDB and Cassandra as relational, document-based and column-based DBMSs, respectively. The polystore we implemented is based on Unibench and has been extended with schema heterogeneity. All the classes of heterogeneity discussed in the paper have been injected and two different schemata for the Order collection are present. Maximal schema cardinality is 142k records for the Order and Invoice collections. We also defined the minimal set of features to answer a workload of 4 queries. In particular, query in Example 4 (whose plan is reported in Fig. 5) retrieves 23% of the orders, and allows to transparently access the related order lines that are evenly distributed on different schemata of the document DB. Overall query execution requires 6.9 s: 0.2ṡ are necessary to create the plans, 1.2 s to run in parallel the local plans, 2.7 s to generate Spark dataframes and 2.8 s to run the global one. Other queries perform at comparable times and all results correctly correspond to those of a manual execution.

Future extensions will cover different aspects. First, we plan to cover horizontal partitioning of the data, that is, the same collection can span on several collections on potentially different DBs. This introduces a new level of heterogeneity, as features may represent attributes that do not belong to the same collection. We will also extend our approach (1) to support additional data models (e.g., key-value and graph), and (2) to enable a broader set of queries than GPSJs (e.g., [START_REF] Hamadou | Schema-independent querying for heterogeneous collections in NoSQL document stores[END_REF]). In terms of effectiveness, we will consider the introduction of KPIs to provide further insights to the user with respect to the underlying heterogeneity of the data (e.g., [START_REF] Gallinucci | Approximate OLAP of document-oriented databases: a variety-aware approach[END_REF]). Finally, we intend to run larger experimentation over real datasets to better study the efficiency and boundaries of our approach.

  Fig.1. Running example of a multi-store e-commerce application, based on Unibench[START_REF] Rolls | Unibench: a tool for automated and collaborative benchmarking[END_REF]; orderLine is an array in the Order collection whose objects come in two schema variations (i.e., attributes from orderLine.productID to orderLine.brand are alternative to those from orderLine.pid to orderLine.make).

Example 1 .

 1 With respect to Fig.1, consider the following reference attributes:-a 1 : (relational, Company, Client, id) -a 2 : (relational, Company, Client, firstName) -a 3 : (relational, Company, Client, lastName) -a 4 : (document, Stores, Order, personID) -a 5 : (document, Stores, Order, orderLine) -a 6 : (document, Stores, Order, orderLine.productID) -a 7 : (document, Stores, Order, orderLine.pid) -a 8 : (document, Stores, Order, orderLine.price) -a 9 : (document, Stores, Order, orderLine.cost) -a 10 : (document, Stores, Order, orderLine.brand) -a 11 : (document, Stores, Order, orderLine.make)

Fig. 3 .

 3 Fig. 3. Query graph of the query in Example 4, with the query graph partitions GP 1 q

Fig. 4 .

 4 Fig. 4. Sample execution plan for a generic GPSJ; different shades of grey represent different databases.

Example 5 .

 5 The execution plan of the query in Example 4 is shown in Fig.4. Noticeably, the aggregation and global join operators directly reference the resolved feature names.

Fig. 5 .

 5 Fig. 5. Execution plan of the query in Example 4.

Table Column

 Column 

		-family Collection	Collection
	Tuple	Object	Document	Record
	Attribute	Column	Attribute	Attribute
	Attribute name Column name Path	Name

We remark that column-based NoSQL systems (e.g., BigTable [4]) are different from column-oriented DBMS (e.g., Vertica).

We define the aggregation with the operator γ declared as X γ Y , where X is the group-by set (i.e., a set of features) and Y is the set of aggregations (where each aggregation is composed of a and an aggregation function).