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Leader-follower Consensus of Unicycles with
Communication Range Constraints via Smooth

Time-invariant Feedback
Esteban Restrepo Antonio Lorı́a Ioannis Sarras Julien Marzat

Abstract—We solve the full-consensus problem (in position
and orientation) with connectivity maintenance for multiple
nonholonomic vehicles in a leader-follower configuration. We rely
on a polar-coordinates based model which is more natural for
the problem setting. The proposed control law is smooth (in
the domain of definition) time-invariant and uses only relative
measurements, making it more suited for implementation. We
establish asymptotic convergence to the consensus manifold as
well as connectivity maintenance using the Lyapunov’s first
method and cascaded systems theory. In addition, we illustrate
our theoretical contributions experimentally.

Index Terms—Formation control, persistency of excitation,
Lyapunov design, nonholonomic systems

I. INTRODUCTION

IN the literature on consensus of nonholonomic vehicles
two main problems are addressed, position consensus, in

which case all agents are to converge to the same position with
arbitrary or predetermined orientation, and full consensus, in
which case, agreement on the orientation is also sought.

In either case, most often a Cartesian-coordinates-based
model is used, for which the origin is not stabilisable via
smooth invariant feedback. For instance, the controllers pro-
posed in [1], [2] are time-varying and they guarantee position
consensus. Time-varying feedback is also used in [3]–[5],
but for full-consensus-based formation control. In [6], on the
other hand, a time-invariant non-smooth feedback position-
consensus controller is reported.

Now, in these, as in many other works, it is assumed that
graphs are undirected and that the communication graph is
connected at all times. Hence, each agent has permanent
access to its neighbours’ data, either by transmission or by
sensing. In applications of multi-agent systems, however, the
communication or sensing devices embarked on autonomous
vehicles often have limited range, that is, each agent can only
communicate with or sense another agent if it is within a lim-
ited distance from the vehicle’s position. Therefore, assuming
the existence of a connected graph at all times representing the
information exchange, although necessary from a theoretical
viewpoint, turns out to be conservative from a practical one.
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Therefore, much effort has been spent recently on the de-
sign of connectivity maintenance strategies for nonholonomic
systems. However, most works in the literature address only
the problem of position consensus. Moreover, the consensus
protocols used are, for the most part, either non-smooth or
time-varying. Besides increasing the complexity of the anal-
ysis (use of non-smooth Lyapunov analysis, non-autonomous
systems theory, persistency of excitation, etc.), they may give
way to undesirable behavior, such as oscillations. In [7]
and [8] a navigation-function-based time-varying controller
with connectivity maintenance is proposed, respectively, for
undirected and directed graphs; nevertheless, it presents some
problems inherent to the navigation-function framework such
as local minima and the need to have a bounded workspace. In
[9] and [10] connectivity-preserving controllers are proposed,
respectively, for undirected and leader-follower topologies
based on barrier functions. However, only position consensus
is addressed. In [11], position consensus-based formation with
connectivity maintenance is achieved using barrier functions
but assuming a complete undirected graph, that is, assuming
that each agent has access to the information of every other
agent in the system at all times, which can prove limiting in
realistic practical scenarios. In [12], a discontinuous controller
is presented to guarantee connectivity, but consensus is not
considered and global parameters must be estimated, thereby
increasing the complexity of the controller. Estimation of
global parameters is also used in [13] to achieve practical
stability of a desired formation, but only position consensus
is addressed.

In this paper we present a distributed controller for full con-
sensus (in position and orientation) of nonholonomic vehicles
in a leader-follower configuration, under relative distance con-
straints. More precisely, the full-consensus algorithm proposed
in [14] is extended herein to address, also, the problem of
connectivity maintenance. Remarkably, the proposed control
law is smooth (in the domain of definition) time-invariant.
Moreover, it has the advantage of relying only on relative
measurements of distance-to-follower and line-of-sight angles,
which makes our controller more suitable for implementation
and practical use. The latter is made possible by employing
a polar-coordinates model based on the one proposed in [15].
We also remark that the leader-follower configuration of the
robots means that the graph topology corresponds to that of a
(minimal) directed spanning tree.

