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ARTICLE INFO ABSTRACT

Keywords: The modelling of dynamic system is a challenging problem in a large number of applications
Artificial Neural Network like prediction, bio-data modelling, computer vision or time-series processing. To face the com-
Dynamic System Modelling plexity and the non-linearity of data, new models are regularly proposed through the literature.
Boltzmann Machines Among proposed models artificial neural network (ANN) have benefit of a large interest in the
Diffusion Network scientist community. The use of latent variables to extract and diffuse complex features in multi-
Stochastic Differential Equation layer feedforward neural networks provide usually excellent results. In 1982, Hopfield proposes

a generative and deterministic neural network to model a physical system. His work leads to
the emergence of a large number of generative neural networks: Boltzmann Machine and its
extensions. Different applications lead researchers to propose new extensions for the Boltzmann
machine to handle dynamic systems, continuous variables or systems with complex features. In
parallel, a new model named the Diffusion Network has emerged, also inspired from Hopfield
network but with continuous stochastic properties and designed to solve stochastic differential
equations. This paper has the objective to review the evolution of the Boltzmann Machine’s
family with a synthetic and historical vision and their development for dynamic problem. THE
FOLLOWING TEXT (IN YELLOW) WILL BE REMOVED IN THE FINAL VERSION To
write this review, we selected articles from journals/conferences and review articles (1/3 are < 7
years) quoted in meta sources (Scopus and Web-of-Sciences). Once a clearly research question
was asked — How generative networks model dynamic systems ? — we defined our search terms
for papers. Note that not all extensions to Boltzmann machines are presented in this paper. Only
models related with dynamic applications and most salient models were retained.

Glossary
ANN Artificial Neural Networks BEAM Boltzmann Encoded Adversarial Machine
MLP Multilayer Perceptron DBN Deep Belief Network
GNN Generative Neural Network DBM Deep Boltzmann Machine
GBN Generative Boltzmann Network conv-RBM convolutional Restricted Boltzmann Machine
c¢cDBN convolutional Deep Belief Network
RNN Recurrent Neural Network ) ) )
GBRBM  Gaussian-Bernoulli Restricted Boltzmann
LSTM Long-Short Term Memory Machine
HN Hopfield Network covRBM  covariance Restricted Boltzmann Machine
bHN binary Hopfield Network mcRBM mean and covariance Restricted Boltzmann
cHN continuous Hopfield Network Machine
. ssRBM spike and slab Restricted Boltzmann Machine
BM Boltzmann Machine ) ) )
) ) CssCDBM Contrastive spike and slab Convolutional Deep
RBM Restricted Boltzmann Machine Boltzmann Machine
FRBM Fuzzy Restricted Boltzmann Machine mPoT Mean Product of Student z-distributions
WRBM Wasserstein Restricted Boltzmann Machine PoT Product of Student ¢-distributions
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Boltzmann Networks for dynamic systems

DRBM Discriminative Restricted Boltzmann Machine VAR vector autoregressive
HDRBM  Hybrid Discriminative Restricted Boltzmann KF Kalman Filter
Machine HMM  Hidden Markov Model
CRBM conditional Restricted Boltzmann Machine MIMO Multiple Input Multiple Output
TRBM Temporal Restricted Boltzmann Machine ELM Extrem Learning Machine
RTRBM  Recurrent Temporal Restricted Boltzmann MCD Minimization of the Contrastive Divergence
Machine ) )
CD Contrastive Divergence

SRTRBM  Structured Recurrent Temporal Restricted

Boltzmann Machines KL Kullback-Leibler
RNN-RBM Recurrent Neural Network - Restricted Boltzmann SDE Stochastic Differential Equation
Machine MCEM Monte Carlo Expectation Maximization
GRBM Gated Restricted Boltzmann Machine MCMC Markov Chain Monte Carlo
DP Diffusion Processes EM Expectation Maximization
DN Diffusion Network ReLLU Rectified Linear Unit
DN-RBM  continuous Restricted Boltzmann Machine AIC Akaike Information Criterion

Introduction

Recent years have witnessed the emergence of large amount of data and technology progresses on computational

processinglargeldatainimostidomains] These models are based on the presence of latent variables to extract hidden

informations. Neural Network can be grouped in two wide families: (i) discriminative neural networks that model
the conditional probability Pr(y|x) between the output vector y and the input x. The feedforward neural network (or
multilayer perceptron) [21] where information is propagated from x to an y (ii) generative models that estimate the
joint probability distribution Pr(x, y). This article is dedicated to the second family of models.

Neurons in a generative neural network are updated iteratively in function of the previous state of the network.
Works of Hopfield in the 80’s on deterministic neural network [34, 35, 36] leads to the emergence of the very popular
Boltzmann Machine proposed by Hinton, which is the stochastic extension of the binary Hopfield Network. The keys
of the success of Boltzmann Machines lie in the flexibility of the model and its adaptability to solve problems such
as modelling [93], classification [107, 48] or prediction [46, 2]. The Boltzmann Machine has been used in many
applications like image processing [80], sound processing [65], bag of word [31] or with several inputs of different
natures such as in [90, 18].

liferatireSEeeR] (108, 96))
Second and third sections present the main features of

the Boltzmann machines, the learning procedures and its extensions. Finally, the Diffusion network is detailed in the
last section as well as the continuous Restricted Boltzmann machine based on Diffusion network. Fig.1 summarizes
the hierarchy of models presented in the paper. Each cell is a model presented in this review. Directed links between
models indicate restricted / extension of the new model from the previous one. This graph starts from the top with
Hopfield Networks and propagate to the down with more recent models. The RBM is very popular in the neural network
community. This popularity is visible in this graph with the many extensions of RBM. The Diffusion Network (DN)
did not get the same attention as the RBM but the DN can be seen as a generalization of Boltzmann Machine (BM)
and Hopfield networks in different aspects. For the signification of acronyms, refer to the glossary.
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Figure 2: Graphs with 4 neurons. White neurons are visible neurons and gray neurons are hidden neurons. In 2a and 2b,
double direction arrow means W, = W, else W,; # W,,. In 2c, the coefficient W, refers to the weight of the symmetric
link between the i—th visible unit v; and the j—th hidden unit A;.

