
HAL Id: hal-02901380
https://hal.science/hal-02901380v1

Submitted on 17 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mode-Level vs. Implementation-Level Physical Security
in Symmetric Cryptography A Practical Guide Through

the Leakage-Resistance Jungle
Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun

Guo, Charles Momin, Olivier Pereira, Thomas Peters, François-Xavier
Standaert

To cite this version:
Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun Guo, et al.. Mode-Level
vs. Implementation-Level Physical Security in Symmetric Cryptography A Practical Guide Through
the Leakage-Resistance Jungle. Annual International Cryptology Conference - CRYPTO 2020, Aug
2020, Santa Barbabra, United States. �10.1007/978-3-030-56784-2_13�. �hal-02901380�

https://hal.science/hal-02901380v1
https://hal.archives-ouvertes.fr

Mode-Level vs. Implementation-Level Physical
Security in Symmetric Cryptography

A Practical Guide Through the Leakage-Resistance Jungle

Davide Bellizia1, Olivier Bronchain1, Gaëtan Cassiers1,
Vincent Grosso2, Chun Guo3, Charles Momin1,

Olivier Pereira1, Thomas Peters1, François-Xavier Standaert1

1 Crypto Group, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium
2 CNRS/Laboratoire Hubert Curien, Université de Lyon, France

3 School of Cyber Science and Technology and Key Laboratory of Cryptologic
Technology and Information Security, Ministry of Education, Shandong University

Abstract. Triggered by the increasing deployment of embedded crypto-
graphic devices (e.g., for the IoT), the design of authentication, encryp-
tion and authenticated encryption schemes enabling improved security
against side-channel attacks has become an important research direction.
Over the last decade, a number of modes of operation have been proposed
and analyzed under different abstractions. In this paper, we investigate
the practical consequences of these findings. For this purpose, we first
translate the physical assumptions of leakage-resistance proofs into min-
imum security requirements for implementers. Thanks to this (heuris-
tic) translation, we observe that (i) security against physical attacks
can be viewed as a tradeoff between mode-level and implementation-
level protection mechanisms, and (ii) security requirements to guarantee
confidentiality and integrity in front of leakage can be concretely differ-
ent for the different parts of an implementation. We illustrate the first
point by analyzing several modes of operation with gradually increased
leakage-resistance. We illustrate the second point by exhibiting leveled
implementations, where different parts of the investigated schemes have
different security requirements against leakage, leading to performance
improvements when high physical security is needed. We finally initi-
ate a comparative discussion of the different solutions to instantiate the
components of a leakage-resistant authenticated encryption scheme.

1 Introduction

State-of-the-art. Since the introduction of side-channel attacks in the late
nineties [58,60], securing cryptographic implementations against leakage has
been a major research challenge. These attacks raise critical security concerns, as
they enable recovering sensitive information such as long-term secret keys, and
are virtually applicable to any type of implementation if no countermeasures are
deployed [64]. As a result, various types of protection mechanisms have been
introduced, working at different abstraction levels. Due to the physical nature of
the leakage, the first countermeasures were typically proposed at low abstraction

levels. For example, hardware countermeasures can target a reduction of the side-
channel information by blurring the signal into noise in the time or amplitude
domains [24,63], or by reducing this signal thanks to special (dual-rail) circuit
technologies [86,87]. These hardware countermeasures can then be augmented by
implementation-level randomization mechanisms aimed at amplifying the side-
channel leakage reduction. Masking achieves this goal by exploiting data random-
ization (i.e., secret sharing) [22,43] and shuffling does it by randomizing the order
of execution of the operations [51,90]. Steady progresses have been made in order
to improve the understanding of these different countermeasures. For example,
masking is supported by a strong theoretical background (see [52,34,35,6] to
name a few). Yet, it remains that the secure implementation of low-level coun-
termeasures (e.g., masking) is quite sensitive to physical defaults [65,70,25,4],
and is expensive both in software and hardware contexts [45,46].

In view of the sensitive and expensive nature of hardware-level and implemen-
tation-level side-channel countermeasures, a complementary line of works initi-
ated the investigation of cryptographic primitives with inherently improved se-
curity against physical leakage. In the case of symmetric cryptography, this trend
started with heuristic proposals such as [59,73,66,40]. It was then formalized by
Dziembowski and Pietrzak under the framework of leakage-resilient cryptogra-
phy [36], which has been the inspiration of many follow up works and designs.
Simple and efficient PRGs & stream ciphers were proposed in [74,92,91,83]. PRFs
and PRPs can be found in [84,38,1,33]. Concretely, such leakage-resilient prim-
itives typically require some type of bounded leakage assumption, which was
found to be significantly easier to fulfill for PRGs and stream ciphers that are
naturally amenable to key evolution schemes than for PRFs and PRPs for which
each execution requires the manipulation of a long-term secret key [9].