In Section II are presented the model and the problem
statement. The main results are presented in Section III and



are illustrated via experimental results in Section IV. Some
concluding remarks are given in Section V.

II. MODEL AND PROBLEM STATEMENT

Notation. The real n-coordinate space, with n ∈ N, is denoted
as Rn; Rn≥0 and Rn>0 are the sets of real n-vectors with all
elements non-negative and positive, respectively. The notation
‖x‖ is used for the Euclidean norm of a vector x ∈ Rn.
A function γ : R≥0 → R≥0 is said to be of class K (γ ∈
K), if it is continuous, strictly increasing and zero at zero. If
moreover γ(s) → ∞ as s → ∞, we say that γ ∈ K∞. A
digraph, denoted G = (V, E), is defined by a set of nodes,
V := {1, 2, . . . , n} whose elements correspond to the labels
of the agents’ states and a set of edges, E ⊆ V2 of cardinality
m, that represents the communication between a pair of nodes.
A directed edge ek, with k ≤ m, is an ordered pair (i, j) ∈ E
if and only if a connection exists from node i to node j. The
distance d(i, j) between nodes i, j ∈ V is the number of edges
in the shortest path from i to j. A directed tree is a subgraph
consisting in a root node, with no parent, and a set of nodes
reachable from the root. A directed spanning tree GT ⊂ G is
a directed tree containing all the nodes in G.

Unicycle systems are typically modelled by the equations

ẋj = vj cos θj (1a)
ẏj = vj sin θj (1b)

θ̇j = ωj , j ≤ n (1c)

where qj = [xj , yj ]
> ∈ R2 is the vector of Cartesian

coordinates, θj ∈ (−π, π] denotes the vehicle’s orientation
with respect to the axis of the abscissae, and the control
inputs are the linear speed, vj ∈ R, and the angular velocity,
ωj ∈ R. One of the best known characteristics of nonholo-
nomic systems (1) is that, in general, equilibria in the space of
(x, y, θ) are not reachable via smooth time-invariant feedback.
In [16] necessary conditions for stabilisability of the position-
consensus manifold (i.e., disregarding orientations) via smooth
invariant feedback are given.

In [15] an alternative, polar-coordinates-based, model for
unicycles is proposed. Such model is not defined at the origin
(zero distance to the target point), but equilibria are reachable
via smooth time-invariant feedback. Furthermore, used in a
leader-follower configuration, this model has the additional
advantage of naturally leading to the design of controllers that
rely only on local relative measurements.

Fig. 1. Leader-follower scheme and polar-coordinates variables

After [15], for every pair of leader and follower vehicles,
labelled i and j respectively, let ρk denote the distance
separating them, let βk denote the angle between the line of
sight and the leader’s direction of motion, and let αk denote
the angle between the line of sight and the follower’s direction
of motion —see Figure 1. That is,

ρk := ‖qi − qj‖ (2a)

βk := arctan

(
yi − yj
xi − xj

)
− θi, ∀ρk > 0 (2b)

αk := arctan

(
yi − yj
xi − xj

)
− θj , ∀ρk > 0 (2c)

Note that the three-dimensional space of (xj , yj , θj) is mapped
into another space of dimension 3, corresponding to the
relative coordinates (ρk, βk, αk) ∈ R≥0 × (−π, π]2. Indeed,
ρk = 0 and βk = αk is equivalent to qi = qj and
θi = θj . Therefore, the solutions to Eqs. (3) correspond to
the leader-follower relative error trajectories for the pair of
index k and the full consensus control goal is reached if
(ρk, βk, αk) → (0, 0, 0) asymptotically for all k ≤ m, where
m corresponds to the number of pairs of leaders-followers.

Then, from a control viewpoint, a network of agents in-
teracting with each other in a leader-follower configuration,
corresponds to m interconnected dynamical systems,

ρ̇k = vi cosβk − vj cosαk (3a)

β̇k =
1

ρk
[−vi sinβk + vj sinαk]− ωi (3b)

α̇k =
1

ρk
[−vi sinβk + vj sinαk]− ωj , (3c)

which result from differentiating on both sides of (2) with
respect to time and using (1). In the latter equations vj and ωj
are the control inputs, and vi and ωi, which are respectively the
leader’s velocity and angular rate, are considered as external
signals.