1. Background

1.1. Generative Boltzmann Network

An Artificial Neural Networks (ANN) is a bioinspired graphical model where the processing units (neurons) are
organized and connected each other. We have now a rather good understanding of the functioning of simple neural
networks which consist of two sort of objects: the processing units which generalizes the original McCulloch-Pitts
model by transforming the output of a unit as a continuous value, and the weighted connections between these units.
The formers make simple computation (summation, thresholding), the latters feed the further units with input values
for the computations (see for a review Hertz ef al. [24]). For a given learning task, building a network requires to
choose the network topology, i.e. the number of inputs, number of layers, connectivity, activation function, etc.

The main strength of ANN is the presence of latent (or hidden) units which syntheses data by extracting useful
features for a given task. The latent variables have become a popular concept in machine learning in models such as
Kalman Filter (KF) [41] or the Hidden Markov Model (HMM) [79, 15], but contrary to ANN latent variables in a KF
and a HMM have a meaning that can be interpreted.

In a GBN, the state of each neurons is updated according to the antecedent state of the network until the global
state of the network becomes stable. This state is called the equilibrium state. A full graph of a GBN is given in Fig.2a.
The coefficient W; refers to the weight of the link from the neuron i to the neuron j. In a network with n neurons, we

call W = (VV, y ) I<i.j<n the transfer matrix between all the neurons of the network and & = (.fi){ <i<n the bias vector
(not represented in Fig.2). We also note s(t) = (s;(?), ..., s,(t))T the state vector at time ¢.
1.2. The father BM: Hopfield Network

In 1982 and 1984, J.J. Hopfield presents two deterministic GBNs: the bHN [34] and the continuous Hopfield
Network (cHN) [35]. His work on deterministic networks later inspired many research works on probabilistic networks.
Both bHN and ¢cHN have symmetric connection between neurons (W;; = W);) and no feedback link (W}; = 0). Fig.2b
gives the typic graph of a Hopfield Network (HN) and Fig.3 gives the two neuron structures of bHN and cHN. HNs
has been used in different fields of study like image processing for noise reduction in [75] or more recently in [52] for
super-resolution images or in economics in [76].

The bHN employs binary neurons (s; = +1or — 1). The weighted inputs and the bias pass into the activation
function called the sign function to provide a binary output.

sjzsgn<§j+ZVV,-js,->. 1)
i=1
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Figure 3: HNs' neuron structure. ¢(.) is the activation function: the sign function in 3a and the sigmoid function in 3b.
In 3b R; and C; are, respectively, the resistor and capacitor of neuron j. There is no reason that R; and C; are the same
for all neurons. See sect.4 for more details.

The energy function of the bHN is:

n
Epyn(s) =— Z Wijsis; = 2 &isi- @
1<i,j<n i=1
i#

The main limitation of the binary behavior of these neurons is the capacity of data representation. For instance
with n neurons, a bHN can encode 2" different states. Continuous neurons increase significantly this capacity of
representation with only few neurons. In addition, data are barely binary. The benefit of transitioning from a binary
network to a continuous network is then double.

In 1984, Hopfield proposed as a generalization of bHN the cHN to get closer to the biological neuron behavior. He
then proposed a new architecture for working with continuous neurons varying continuously over time. The structure
of the neuron j is given in Fig.3b. The activation function becomes a sigmoid function. The state space of the network
becomes a n—dimensional hypercube bounded with the variation range of the activation function. The weighted input
is converted into a current and passes an electronic RC filter. x; is the input voltage of ¢(.). The variation of x;(7) (see
Fig.3b) is given by the differential equation:

dx;(?) x;(1) n
< (;t = _;(Tj +&+ 1=21 W, (x;(1)). 3

The state of the cHN tends to an equilibrium state characterized by the energy function:

n n Si
Ecun®== Y, Wysis,— Nési+ Y = / ¢~ (s)ds'. @
1<i,j<n i=1 i=1
i#j
The energy function in Eq.4 introduced by Hopfield is a Lyapunov function. E, g is the sum of E,p 5 in Eq.2 and
an integral term.

The deterministic nature of artificial neurons limits their functioning. First, the evolution of the state s tends to
decrease the energy, the equilibrium state corresponding to the lowest possible energy reached. As many local minimal
are present in the energy landscape, the state of the network converges to a local minimal. The second limitation is the
risk of overfitting during the training step.

In the next section, we introduce stochastic Generative Neural Network (GNN)s and see how those models over-
come the previous limitations.

2. Boltzmann Machines

2.1. Description
Introduced by Fahlman and Hinton in 1983 [17], the BM is the stochastic extension of the bHN. It first questions
the use of parallel architecture for machine learning. Each neuron can be seen as a Bernoulli random variable. Like in

Rémi Souriau et al.: Preprint submitted to Elsevier Page 5 of 25



Boltzmann Networks for dynamic systems

le

$j
sz X

,\Z_:/ o o (x;) » sample —»@
an

Figure 4: Structure of the neuron j of a BM. ¢(x;) = Pr(s; = 1]s)

the bHN, the BM is composed of visible and hidden units. The neuron structure of a BM is depicted in Fig.4 where s;
is the state of the neuron j ("0’ or ’1’).

For each neuron, the result of the linear combination of the inputs pass into an activation function ¢(.) such as the
sigmoid function:

1

1 +exp(—x) ©)

P(x) =
As this function is bounded between 0 and 1, the result of ¢(x;) can be interpreted as the probability Pr(s; = 1]s), i.e.
the probability that s; = 1 given the state of the network. The "sample” step in Fig.4 consists in sampling an uniform
random variable u; between 0 and 1 and the state s; depending on the inequality:

S; 6
J 0 otherwise. ©)

:{IEW<H@=HQ
The sampling step in Eq.6 is at the origin of the stochastic behavior of the network. At a given time, even if the
expected state of a neuron is fixed to 0’ or ’1’ by the state of the network itself, there is always a possibility that the
state of the neuron will change. The probability of converging to a local minimal is then reduced.
The BM is an energy based model. The energy of a BM is similar to the energy function of the bHN (see Eq.2):

Epp(s) = E g n(s). The associated joint probability Pg,,(s) is defined as:

1
Ppa(s) = Z exp (—EBM(s)) , @)
where Z is a marginalization constant so that Pp,, is a probability distribution function, i.e.

7 = z exp(—EBM(s)) )

se[0,1]"
Z is also called the partition function.