The concept of leveled implementations introduced by Pereira et al. closely
followed this finding: it aims at combining the minimum use of a PRF or PRP
heavily protected against side-channel attacks thanks to (possibly expensive)
hardware-level and implementation-level countermeasures with a mode of oper-
ation designed to cope with leakage, requiring much less protections (or even no
protection at all) in order to process the bulk of the computation [72].

These seed results on basic cryptographic primitives (such as PRGs, PRFs
and PRPs) next triggered analyzes of complete functionalities like encryption
and authentication, and rapidly shifted the attention of designers to Authenti-
cated Encryption (AE) schemes mixing both integrity and confidentiality guar-
antees. Following the seminal observation of Micali and Reyzin that indistinguish-
ability-based notions are significantly harder to capture and ensure with leakage
than unpredictability-based notions [68], strong integrity properties with leak-
age have then been investigated, first with leakage in encryption only [14], next
with leakage in encryption and decryption [15]. It turns out they could indeed
be satisfied with weak physical assumptions for the bulk of the computation. For
example, ciphertext intergrity can be achieved with full leakage of all the interme-
diate computations of an AE scheme and two manipulations of a long-term secret
key with a strongly protected block cipher implementation. This is obviously in-

2

sufficient for any type of confidentiality guarantee, as it would leak plaintexts
immediately. This last conclusion motivated a systematic analysis of composite
security definitions, enabling different physical requirements for integrity and
confidentiality guarantees with leakage [49]. Eventually, various full-fledged AE
schemes have been analyzed against leakage, based on Tweakable Block Ciphers
(TBCs) [13], permutations [28,30,27] and combinations of both [50].

We note that our following investigations are restricted to symmetric cryp-
tography, which is the most investigated target for practical side-channel attacks.
Yet, security against leakage has also been considered for other important ob-
jects such as digital signatures schemes (e.g., [55,37,62]), public-key encryption
schemes (e.g., [69,57]) and more advanced cryptographic functionalities like se-
cure computation (e.g., [42,18]). We refer to [53] for a recent survey.

Contribution. The starting point of our investigations is the observation that
the development of low-level side-channel countermeasures and the one of prim-
itives and modes of operation to prevent leakage have for now followed quite
independent paths. This can, in part, be explained by the very different abstrac-
tions used to analyze them. While low-level countermeasures are typically evalu-
ated experimentally based on statistical metrics [82], proving the security of the
aforementioned modes against leakage is rather based on cryptographic reduc-
tions leveraging some physical assumptions. In this respect, the quest for sound
physical assumptions that are at the same time realistic (e.g., are falsifiable and
can be quantified by evaluation laboratories) and sufficient for proofs has been
and still is an important problem: see [53] for a recent survey. To a large extent,
the current situation therefore mimics the one of black box security proofs, with
efficient schemes proven under idealized assumptions (e.g., the oracle-free leak-
ages introduced in [92] and used for analyzing sponge constructions in [30,50])
and a quest for more standard analyses under weaker assumptions. Combined
with the massive amount of definitions capturing all the possible combinations of
security targets for confidentiality and integrity with leakage [49], the complexity
of these theoretical investigations is therefore calling for a systematization effort
towards the concrete consequences of leakage security proofs and how can these
results help developers in the design of secure implementations?

Our main contributions in this direction are threefold:

1. We provide a simplifying framework that allows us to (a) identify a reduced
number of relevant security targets (compared to the full zoo of definitions
in [49]); and (b) to translate the physical assumptions used in leakage secu-
rity proofs into practical implementation guidelines, stated in terms of security
against Simple Power Analysis (SPA) and Differential Power Analysis (DPA), as
can be evaluated by evaluation laboratories with tools such as [23,81] and exten-
sions thereof. Despite SPA and DPA requirements are only necessary conditions
for the formal physical security assumptions to hold, this analysis allows us to
pinpoint the minimum level of efforts that implementers must devote to protect
different parts of an AE implementation in function of the security target.

3

2. We use this framework to illustrate that reasoning about security against leak-
age can be viewed as a tradeoff between mode-level and implementation-level
(or hardware-level) protections. To give a simple example, a physical security
property (e.g., the aforementioned ciphertext integrity with leakage) can the-
oretically be obtained from standard modes of operation like OCB [79], given
that all the block cipher executions in the mode are strongly protected against
DPA (which has high cost). Modes with better resistance against leakage can
relax this DPA security requirement for certain parts of the implementations.
Interestingly, we additionally observe that the literature already includes differ-
ent modes of operation corresponding to different leakage security targets. This
allows us to illustrate the physical security tradeoff based on actual algorithms,
including candidates to the ongoing NIST standardization effort.1 We will focus
on OCB-Pyjamask [44], PHOTON-Beetle [5], Ascon [29], Spook [11], ISAP [28] and
TEDT [13], but our analysis applies to many other similar ciphers.