For the purpose of analysis, the interconnections are repre-
sented using a generic spanning-tree graph in which a triple
(ρk, βk, αk) corresponds to the state of an edge ek in the tree
—see Figure 2. A sequence of one-leader-one-follower pairs
forms a directed path and the overall dynamical system has a
convenient cascaded structure [17], in which the dynamics of
each subsystem corresponds to (3). As we show farther below,
the cascaded structure is conserved for general spanning-tree
topologies; this is fundamental to our control approach.

: : :

i

j

: : :

· · · · · ·

er elp−1

e1 e3

ek elp

em

(level 1)

(level p− 1)

(level p)

(level h)

Fig. 2. Directed spanning tree GT . Open directed chain illustrated in red



Now, while the existence of a directed spanning tree is
necessary for consensus, taking this for granted may be conser-
vative in certain applications. In this paper, we develop upon
the preliminary results obtained in [14] to design controllers
that ensure the following property.

Definition 1 (Connectivity maintenance): For each k ≤ m,
let ∆k > 0 denote the maximal distance between the leader-
follower pair i and j such that the communication between
them, through the arc ek = (i, j), is reliable. We say that the
graphs connectivity is maintained if the set

J :=
{
ρk ∈ R≥0 : ρk < ∆k, ∀ k ≤ m

}
, (4)

where ρk is defined in (2a), is forward invariant. That is, if
ρk(0) < ∆k implies that ρk(t) ∈ J for all t ≥ 0.

The design of controllers that guarantee connectivity main-
tenance relies on so-called barrier Lyapunov functions. In
turn, the latter are defined as the anti-derivative of so-called
connectivity potential functions.

Definition 2 (Connectivity potential): Let p0 ∈ R and, for
each k ≤ m, let B∆k

:= {ρk ∈ R≥0 : ρk < ∆k}. Let
φk :

[
0,∆2

k

)
→ R≥0, s 7→ φk(s), be C1 and non-decreasing

on
[
0,∆2

k

)
, such that φk(s) → ∞ as s → ∆2

k, and the
connectivity potential pk : B∆k

→ R>0, defined as

pk(ρk) :=
∂φk

∂s
(ρ2
k), (5)

is also non-decreasing, pk(ρk) ≥ p0 > 0 for all ρk < ∆k, and
pk(ρk)→∞ as ρk → ∆k.

Then, we define a barrier function1 Uk : B∆k
→ R≥0 as

Uk(ρk) := φk(ρ2
k) (6)

and it satisfies
∂Uk
∂ρk

= 2pk(ρk)ρk. (7)

Thus, the control problem is to define, for each j ≤ n,
control laws vj and ωj such that, for the system (3),
(ρk, βk, αk) → (0, 0, 0) asymptotically for all k ≤ m and
that connectivity, according to Definition 1, is maintained for
all initial conditions such that ρk(0) ∈ J and for all t ≥ 0.

III. MAIN RESULTS

A. Control approach

Before presenting the control laws that solve the problem of
full consensus with connectivity maintenance, we first intro-
duce the rationale used for their design. Exploiting the natural
cascaded structure of the system, we follow a backstepping
procedure. To see this more clearly, consider first the system
(3) for a single edge ek with zero leader velocities, that is,
vi = ωi = 0. It is clear from (3) that the angular rate ωj
directly affects only the dynamics of αk, whereas the evolution
of ρk and βk are determined by αk. Hence, the first step is to
design the actual control input vj and a virtual control input
α∗k : R≥0 × R → (−π/2, π/2); (ρk, βk) 7→ α∗k(ρk, βk) such

1Examples of functions satisfying the properties (6)-(7) and Definition 2
are the logarithmic barrier Lyapunov functions proposed in [18].

that α∗k(0, 0) = 0, in order to make ρk(t)→ 0 and βk(t)→ 0
asymptotically. Defining the virtual input

α∗k := arctan(−c3βk), c3 > 0, (8)

and using the identities

sin(arctan(s)) =
s√

1 + s2
, cos(arctan(s)) =

1√
1 + s2

,

we obtain a dynamical subsystem of the form

ρ̇k = − vj√
1 + (c3βk)2

, β̇k = −c3
vj

ρk
√

1 + (c3βk)2
βk.