2.2. Restricted Boltzmann Machine

Fig.2b represents the architecture of a BM, each neurons being updated independently. For a large network, update
neurons sequentially can be time consuming. Smolensky proposed in 1986 the Harmonium model [88], known, today,
as the RBM. The graph structure of the RBM in Fig.2c is a bi-part BM with two layers: the visible layer v € [0, 1]" and
the hidden layer h € [0, 1]™. Neurons from the same layer are not connected each other. For a given state of one layer,
neurons from the second layer are conditionally independent each other and can be update at once. Removing links
between neurons reduces the complexity of the model. To balance this restriction on the network structure, neurons or
layers can be added (see section 3.1). We note W € R"™™ the transfer matrix between the two layers and &” and &"

Rémi Souriau et al.: Preprint submitted to Elsevier Page 6 of 25
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the bias vectors of, respectively, the visible layer and the hidden layer. The energy expression of a RBM and of a BM
are the same but thanks to the absence of intra-layer links, the energy function of the BM can be simplified into Eq.9:

Egpn@,h) = —0" Wh—0v"&" — n" ", ©)

Like for BM, we define the joint probability distribution of the RBM and the marginalized probability distribution over
visible units as:

Prgm(, h) = %GXP (—Erpm@. b)), (10)

where Z is the normalization constant Z = ) )" exp (—E rem @, h)). Hidden units are not accessible. Compute the
v h

energy function in Eq.9 requires to sample the hidden units. The free energy Frp,,(v) is an energy function where
hidden state are marginalized [58]. The free energy is defined as:

1 1
Prpu (@) = Z Zhexp (-Erpm(v. b)) = — &P (—Frem®)) (11)
where
Fron(®) = =07 = ' log (1+exp@’ W)+ ). (12)
=

and with W (:, j) is the jth column vector of W. Training a RBM can be performed with the energy function in Eq.9
or the free energy function in Eq.12. In the first case, hidden neurons are involved into the learning algorithm. In
the second case, hidden neurons are marginalized. Different learning procedures of BMs has been explored in the
literature.

2.3. Learning procedures for Boltzmann Machines

BMs are energy models. A training set D = {v¥}, <k<n composed of N observations is used to find the best
set of parameters P = {W, &}, & regrouping visible and hidden bias vectors. We also note P’(v) the probability
distribution over the training set, P*°(v) the probability distribution corresponding to the equilibrium state and P4(v)
the probability distribution after g steps of reconstruction (a reconstruction step corresponding to a two-way sampling
between the visible and the hidden layers: h sampled from v and v sampled from h). Finally, we denote s = (v, h)T
the set of all units of the model.

Different methods to train BMs have been proposed in the literature. In this paper, minimization of the Contrastive
Divergence (CD) presented in [25, 3] is considered as well as the limits of this approach and of other methods.

2.3.1. Training Boltzmann Machines using the Contrastive Divergence
An intuitive idea to train the BM consists to maximize the joint log-likelihood:

N

LMEPID) = ) log Prpp(v*). (13)
k=1

Working directly on Eq.13 is difficult due to the presence of the constant Z. The minimization of the Kullback-
Leibler (KL) divergence G [44] between PO(v) and P®(v) is equivalent to the maximization of the log-likelihood and
bypass the need to calculate Z. The derivation of G with respect to the parameters leads to the following update rule
for each the parameters A; [32]:

9G _ <0EBM(S)> 3 <0EBM(S)> ’ (14)
i YRR /.

where (.), is the expectation over the training set at the initial time and (.), is the expectation value at the equi-
librium state. Updating the parameters requires to compute at each iteration the equilibrium distribution which means
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a large number of updates. To reduce the training cost, the minimization of the KL-divergence is replaced by the
Minimization of the Contrastive Divergence (MCD) [25] which consists to minimize the contrast D between two
KL-divergences:

D = KL(P°(v), P®(v)) — KL(P(v), P®(v)). (15)

The only case where D is zero is the case when P%(v) = Pi(v), i.e. when after q steps of reconstruction the
probability distribution does not change, then the RBM is already stable and P(v) = P®(v). Update rules become:

oD _ [0Egy(s)\  [0Epy(s) (16)
04 YR ok [,

with (.),, the expectation after g reconstruction steps. In the case of RBMs with binary values, note that (s;) o refers
to the probability of s; = 1 after g iterations (even, if, in practice, g = 1). Markov Chain Monte Carlo (MCMC) method
— The update equations for the transfer matrix coefficient W;
and the bias &; at each iteration can be deduced from Eq.16:

A& ~ (si)o — (si)y -

To conclude, minimizing the KL-divergence can be replaced by the MCD rule to speed up the training. Note that
if we use the energy function with explicit values of neurons like in Eq.17, the learning algorithm requires to sample
the hidden units to update the parameters of the model.

Carreira-Perpinan [5], MacKay [57], and Yuille [106] studied properties of the CD and demonstrated MCD rule
converges to the optimal solution with a small bias.

{A% ~ (5500 = (55,0, » a7

2.3.2. Training based on free energy

To avoid the approximation of the CD by sampling hidden units, different training methods using the free energy
(Eq.12) have been proposed to get a better approximation than the log-likelihood in Eq.13. The main advantage is the
free energy does not require to be minimized with respect to the hidden variables. Marlin ef al. in [58] review various
scores based on free energy to train BMs.

Younes [105] and Tieleman [95] proposed to simulate the Markov chain with only one step to estimate the prob-
ability distribution Pg,,(s) and to update the parameters with a small learning rate to maximize £M(P|D) given
Eq.13. The Constrastive Divergence [25] can also be used to learn the parameters of a BM by replacing the energy
function in Eq.16 with the free energy function. The Ratio Matching proposed by Hyvérinen [40] consists to minimize
the Euclidean distance between the conditional probability of each component of Uff =1 and Uf.‘ = 0 given v¥\!: the
visible layer without the i—th component.

N n
M@y =Y 3 Y PRk (POWF = elvhV) - Po@f = elvk\i))z (18)
k=1 i=1 e€[0.1]
The Generalized Score Matching proposed by Lyu in [56] and improved by Marlin in [58] consists in maximizing

between the inverse of the conditional probabilities of a visible unit Uf.‘ with the other v¥\! known over the training set.
The function to maximize is given by:

N n 2
£9SMp|D) = Pk I - 1 ) 19
1) ,; i @ )<P0(Uff|vk\i)) P°°(Uff|vk\i))) (19)

Marlin [58] concludes in his paper on the inductive principles for RBM that the stochastic maximum likelihood
and the CD are well suited in many situations (applications, computation time, ...).
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3. Extensions of Boltzmann Machines

One of the major strength of the RBM lies in its flexible architecture which makes it suitable for many different
applications. There exists a lot of versions of the RBM, for instance some papers propose to modify the original BM
with a Rectified Linear Unit (ReLL.U) activation function [69] or to fuzzified the parameters of the model as in the Fuzzy
Restricted Boltzmann Machine (FRBM) [6]. In this section we focus on some well-known extensions of the RBM in
the neural network community.