3. Finally, we answer concrete questions that these analyzes suggest, namely:

- We discuss the interest of leveled implementations compared to uniformly pro-
tected implementations based on a hardware implementation case study.

- We compare the (masked) TBC-based and permutation-based initialization/
finalization steps of two AE schemes (namely, Ascon [29] and Spook [11]) thanks
to a software case study, and evaluate their respective advantages.

- We compare a standard tag verification mechanism (that requires hardware-
level or implementation-level DPA protections) with the inverse-based tag veri-
fication proposed in [15] that does not require DPA protections.

- We evaluate the pros and cons of the two main solutions to implement a strongly
protected component for AE, namely masking and fresh re-keying based on a
leakage-resilient PRF [10], which is for example used in ISAP [28].

For completeness, and despite the practical focus of the paper, we additionally
provide a high-level view of the formal security guarantees that the analyzed AE
schemes offer. For this purpose, we leverage the existing literature and tailor
some existing generic results to the investigated cases studies.

Related work. In an independent line of work, Barwell et al. analyzed the
security of AE schemes in a model where the leakage is excluded from the chal-
lenge encryption [7]. This model corresponds to a context of leakage-resilience,
where security guarantees may vanish in the presence of leakage, but are restored
once leakage is removed from the adversary’s view. It enables strong composi-
tion results similar to the ones obtained without leakage, strong security against
nonce misuse (i.e., misuse-resistance in the sense of Rogaway and Shrimpton [80])
and has been instantiated with uniformly protected implementations (e.g., the
scheme in [7] is based on masking and pairings). Here, we rather focus on the
composite definitions introduced by Guo et al. [49] which consider integrity and
confidentiality properties separately, rely on the setting of leakage-resistance (i.e.,
aim to resist against leakage even during the challenge encryption) and can only

1 https://csrc.nist.gov/projects/lightweight-cryptography

4

https://csrc.nist.gov/projects/lightweight-cryptography

be combined with a weaker guarantee of nonce misuse-resilience (introduced by
Ashur et al. [3]) for the confidentiality guarantees in the presence of leakage.2

The motivations for this choice are twofold. First, composite definitions enable
the identification of meaningful security targets matching existing AE schemes
that a single “all-in-one” definition as the one of Barwell et al. cannot cap-
ture. Second, the security gains of some design tweaks we aim to analyze (e.g.,
ephemeral key evolution) cannot be reflected in the leakage-resilience setting.
We refer to Section 2.2 for more discussion about this definitional choice.

Cautionary notes. By focusing on the qualitative requirements that masking
security proofs imply for implementers, our next analyzes and discussions natu-
rally elude some additional important points that should also be considered in
the evaluation of a leakage-resistant AE scheme, namely:

(i) We do not consider the quantitative aspects: for example, do the modes pro-
vide beyond-birthday and/or multi-user security against leakage attacks?

(ii) We ignore the impact of the primitives (e.g., the internals of the block ciphers
and permutations) on the cost of low-level side-channel countermeasures. Yet, it
is for example a well-known fact that minimizing the multiplicative complexity
and depth of a block cipher is beneficial for masking [75,41,47].

The first point is an important scope for further research. A complete anal-
ysis would indeed require having quantitative (and ideally tight) bounds for all
the investigated schemes. For the second one, we believe it should have lim-
ited impact since most current lightweight ciphers aimed at security against
side-channel attacks (e.g., the NIST Lightweight Cryptography candidates) are
based on small S-boxes with minimum AND complexity and depth.

2 Simplifying framework

In this section, we present the simplifying framework that we will use in order
to reason about leakage-resistant AE modes based on concrete (SPA and DPA)
attacks. For this purpose, we first propose an informal decomposition of the
modes that we will consider, and then list the design tweaks that such modes
can leverage in order to reach different leakage security guarantees.

2.1 Leakage-resistant AE modes decomposition

We decompose the AE modes of operation under investigation into four infor-
mal parts, as illustrated in Figure 1 for a simple Inner Keyed Sponge (IKS)
design [16]. An optional Key Generation Function (KGF) is used to generate
a fresh key K∗ based on a long-term master key K and a nonce N . Next, the
message processing part uses the (optionally fresh) key in order to encrypt the

2 This limitation only holds in the presence of leakage, so nothing prevents to ask for
black box misuse-resistance as an additional requirement of a mode, which we do
not consider in this paper but could be investigated as future work.

5

Fig. 1: Exemplary decomposition of an AE scheme.

message blocks. A Tag Generation Function (TGF) finally uses the result of the
message processing part and outputs a tag for message authentication. The tag
is only verified (i.e., compared to the genuine tag) in case of decryption.