Note that the latter can be rendered asymptotically stable by
taking the input vj proportional to ρk.

Next, defining the error variable α̃k := αk −α∗k, we obtain

ρ̇k = − vj√
1 + (c3βk)2

− vj [cos(αk)− cos(α∗k)] (9a)

β̇k = −c3
vj

ρk
√

1 + (c3βk)2
βk + vj [sin(αk)− sin(α∗k)]

(9b)

˙̃αk =
vj
ρk

sinαk − α̇∗k − ωj , (9c)

so, following a backstepping procedure, the angular rate ωj is
designed so that α̃k → 0, or equivalently, αk → α∗k.

The previous control design is effective in stabilizing one
robot to a point without considering proximity constraints.
For the purpose of leader-follower consensus of multi-agent
systems (3) we follow the previous ideas and, to satisfy
the connectivity-maintenance requirement, the input vj is not
simply chosen proportional to ρk, but as a function of the
gradient of a barrier function Wk : B∆k

→ R≥0 which
encodes the distance constraints. This function is defined as

Wk(ρk) :=
1

2
ρ2
k +

κρ
2
Uk(ρk), (10)

where κρ > 0 is a design parameter and Uk is as in (6).
Then, denoting the gradient of Wk as ∂ρWk := ∂Wk

∂ρk
,

we introduce the distributed control laws that solve the full
consensus problem with connectivity maintenance as:

vj := c1
∑
k≤m

ajkηk ∂ρWk(ρk), ηk :=
√

1 + (c3βk)2 (11a)

ωj :=
∑
k≤m

ajk

c2α̃k +

[
ψk +

[
1 +

c3
η2
k

] sin(αk)

ρk

]∑
i≤n

aikvi


(11b)

where c1, c2 > 0 are design constants, α∗k is defined in (8),

ψk:=− ∂ρWk
[cos(αk)− cos(α∗k)]

α̃k
+
βk
ρk

[sin(αk)− sin(α∗k)]

α̃k
,

(12)

ajk:=

{
1 if edge ek is incident on node j
0 otherwise. (13)



B. The multi-agent system in closed loop

So far, we considered the leader-follower pair (3) as an indi-
vidual system. Consider, now a multi-agent system composed
of n unicycles communicating through an arbitrary directed
spanning tree. Each robot has only one leader, but may have
several followers, so the tree has h ≤ n − 1 levels based
on the distance to the root. Now, let Ep ⊂ E denote the
set of edges such that the distance from its terminal node
to the root of the tree, labelled ”1”, is equal to p ≤ h, i.e.,
Ep := {ek = (i, j) ∈ E : d(1, j) = p}. Without loss of
generality, assume that each level p of the tree contains an lp
number of edges, such that 1 ≤ lp ≤ m,

∑h
p=1 lp = m —see

Figure 2. Then, we define a multi-variable model containing
the three states of all the edges belonging to a level of the tree.
To that end, for each level p having lp arcs labelled ek with
k ∈ [lp−1 + 1, lp] we define the closed-loop state variables

ξp :=
[
ξ>p,1 · · · ξ>p,lp

]>
, ξp,k := [ρk βk α̃k]>. (14)

Note that the dimension of ξp is 3lp, that is, it depends on the
number of arcs in the tree level.

Using this notation, the systems (3) in closed loop with (11),
with k ≤ m and for the considered graph, can be written in
the compact cascaded-system form,

ξ̇h = fh(ξh) + gh(ξh, ξh−1),
...

ξ̇p = fp(ξp) + gp(ξp, ξp−1)
...