3.1. Multi-layers Boltzmann Machines

In practice, RBM are preferred to fully connected BM to model complex systems because of RBM update rule.
However, the absence of inter-layer links in the RBM reduces the capacity of the model to capture complex features.
A simple solution to overcome this limit is to add additional hidden layers to capture high-order information. Two
RBMs with multiple hidden layers have been proposed in the literature: the DBN and the DBM.

3.1.1. Deep Belief Network

In Multilayer Perceptron (MLP)s, the information is propagated from the input layer to the output layer and the
error of predicted output is back-propagated [23] to correct parameters of the network by minimizing the cross-entropy
error. Back-propagation algorithm proposed by Sejnowski and Lecun [49] has however some well-known limitations:
the training requires labeled data, the learning can be very slow and the network may converge into a local minima
instead of the desired global minimum. The DBN introduced in 2006 by Hinton [29, 26] has been proposed to pretrain
deep neural network. The DBN can be seen as stacked RBMs (see Fig.5a), each RBMs being trained independently.
We note h” the i—th hidden layer. The first step consists in training of the RBM between the visible and the first
hidden layer A1, The observations from the training set are sampled into the first hidden layer and will constitute a
new training set for the next RBM. In Fig.5a for instance, once the RBM between (v,hV) is trained, the second RBM
(hD,h®) is trained but AV is updated by ignoring v and is computed only with respect to h®. A large number of
applications used for DBN or its extension e.g. for face recognition [38], for audio classification task [51], for machine
health monitoring systems[109, 42], for schizophrenia prediction [78], for detecting faults in axial coupling systems
[100] or for time series forecasting [45].

3.1.2. Deep Boltzmann Machines
Unlike DBN, the DBM [83] is an undirected graph. In the Fig.5b, v and h® are updated in function of hV. v and
h® allow to update AV according to Eq.20.

Pr(v = 11hD) = ¢ (WORD 4 gv)
T

Pr(h® = 1|A0) = ¢ (Wa) A 4 £h®) o0

Pr(h® = 1|v, h®) = ¢ (W(UTU +WOR® 4 ;;h(l)> '

The structure of the DBM in Fig.5b can be seen as a RBM whose visible and second hidden layers are concatenated
into one layer. The visible and hidden layers h) with i an even number are updated at once and all hidden layer A
with j an odd number are updated at once. The feedback information from deepest layers when updating lower layers
allow the DBM to be more robust than the DBN [85]. For a given visible layer, the mean field inference allows to
update hidden layers [84, sect. 4.2]. This method consists in estimating the probability of activation of each hidden
neuron given the visible layer only. In the case of two hidden layers A and A®, the mean field inference allows us
to compute the probability of A given the visible layer and to update h according to v and Pr(h® |v) (see Fig.6a).
The DBM training algorithm presented in [21, Chap. 20] for a 3-layer model requires to apply mean field inference
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(a) DBN (b) DBM

Figure 5: Graphs of Deep Belief Network and Deep Boltzmann Machines. In both figures, all links between neurons are
represented with one arrow for the visibility. In Fig.5a, links between the two last layers are undirected and structures
between other layers are directed graph.
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(a) Mean field inference. (b) Greedy layerwise pretraining.

Figure 6: Methods to train DBM. In Fig.6a, each iteration consists in updating A with v and h® from the previous
iteration. h® is then updated. For the first iteration, h® value is 0 but the transfer matrix W, is double. The number
of iterations has to be sufficiently large to stabilize the estimation probability g(h®|v). Note that g(h®|v) is not binary
but represents the expectation of the state h®. In Fig.6b, each RBM is trained independently. For the first RBM, A
is updated with twice the weight matrix and the bias. For the other RBM each layer has been updated with twice the
weight matrix except in the last RBM where the last layer is updated normally. Once a RBM is trained, the training set
in convert into the hidden layer with twice the weigth matrix for the next RBM.

for each iteration due to the change of weight matrices. A greedy layerwise pretraining of DBM has been proposed
by Salakhudinov and Larochelle in [85, 84] to simplify the training of the DBM. Like DBN, each RBM is trained
independently but weight values are doubled to compute layers which is connected with two layers. Fig.6b illustrate
one step of training.
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Figure 7: Max-pooling convolutional RBM. The figure on the left is the original model designed for image processing.
The figure on the right is a 1-D convolutional RBM adapted for temporal signal processing.

3.2. Convolutional Boltzmann Machine

Deep RBM architectures ignore the geometric data structure and connect all visible units to each hidden unit.
RBMs can become quickly huge and hard to train efficiently in some application like image processing. Lee et al.
[50] proposed the convolutional Restricted Boltzmann Machine (conv-RBM) using as depicted in Fig.7 a set of K
convolutional filters for sampling K hidden representations of the input image v (here, we use the operator "=" for the
convolution operation):

Pf(hl(.f) =llv)y=¢ <§Z + (W(k)T * U)i,j> , Q1)
K

Pr(v; = 1{h} geex) = <5v + YW s h(k))i,j> : (22)
k=1

In order to stack conv-RBM to form a convolutional DBN, the dimensions of the hidden representation are reduced
using a probabilistic max-pooling operator. The probabilistic max-pooling consists in converting blocks B, in the
hidden representation /%) into a single pixel pflk). The pixel pf,k) is equal to one if one hidden units in the block B, is
equal to one. A constraint on hidden units in B,, is enforced: at most one hidden unit can be equal to one in B,. The
structure of a conv-RBM is given in Fig.7 and the energy function of the max-pooling conv-RBM is:

K
k T k
Eeoran == Y D (MO o vl ) - Y vy (23)
1<i,j<Ny k=1 1<i,j<Ny
subj. to Y A <1, Vk,a
(i,j)EB,

In practice, deep architectures are preferred to capture more complex features. conv-RBMs are stacked to form
a convolutional Deep Belief Network (cDBN). conv-RBM has been introduced to detect pedestrian [73, 99], but
this model has also been used to model dynamic data like in [82] for environmental sound classification and in [87]
for rolling bearing fault analysis. A sound signal being seen as a 1D image (see Fig 7), the model learns dynamic
dependencies between sampled values.

3.3. Boltzmann Machine with real value visible units
Neurons in BMs are binary. However, variables of real systems generally have a continuous or discrete behaviour.
This is especially the case in image processing [94] where the pixels of an image vary between O and 256 in 8 bits
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coding. To keep the continuous behaviour of the visible units, several extensions of the BM have been proposed to
tolerate continuous visible units.

3.3.1. Gaussian-Bernoulli Restricted Boltzmann Machines

In 2006, Hinton proposed the GBRBM [30] to reduce the dimensionality of the RBM using continuous visible units.
Hidden units keep on the binary behaviour and visible units are random variables following a conditioned Gaussian
distribution (hence the name) with a variance 61'21' (see Fig.8a), i.e.:

Pr(v;|lh) ~ N (W (i, Dh + &', 62) . (24)

The energy is now defined as:

O R ) LR .
Egprem (@, h) = Z 3 Z — Wi = Z h;&;. (25)
i=1 Oii i=1 j=1 9jj Jj=1
An improved training procedure of the GBRBM is proposed in [9]. The GBRBM is now systematically combined with
new extensions of the RBM to handle continuous data. For example, [10] proposed a DBM with Gaussian visible units
for facial reconstruction. The main limitation of the GBRBM is that the model does not learn the covariance between
visible units, and so GBRBM gives unsatisfactory results for modeling natural images as in [28] where neighboring
pixels may be strongly correlated. A recent paper reconsiders the GBRBM as a mixture of Gaussian model for modeling
natural image statistics [59].

3.3.2. Mean and covariance Restricted Boltzmann Machines

The mean and covariance Restricted Boltzmann Machine (mcRBM) proposed by Hinton and Ranzato [28] has two
groups of hidden units: mean units and covariance units. Mean units capture information about the mean intensity
of each visible neurons and covariance units model dependencies between visible units. The BM between visible
and mean units forms the GBRBM and the BM with the visible and covariance units forms the covariance Restricted
Boltzmann Machine (covRBM). The energy function of a mcRBM is defined as the sum of the energy of a GBRBM
between the visible units v and the mean units u (see Eq.25) and the energy of a covRBM between visible units v and
covariance units c:

E,.remW: . ¢) = Eggrpp @, ) + E g (V. €). (26)

The covariance term aims to capture correlations between visible neurons. An intuitive idea is to define a tensor W
where each coefficient W}, associates two visible neurons, v; and v; and one hidden neurons 4. In the case of natural
images whose dimensions are those of the visible layer, the number of parameters shall increase in an exponential way
with the number of hidden neurons.

To avoid a large number of parameters, the tensor is replaced by two factor matrices R and P. The first matrix R
computes a multiple projection of visible neurons. The product v” R will give a row vector where each component
is a projection of v filtered by a column of R. Each coefficients of the row vector are squared to avoid divergence of
parameters during the learning [13]. The second factor matrix P gives the projection to sample covariance hidden
units. The energy of the covariance hidden units is given by:

EcovRBM(v’ C) = _chc - (vTR)2 Pc. (27)
£ is the bias vector of the covariance layer. The structure of a mcRBM is given in Fig. §b. In practice, the Hybrid
Monte Carlo (HMC) sampling algorithm |7, sect.3] is used to teach mcRBM to prevent sampling of visible units
Whichirequired o inverse alsquare mattixioridimensionidim@)! Like the conv-RBM, mcRBM has been proposed

for image processing but it has also been used to model dynamic data. In [13], Dahl used mcRBM for the speech

recognition task. The difference between the conv-REM and the mcRBM lies in the modelling approach of those
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Figure 8: (8a) Structure of visible units in a GBRBM. The state is sampled from the Gaussian distribution with mean
x; and variance o72. (8b) the visible layer v and the mean hidden layer u form a GBRBM. R is a matrix whose columns
filter v. Each column is associated to a hidden neurons of ¢. P is a transfer matrix between ¢ and filtered visible neurons
(T R)* (P is a diagonal matrix with non-positive entries).

3.3.3. Mean Product of Student t-distributions

The Mean Product of Student 7-distributions (mPoT) proposed in [63] extends the Product of Student ¢-distributions
(PoT) [101] in the same way the mcRBM extends the covRBM. Like the mcRBM, the mPoT has one visible layer and
two hidden layers: the binary latent vector u modelling the means of visible units and the continuous hidden units ¢
following a gamma distribution to model the dependencies between the visible units. The BM between v and u is a
GBRBM and the BM between v and c is a PoT. The energy of the mPoT is given by the following sum:

Eypor (Vs 1, €) = Egprpy (U, #) + Epyr (v, €) (28)
And the energy of the PoT model is:

dimce
Ep,r(v,c) = z [ci (1 + %(RiTU)2> + (1 —y)logg; (29)

where R; is a filter vector associated to the hidden unit c;.

3.3.4. Spike and slab Restricted Boltzmann Machines
Courville proposed in 2011 the spike and slab Restricted Boltzmann Machine (ssRBM) [11], an original approach
to model correlations between the visible neurons. The ssRBM is a bipartite graph with visible neurons v, each one
following a Gaussian distribution, and hidden units. Each hidden unit is composed of a binary variable called spike
and a continuous vector called slab. Denote the spike vector h € [0, 1]", whose component ; is associated to a slab
vector of dimension k s € IR¥. The visible layer is sampled by means of each slab vector for which the associated
spike value is equal to one. The associated slab vector s gives the intensity of the i—th component. The energy
function is given by:
m
Egrpm @, (hi, 8P 1<) = %VTAV -2 (VTW(i)S(i)hi + %S(i)T“(i)s(i) + fihhi> : (30)
i=1

W@ is the i—th weight matrix (n X k) between v and s, (¥ and A are both diagonal matrix which prevent s
and v from having large values. Courville et al. showed that ssRBM provides better results than mcRBM in image
classification tasks [11]. However, according to [21, chap. 20], the risk with the ssRBM is to obtain a non-positive
definite covariance matrix which can be avoided with heuristic rules. Courville also proposed some extensions to
the ssRBM [12] to provide results in classification task. Goodfellow [22] added an additional term to the ssRBM
to make the partition function Z tractable at the cost of losing the generative property. In [104], the ssRBM has
been mixed with the DBM and the conv-RBM to form a Contrastive spike and slab Convolutional Deep Boltzmann
Machine (CssCDBM) for image classification.
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Figure 9: Architectures of RBMs for sequential dynamic systems. One direction arrows materialize the dependencies. The
probability of interest is the conditional probability of the new state given past states. In 9c, the prediction of h[k] is a
RNN.

3.4. Boltzmann Machine for dynamic systems

Modelling causal relationships is essential for time series forecasting. Prediction models are usually discriminative.
Different approaches using modified MLP have been proposed to model dynamic data like the Elman Networks [77],
autoencoders [46], Recurrent Neural Network (RNN) [61] or Long-Short Term Memory (LSTM) [33].