ξ̇2 = f2(ξ2) + g2(ξ2, ξ1)

ξ̇1 = f1(ξ1)

(15)

where, for each p ≤ h,

fp(ξp) :=
[
fp,1(ξp,1)> . . . fp,lp(ξp,lp)>

]>
,

gp(ξp, ξp−1) :=
[
gp,1(ξp,1, ξp−1)> . . . gp,lp(ξp,lp , ξp−1)>

]>
,

and the nominal system, ξ̇p,k = fp,k(ξp,k), corresponds to

ρ̇k =− c1∂ρWk

[
1 + [cos(αk)− cos(α∗k)]ηk

]
(16a)

β̇k =− c1
ρk
∂ρWk

[
c3βk − [ sin(αk)− sin(α∗k)

]
ηk

]
(16b)

˙̃αk =− c2α̃k − c1ψkηk ∂ρWk (16c)

where we recall that αk = α̃k + α∗k.
The interconnection term gp(ξp, ξp−1) depends on states rel-

ative to the p-th level in the tree and to the previous one in the
following way. Fix k ∈ [lp−1 + 1, lp] and r ∈ [lp−2 + 1, lp−1]
in a manner that the edge er ∈ Ep−1 is incident on ek ∈ Ep,
that is, so that the terminal node of er is the initial node of
ek —see Figure 2. Let ξp−1,r := [ρr βr α̃r]

> be the state
associated to er. Then,

gp,k (ξp,k, ξp−1) =

c1 cos(βk)ηr ∂ρWr

g̃β (ξp,k, ξp−1,r)
g̃α (ξp,k, ξp−1,r)

 , (17)

where ηr :=
√

1 + (c3βr)2,

g̃β := −c1ηr ∂ρWr

[
sin(βk)

ρk
+
[
1 +

c3
η2
r

] sin(αr)

ρr
+ ψr

]
− c2α̃r

and

g̃α := −c2c3
η2
k

α̃r − c1ηr∂ρWr

[
c3
η2
k

[
ψr +

[
1 +

c3
η2
r

] sin(αr)

ρr

]
+
[
1 +

c3
η2
k

] sin(βk)

ρk

]
(18)

where αr = α̃r + α∗r .
We stress that ∂ρWr is a function of ρr only and

[∂ρWr](0) = 0. Therefore, from the definition of gp we have
gp(ξp, 0) ≡ 0. Hence, based on cascaded-systems theory [19],
one can assert that if for every p ∈ [2, h + 1] the solution
of ξ̇p−1 = fp−1(ξp−1) converges to zero and if, for every
p ∈ [2, h], the solutions of ξ̇p = fp(ξp)+gp(ξp, ξp−1), denoted
ξp(t), remain bounded, we also have ξp(t) → 0. This is
established in our main statement, which is presented below.

C. Main statement

Proposition 1 (Main result): Consider n unicycle agents
described by (1) and communicating over a directed spanning
tree GT (V, E). The smooth time-invariant controller (11)–(13)
achieves full consensus with connectivity maintenance, i.e.,
qi → qj , θi → θj and ρk(t) ∈ J , for all ek = (i, j) ∈ E ,
k ≤ m, and for all initial conditions (ρk(0), βk(0), αk(0))
such that ρk(0) ∈ J \{0} —see Definition 1.

Proof: The proof follows the rationale of [19, Lemma
1]. To that end we establish that for each nominal system,
ξ̇p = fp(ξp), we have ξp(t) → 0 and that the solutions of
(15) are bounded. Assume, for the time-being (this assumption
will be proven later), that the solutions of (15) are such that
ρk(t) ∈ J for all k ≤ m and all t ≥ 0. Let k ≤ m and
p ≤ h be arbitrarily fixed and for the edge ek ∈ Ep, consider
the Lyapunov function candidate

Vp,k(ξp,k) = Wk(ρk) +
1

2
α̃2
k +

1

2
β2
k. (19)

Its total derivative along the trajectories of (16) —see also
(12), satisfies

V̇p,k(ξp,k) = −c1
[
∂ρWk

]2 − c2α̃2
k −

c1c3 [∂ρWk]

ρk
β2
k. (20)

Now, from equations (7), (10), and Definition 2, we have

V̇p,k(ξp,k) ≤ −c1ρ2
k−c2α̃2

k−c̃3β2
k ≤ −c ‖ξp,k‖

2
< 0, (21)

where c := min{c1, c2, c1c3(1 + κρp0)}. Next, consider the
function

Vp(ξp) =

lp∑
k=1

Vp,k(ξp,k). (22)

In view of (21), we have

V̇p(ξp) ≤− c ‖ξp‖2 < 0. (23)

Since Vp is positive definite and V̇p is negative definite on
its domain of definition, we conclude that the origin for the
nominal system (16) is asymptotically stable at the origin.