In BMs, the state of the network is updated from the visible layer of the training set which in this particular case
is D = {v[k]} <x<n until the equilibrium state is reached. All v[k] are treated independently regardless the previous
state. Models previously presented in this paper can be used to handle dynamic data by using a short-time window
to the visible units as illustrated in [45, 89] which make use of extensions of BMs but alternative structures have also
been proposed mixing generative and discriminative properties of the RBM to take into account past observations,
e.g. the Discriminative Restricted Boltzmann Machine (DRBM) and the Hybrid Discriminative Restricted Boltzmann
Machine (HDRBM) used for classification tasks [48, 47].

3.4.1. Conditional Restricted Boltzmann Machine

The conditional Restricted Boltzmann Machine (CRBM) [64] is the extension of the vector autoregressive (VAR)
model [55] using RBM structure (see Fig.9a). A linear combination of the past observations are added to the bias
values of the visible and the hidden layers (see Eq.31). The energy of a CRBM and a classical RBM are similar:

14
EV[k] = &°[0] + Y BVv[k — i],

i?l 31)
EMK] = ER[O] + Y CDolk — i].

i=1

£Y[0] and &"[0] are fixed biases of the visible and hidden units. BY”) and C® are transfer matrices between the
observation v[k — i] and, respectively, the visible and the hidden layers. p is of past observation order. Unlike VAR
model, there is no proposed criterion for choosing p. The CRBM can also be used in other applications such as
modelling the dependencies of a Multiple Input Multiple Output (MIMO) system as in [102], intra/inter-gender voice
conversion [103] or missing label classification [53].

3.4.2. Temporal Restricted Boltzmann Machines
A similar structure of CRBM has been proposed in [91] named Temporal Restricted Boltzmann Machine (TRBM)
which models the current state of the network conditionally on past hidden units. This structure reminds the HMM.
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Eq.32 of the TRBM is slightly modified with respect to Eq.31 to describe CRBM:

p
EMK] = EMO0T+ )] A'hlk - i]. (32)
i=1

Past hidden units are required to update present hidden units. Because hidden units are not available, training
a TRBM using CD algorithm requires to sample hidden units from a sequence of observations. A large number of
applications has been proposed using TRBM and its extensions like in [16] with an Input-Output TRBM used for
2D facial expression transfer. An widely used extension of TRBM is the Recurrent Temporal Restricted Boltzmann
Machine (RTRBM) [92] (see Fig.9b) where visible and hidden units at time k (v[k], h[k]) depends conditionally on
the previous hidden state h[k — 1]. The hidden units in a TRBM memorize past observations. In the literature, we
can find a large number of TRBM-based architectures for different applications. For instance Nakashika et al. used
the RTRBM for voice conversion in [71, 70]. Mittelman introduced the Structured Recurrent Temporal Restricted
Boltzmann Machines (SRTRBM) and the Spike-and-slab SRTRBM to learn time series signals [62] for different ex-
amples (motion capture video or weather modeling). Introduced by Boulanger-Lewandowski, the Recurrent Neural
Network - Restricted Boltzmann Machine (RNN-RBM) [4] (see Fig.9c) is a combination of a RTRBM and a RNN.
The expectation of hidden units (or mean field) h[k] is propagated through the RNN structure:

hlk] = ¢ (W“)iz[k 1+ WOpk] + .fi'> , (33)
and the biases in the RTRBM are defined as:

£[k] = &£”[0] + Ah[k], (34)
&"[k] = &"[0] + BhlK].
The RNN-RBM is a popular extension of the TRBM. It provides better results than RTRBM for human motion
modelling or polyphonic music modelling [4]. A similar approach replacing the RNN by a LSTM has been proposed
in [98] to model long term dependencies in music generation.

3.4.3. Gated Restricted Boltzmann Machine

Initially proposed for video compression and denoising using the temporal structure by Memisevic [60], the Gated
Restricted Boltzmann Machine (GRBM) is a discriminative extension of the RBM (see Fig.9d for a graphical repre-
sentation). It is composed of two visible layers and a hidden layer: the input layer x, the output layer y and the hidden

layer h. The three layers are connected with a 3D tensor W of dimensions (n, X n,, X nj,). The energy function is given
by:

n My np np 1y
EGrem (¥, h;x) = — Z Z Z Wijixiyihy — Z Ehy — ijyyj-- (35)
i=1 j=1 k=1 k=1 j=1

Here, the function to maximize during the training stage is the conditional probability Pr(y|x):

exp(—=Egrpm (¥ h; X)), (36)

P = P ,h =
r(y|x) Zh‘, r(y, h|x) Zh‘,z(x)

with Z(x) the marginalized function. Inference test allows to estimate h and y as functions of x. The tensor
W in Eq.35 captures the correlations between the input and the output layers. Setting y = x allow the GRBM to
capture dependencies between the input components of x [80] as for an autoencoder. For large inputs, the number
of parameters may quickly become too large to use this model for real time applications. Models using factors like
mcRBM (see Fig.8b) are preferred to GRBM to model the correlations between the visible neurons. Thereby the
GRBM can be used to estimate observation X[k + 1] as function of past X[k] [46]. Fig.9d gives the graph representation
of the GRBM.

These RBM-based approaches for modelling dynamic systems are used with sequential data. The next section
introduces the Diffusion Network for the modelling of dynamic continuous systems.
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Figure 10: Electronic structure of the neuron j from a DN. An important difference with the Boltzmann Machine and its
DN extension is a DN, the signal to model x;(?) is the input of the activation function and not the output 5;().