Next, we establish boundedness of the solutions of (15). For
that purpose, fix p ≤ h arbitrarily and consider the (p− 1)-th
and the p-th equations of the cascaded system (15).



In view of (17)-(18), for any r and k as chosen previously
(such that the edge ek is incident on er), the interconnection
terms gp,k(ξp,k, ξp−1) satisfy, component-wise,

gp,k(ξp,k, ξp−1) ≤


γρ(‖ξp−1,r‖)

max
{

1, 1
ρk

}
γβ(‖ξp−1,r‖)

max
{

1, 1
ρk

}
γα(‖ξp−1,r‖)

 , (24)

where γρ(s), γβ(s), γα(s) ∈ K∞ and we recall that ξp−1,r =
[ρr βr α̃r]

> is the r-th entry of ξp−1. Then, consider the
Lyapunov function in (19) with p = 2, k ∈ [l1 + 1, l2], and
r ∈ [1, l1]. From (20) and (24), we have

V̇2,k(ξ2,k) ≤−c1
[
∂ρWk

]2− c2α̃2
k − c̃3β2

k + |∂ρWk| γρ(‖ξ1,r‖)

+ max
{

1,
1

ρk

}[
|βk|γβ(‖ξ1,r‖) + |α̃k| γα(‖ξ1,r‖)

]
. (25)

Assume, first, that max{1, 1/ρk} = 1. Then, let
λ1, λ2, λ3 > 0 be sufficiently large so that c′1 := c1− 1

2λ1
> 0,

c′2 := c2− 1
2λ3

> 0, and c′3 := c̃3− 1
2λ2

> 0. In view of Young’s
inequality, from (25) we have

V̇2,k(ξ2,k) ≤− c′1 [∂ρWk]
2 − c′2α̃2

k − c′3β2
k +

λ1

2
γρ(‖ξ1,r‖)2

+
λ2

2
γβ(‖ξ1,r‖)2 +

λ3

2
γα(‖ξ1,r‖)2

≤− c′ ‖ξ2,k‖2 + γ(‖ξ1,r‖) (26)

where c′ := min {c′1, c′2, c′3} and γ(‖ξ1,r‖) :=
λ1

2 γρ(‖ξ1,r‖)
2 + λ2

2 γβ(‖ξ1,r‖)2 + λ3

2 γα(‖ξ1,r‖)2.
Now, let max{1, 1/ρk} = 1/ρk. For any δ > 0 and

for any ρk ≥ δ, we have max{1, 1/ρk} ≤ 1/δ. Then,
define λ4, λ5, λ6 > 0 such that c′′1 := c1 − 1

2λ4δ
> 0,

c′′2 := c2 − 1
2λ6δ

> 0, and c′′3 := c̃3 − 1
2λ5δ

> 0. Applying
Young’s inequality on (25), we obtain

V̇2,k(ξ2,k) ≤− c′′ ‖ξ2,k‖2 +
1

δ
γ(‖ξ1,r‖) (27)

where, c′′ := min{c′′1 , c′′2 , c′′3}. Therefore, from (26) and (27),
we see that the function Vp in (22) with p = 2, satisfies

V̇2(ξ2) ≤− c̄ ‖ξ2‖2 + γ̄(‖ξ1‖) (28)

where γ̄(‖ξ1‖) := max{1, 1
δ }
∑l1
r=1 γ(‖ξ1,r‖) and c̄ =

min{c′, c′′}. Assume now that the solutions t 7→ ξ2(t) grow
unboundedly. Since ξ1(t) is bounded, there exists t′ such that
V̇2(ξ2(t)) ≤ 0 for all t ≥ t′, which leads to a contradiction.
That is, ξ2(t) is bounded. Furthermore, since ξ1(t) → 0 it
follows that, also, ξ2(t) → 0. The previous arguments hold
for p = 3 and, by induction, for any p ≤ h.