4. Diffusion Network

4.1. Description

Between 1982 and 1984, Hopfield introduced two learning models based on ANN to mimic the behaviour of
biological neurons. First, the bHN [34], is a deterministic neural network with binary units (neurons). This model
leads to the popular BM proposed by Hinton [25] with many extension proposed in previous the section. Second, the
cHN [35] which is the continuous version of the bHN. Movellan proposed as well a stochastic extension of the cHN to
model Diffusion Processes (DP): the DN [67]. The DP is a continuous time Markov process. The aim of the DP is to
model the dynamic dependencies between real valued signals. Let X (¢) be the n—dimensional signal vector at time ¢.
Learning a DP consists to find the best Stochastic Differential Equation (SDE) [54] describing the evolution of X (¢#):

dX(t) = p(X(®)dt + cdB(). (37)

Eq.37 has two parts: first, the drift function p(X (¢)) which is the deterministic part of the model and the diffusion term
odB(r) which corresponds to the stochastic part of the model. d B(¢) is a simple Brownian motion vector. We can also
write the SDE for each neuron j:

dx;(1) = p;(X(1))dt + odB(1), (38)

The DN is a fully connected neural network (see Fig.2), the structure of each neuron being represented in Fig.10. The
drift component is computed from the inputs. An additive Gaussian noise models the stochastic part of the model. The
drift of the neuron j is written:

,Uj(X(t)) = K; (‘ijj(t) + fj + Z I/I/ijd)i(xi(t))> . (39)
i=1

The drift can also be represented by an electronic scheme as given in Fig.10. The sum of weighted neuron state inputs
is converted into a current. The filter R;C; converts the input into a voltage x;(#) which drives the dynamic of the
system. This structure differs from the cHN’s structure of neuron with the presence of the noise generator. The noise
helps to avoid bad solutions. A major difference between the DN and the cHN is the DN focuses on the modelling of

the dynamics of X(t) = (x;(1) .

1<i<n
by converging to an equilibrium (stable) vector: (S) = ((s,)oo)) |<i<n (the vector output of the activation function).
The activation function of a DN is a sigmoid function: T
1

s;=¢;(x;)) =0, + 0y —9L)W (40)

(the vector input of the activation function) whereas the cHN models static data

where 6 and 6 are respectively the lower and the upper bounds of the function. g; is a slope parameter of ¢;(.). The
influences of the parameter a; are in the behavior of neurons and in the noise regularization. An illustration of the role
of a; is given in Fig.11.
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Figure 11: Influence of the activation parameters a,. Fig.11a displays the activation between -1 and 1 for three different
values of a. The more the parameter a; is big, the more the neuron will have a binary behaviour. The more g, tends to
zero, the more the neuron will have a linear behaviour. In Fig.11b, the two schemes describe how the noise influences the
state of the neuron. At a given time, x,;(¢) is a Gaussian random variable centered on x,(X(¢)) with a variance ¢? (see
Eq.38). In the left figure, a; has a low value, the slope of the function is almost horizontal. The dispersion of the noise is
"compressed" and the state of the neuron is almost deterministic. If g; is high like in the second schema, the slope of the
curve is more vertical and the dispersion of the state increases.

For implementation, we can write the sequential evolution of each neurons:
n
x;(t+ A —x;(1) =k, (—pjxj(t) +&+ Z I/Vijq')i(x,(t))) At +oz;(1) VAL, (41)
i=1
where z;(7) is a standard Gaussian noise. The expression of the next sample is given by:

X;(t+ A1) = (1= K0, ADX(0) + K36 A1 + 55 Y Wiy (x,(0)AL + 02,0 VAL (42)
i=1

Parameters p; and k; weight input of the network and the previous state but x; controls the linear combination of the
neuron inputs.

4.2. Learning procedure

Training a DN consists in finding the SDE (see Eq.37) which gives the best description of the evolution of the data.
Movellan et al. have proposed a Monte Carlo Expectation Maximization (MCEM) approach to train the network [68]
which consists in computing the log likelihood of the signal in a time window [0, T']. The path (the signal in a window)
is seen as a random multivariate variable in the probabilistic universe Q: the set of functions from [0, T'] to R". Using
the Girsanov’s theorem, we can write the density of the path X in [0, T] as:

T T
ctin =ep| 5 [ uCXonxo - 35 [ ucxayar
0 0
B n T T
=exp| Y| / (X)) = 51 / uy (X (1) i (43)
/=1 0 0

where 1 = {(I/Vij)lg,/Sn’ (éi)ISiSn , (pi)ISiSn , (Ki)IS[Sn , (ai)15i5n} is the set of parameters. The integral

fOT u; (X (#))dx;(7) is an Itd stochastic integral [74]. For a given training set D = X, learning the DN consists in
finding A which maximizes the log-likelihood of the density function £(X; A). In the literature, Movellan et al. pro-
posed to maximize the log-likelihood using Expectation Maximization (EM), i.e., each parameter 4; is obtained by
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Figure 12: Structure of the neuron j of a DN-RBM. The expression of the activation function ¢;(x;) is given in Eq.40.

deriving the log-likelihood and solving Eq.44 for all 4;:

dlog L(X; 1)
04, B

1

0 (44)

Movellan et al. give the solutions of Eq.44 for the bias, the inverse resistor, the inverse capacitance and the transfer
matrix. The presence of hidden units allows to extract useful information but the hidden path (the evolution of hidden
units in time) is not available and must be sampled before solving Eq.44. Movellan proposed to apply the Monte Carlo’s
method to generate m paths of hidden units [81]. We note H L'the 1 —th sample of the hidden path. X L= w0 H!
is the I — th path regrouping visible and hidden units. Each path X! is different due to the presence of hidden units, a
weight z(/) is apply to each observation:

LMCEM 31Dy = Z 7D log £(X; 1) (45)
=1

where 7(/) is the weight of the path /:

I.
z(l) = mE(X—"D (46)

3 oxk;a)
k=1

4.3. Continuous Restricted Boltzmann Machine

Until now, there is no real-world application of DN in the literature. However this model inspired Chen and Murray
to propose the continuous Restricted Boltzmann Machine (DN-RBM) in [8], a RBM using the neuron structure of a
DN. Chen and Murray proposed the abbreviation CRBM for continuous RBM. We already mentioned different models
based on RBM in sect.3, using the prefix ’c’ (for conditional, convolutional, covariance [63] and now continuous). To
avoid any confusion with the previous models, we will call this model DN-RBM.

The DN-RBM can be seen as a particular case of the DN or the cHN. Here, we focus on the stochastic equilibrium
state of the network. For all neurons, capacities C; are the same and we have the following equality: p;k;At = 1. Links
are symmetric like in the cHN (i.e. Wj; = W);) but contrary to DN, the variable of interest are the neuron output states
s and not the inputs x of the activation function. In the discrete time case, the structure of neurons is given in Fig.12.
The main difference with the cHN is that the activation function is unique for each neuron like in DN. The neuron
activation function is the sigmoid function defined in Eq.40.

The energy function of the DN-RBM is very similar to the energy of the cHN [36]:

Epy-pam(s ={v,h) = —v"Wh—v'¢" —n'¢" + 3, al / 7 has', @7)
"a; Jo
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with ¢~1(.) the inverse of the activation for a coefficient slope a; = 1. As for BM, we can use the MCD rule to train
parameters of the DN-RBM. Eq.17 does not change for the DN-RBM and the update law for the coefficient a; reads :

1 {sido
Aa; o — / ¢ 1(s")ds’. (48)
a; J(siy

Like BMs, the DN-RBM is used to model the stochastic equilibrium of the network. This is not a dynamic model
since there is no time recurrence between the observations. However, the neuron structure can be used in a large number
of RBM extension (previously presented) and the continuous behavior for the hidden units allows us to capture more
information than with binary units. Like for binary RBMs, it is possible to associate extension of the RBM to the
DN-RBM in many applications such as wind speed forecasting in [37] or evaluation of sound quality in [39] where
author train a DBN using the structure of DN-RBM.

S. Discussion

The success of the Boltzmann machines lies in the flexibility of the RBM and its adaptability to handle many
problems in different fields of study. Boltzmann machines can be used for the prediction and detection of anomalies
in time series. They compete with other learning approaches such as RNN, LSTM, HMM. But unlike these, BM are

generative models that can learn probabilistic representations from data in an unsupervised way. A natural advantage
of generative models is that, if they are fed with incomplete data, they are anyway able to recover the missing data.

5.1. Limitation and improving paths

Unfortunately, Boltzmann machines still suffer from limitations. Many papers highlight the difficulty of the RBM to
model efficiently the probability distribution P,,,(x) and propose solutions to overcome those limitations. In addition,
the family of Boltzmann machines got recently a serious challenger: the family Generative Adversarial Network. The
good results of these models could diminish the interest in Boltzmann machines in particular in image processing (see
[110] for example). Three paths of development were identifying to improve the performance of BMs:

o The graph structure: how the neurons interact each other? Researchers have proposed different strutures to
take account priors of the data. For example mcRBM and GRBM encourage the network to capture correlations
between variables. Some researchers proposed to adapt an existing model like Lee et al. in [50] with the
conv-RBM. A mixture of models has also been studied, like the CssCDBM or the RNN-RBM.

e The neuron structure: how the information is processed inside a neuron? Some modifications of the neuron
structure have been proposed to better fit with the data behavior. For example the GBRBM and the DN-RBM
have been proposed to work with continuous data. This is the case of the DN for which data are continuously
time varying. Neuron structure has also been studied to improve the performance of the network (see for example
[69]).

e The cost function: how the model is trained? The motivation of this path of improvement is to reduce the
bias between the P;,,(x) and the learned probability P,,,;.;(x) by modifying the cost function. This question
has been addressed by changing the metrics between P, (x) and P, ., (x) as in [40, 56, 66] or by adding a
penalization term [19].

The more neurons, the more computational efforts are needed: massive networks should not be the only way to reduce
the modelization error. The choice of the dimension remains today an unsolved issue. There is no theorem nor criterion

(equivalent to the Akaike Information Criterion (AIC) for auto-regressive model OFExtrem Learning Machine (B
methods for feedforward neural networks [14]) to help decide what is the optimal number of hidden neurons and hidden

layers.
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5.2. Dynamic in generative models

Two approaches have been proposed to add dynamic prior in BMs. The first solution consists in learning correlation
between temporal observations. Some researcher propose to use BM developed for image analysis to model temporal
dependencies between observations (cf. [13] for example). This strategy is not recommended in the case of high
dimension data: a larger window means more parameters to learn and updating the network would be time consuming.
The second option consists in using RBM’s extension with a temporal memory based on the hidden neurons (cf.
TRBM, RTRBM or RNN-RBM for example).

The DN, a stochastic versions of cHN, generalizes the Markov model family among which HMM, Kalman-Bucy
filters, BM or RNN are special cases. E.g. a HMM can be seen as a DN with discrete-valued hidden states and
discrete-time dynamics; a Kalman filter is a DN driven by linear dynamics; a RNN is a zero-noise DN. Results on
realistic sequence modeling and sequence recognition tasks are encouraging [68] but more works are needed with
larger databases to produce a definitive conclusion. The reason for this good performances lies in that DN can cope
with issues like bifurcations or dynamic time warping albeit combining continuous state-representation well suited to
problems with unobservable quantities or with sparseness constraints as explained by Movellan in [68]. Contrary to
BMs DNs did not known the same interest in the literature despite many promising properties of the DN for dynamic
problem. But Theoretical issues concerning the approximating power of the stochastic differential equations need to
be explored.

5.3. Summary

Table 1 lists the different models mentioned in this review and offers a comparison between them. To quantify the
impact of those models we propose a mark related to the number of documents (all type) we got on SCOPUS. Marks
are based on the number of documents we got when we enter the name of the model (all field). Some specific rules
have been added to avoid bias for the DN and the DN-RBM. The exact number of documents is not a relevant indicator
due to the introduced bias. Another bias lies in the fact that each author does not call a model with the same name
(for example, the Gaussian-Bernoulli RBM has also been called the Gaussian RBM or the Continuous RBM). Also
some different models can have the same name or acronym (example: CRBM with ‘c’ for continuous, covariance,
conditional or convolutional). Finally, the DN is a very popular term used in many different fields. The mark in table
1 is put for each model before and after 2010 to provide an idea of a global evolution.

6. Conclusion

In dynamic systems, time provides a significant information to solve many problems. Ignore time dependencies
between each observation can mar results models in comparison with dynamical model. Among the existing solutions
to extract time information, GBN have been applied with success in many application. The basic idea behind the use of
graph model is each link models dependencies between variables. Those dependencies can be time dependencies but
also geometric dependencies in image processing or many others in function of the application. Different approaches
and strategy have been proposed in the literature to incorporate temporal coherence between variables. First the use
of a time window to dispose of last states of the system as input of the model. This solution can be quickly inefficient
in the case of high dimensional input. Learning a hidden representation of time dependencies is an option to reduce
the size of the model. In those model, the temporal information is stored in hidden variables. Using the geometry
knowledge (conv-RBM) of variables is also a solution to model local dependencies and avoid high dimensional model
issues. Finally, the cost function can be modify to take account of the dynamic like in DN with the use of the SDE.

The emergence of GBN come from results of Hopfield’s works on deterministic binary network [34] and contin-
uous network [35] which lead to many works on stochastic discrete networks and stochastic continuous and dynamic
networks. The RBM proposed by Hinton has been a shockwave in the neural network community like its illustrated in
Fig.1. Research on new generative architectures is most often guided by the encountered applications e.g. image-video
processing, speech processing, bio-medical, economic or financial. The major advantage of the RBM is its flexibility.
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