So far we assumed that ρk(t) ∈ J for all t ≥ 0. We
show next that this holds under the Proposition’s assumption
that ρk(0) ∈ J \{0}. We proceed by contradiction. Suppose
that there exists T > 0 such that for all t ∈ [0, T ) and
at least one k ≤ m, ρk(t) ∈ J and ρk(T ) /∈ J . Then,
from the definition of the barrier functions Wk, we have that
Wk(ρk(t)) → ∞. This, however, contradicts (23) and (28),
which imply that Wk(ρk(t)) is bounded for all t ≥ 0 and
all k ≤ m. Connectivity maintenance (equivalently, forward
invariance of J ) follows.

IV. EXPERIMENTAL RESULTS

To illustrate our formal results, some experiments were
performed with four Nexter Robotics’ Wifibots and the Robot
Operating System (ROS) interface were used for the imple-
mentation of the control law. An Optitrack motion capture
system based on active IR cameras and markers was used
which, coupled with odometry sensors, allowed us to obtain
positions and velocities of the robots for analysis purposes.

For the tests we consider a leader-follower full-consensus-
based formation scenario, rather than a generic consensus one,
in order to prevent collisions between the agents when close
to the consensus point. It is assumed that the four mobile
robots interact through a directed spanning tree as illustrated
in Figure 3.

2 1 3 4
e1 e2 e3

Fig. 3. Directed-tree topology used in experiments.

The leader is static due to space limitations in the test facil-
ity. The results are depicted in Figures 4-8 for initial conditions
(x1(0), y1(0), θ1(0)) = (1.5, 2.2, 0), (x2(0), y2(0), θ2(0)) =
(−1.3, 2.2,−1.9), (x3(0), y3(0), θ3(0)) = (−1.5,−0.5, 1.6),
and (x4(0), y4(0), θ4(0)) = (1.2, 0.3,−2.8). In the test-
scenario each robot was subject to a limited communication
range, hence imposing distance-based connectivity constraints.
These constraints are encoded by the barrier function (10) as
Uk(ρk) := ln

(
∆2
k

∆2
k−ρ

2
k

)
, where the radii of the communication

ranges were set to ∆1 = 2.7 m, ∆2 = 3.4 m, and ∆3 = 4.2 m.
In Figure 4 is presented the motion of the vehicles. The

blue dot represents the position of the static leader and the
red dots are the desired positions of each agent with respect
to its respective leader as defined by the interaction graph
showed in Figure 3. It is clear from Figures 5 and 6 that
the group of agents successfully achieve the desired formation
with consensus on the orientation. Additionally, in Figure 6 it
can be appreciated that all distance constraints (dashed lines)
are respected, thus guaranteeing connectivity maintenance.

−2 −1 0 1 2
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0.5
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]

agent 1
agent 2
agent 3
agent 4

Fig. 4. Motion of the vehicles.

In Figures 7 and 8 are presented the control inputs for the
four agents of the system. It is evident from the figures that
the control inputs are smooth, as claimed. We clarify that the
apparent “dripping” in the curves on Figures 7–8 is due to
position-measurements noise coming from the motion capture
system of our experimental benchmark. The effect of such
noise can also be appreciated in Figures 4 and 6.
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Fig. 5. Trajectories of the orientation of the vehicles.
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Fig. 6. Trajectories of the distance between neighbouring agents.
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Fig. 7. Linear velocities.
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Fig. 8. Angular rates.

V. CONCLUSIONS

In this paper we presented a smooth time-invariant dis-
tributed feedback control law that solves the full consensus
problem for swarms of unicycles with communication range
constraints and interconnected through a directed-spanning-
tree communication topology. The control methodology is
based on barrier Lyapunov functions and a polar-coordinates-
based model. The latter allows the use of smooth time-
invariant control laws and transforms the consensus problem
into a stabilization one so that it may be analysed through
classical Lyapunov theory. Furthermore, the proposed con-

troller uses only relative information, making it well suited
for practical applications.

Current and future work focuses on more general digraph
topologies, higher-order systems, obstacle avoidance, and 3D
autonomous vehicles.
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