We note that we make no claims regarding the generality of this decompo-
sition. As will be clear next, it nicely matches a number of recent AE schemes
with different levels of security against side-channel attacks, but other modes
may not be directly adaptable to this simple framework. We believe this limita-
tion is natural for a work aiming at specializing leakage-resistance analyzes to
practical AE schemes. We note also that for simplicity, we ignore the associated
data in our discussions, since it has limited impact on leakage analyzes.

2.2 Design tweaks and security levels

The main design tweaks that enhance mode-based side-channel security are:

1. Key evolution. As formalized by Dziembowski and Pietrzak, updating the
ephemeral keys of an implementation so that each of them is only used – and
therefore leaks – minimally can improve confidentiality with leakage [36].

2. Strengthened KGF and TGF. As formalized by Berti et al., using key and
tag generation functions so that, given their input (resp., output), it is not
direct to compute their output (resp., input) can improve security with leak-
age [14,15] – for example by preventing that recovering an ephemeral secret
during message processing leads to the long-term master key.

3. Two-pass designs. As formalized by Guo et al. (resp., Barwell et al.) in the
leakage-resistance setting [49] (resp., leakage-resilience setting [7]), two-pass
modes can improve message confidentiality with decryption leakages, if the
tag verification does not requires the manipulation of sensitive plaintexts.

Based on these main design tweaks, we next aim to simplify the leakage-resistance
definition zoo introduced in [49] and to specify a reduced number of relevant se-
curity targets that reflect existing AE schemes. For this purpose, we first recall
Guo et al.’s definitions of integrity and confidentiality with leakage. We propose
informal definitions that will be sufficient to guide our attack-based analysis in
the next section, and defer their more formal introduction to Appendix A.

6

Definition 1 (Ciphertext Integrity with Leakage [15], Informal.). In
the ciphertext integrity with leakage security game, the adversary can perform a
number of queries to encryption and decryption oracles enhanced with leakage
functions, that capture the implementation of an AE scheme. His goal is to
produce a valid fresh ciphertext and the implementation is considered secure if
the adversary cannot succeed with good probability. Variants that we will use
next include: ciphertext integrity with (nonce-respecting adversary and) leakage
in encryption only (CIL1) and ciphertext integrity with misuse-resistance (i.e.,
no constraints on nonces) and leakage in encryption and decryption (CIML2).

Definition 2 (Confidentiality with Leakage [49], Informal.). In the Cho-
sen Ciphertext Attack (CCA) with leakage security game, the adversary can per-
form a number of queries to encryption and decryption oracles enhanced with
leakage functions, that capture the implementation of an AE scheme. During
a so-called “challenge query”, he picks up two fresh messages X0 and X1 and
receives a ciphertext Yb encrypting Xb for b ∈ {0, 1}, with the corresponding
leakage. His goal is to guess b and the implementation is considered secure if
the adversary cannot succeed with good advantage. Variants that we will use
next include: chosen ciphertext security (with nonce-respecting adversary and)
with leakage in encryption only (CCAL1), chosen ciphertext security with nonce
misuse-resilience (i.e., only the nonce of the challenge query needs to be fresh)
and leakage in encryption only (CCAmL1) and chosen ciphertext security with
nonce misuse-resilience and leakage in encryption and decryption (CCAmL2).3

In our misuse and leakage notations, small caps are for resilience to misuse or
leakage and capital letters for resistance. For integrity guarantees, it is possible to
ensure misuse-resistance and leakage-resistance jointly. But as discussed in [49],
such a combination is believed to be impossible for confidentiality guarantees
and one has to choose between Barwell at al.’s CCAMl2 security or Guo et al.’s
CCAL1, CCAmL1 or CCAmL2 security (see the discussion in Section 3.1).

Based on these definitions, we list our security targets and their link with the
aforementioned design tweaks. We insist that these links hold for the AE schemes
investigated in the next section. We do not claim they are necessary to reach
the security targets and admit other design ideas could be leveraged. We further
reckon a finer-grain analysis may be useful in order to analyze other modes.

– Grade-1a. CIL1 and CCAL1 security thanks to key evolution.

– Grade-1b. CIML2 security thanks to strengthened KGF and TGF (and only
black box security guarantees for message confidentiality).

– Grade-2. CIML2 and CCAmL1 security thanks to a combination of key evo-
lution (i.e., Grade-1a) and strengthened KGF and TGF (i.e., Grade-1b).

– Grade-3. CIML2 and CCAmL2 security thanks to a combination of key evo-
lution and strengthened KGF and TGF with a two-pass design.

3 We focus on the single-challenge definition for simplicity. Multi-challenge extensions
are treated in the extended version of [49] – see also Appendix A.

7

We also denote as Grade-0 the AE schemes without leakage-resistant features.

Definitional framework motivation. The grades and design tweaks that we
just described motivate our choice of definitions. On the one hand, the different
grades exploit Micali and Reyzin’s seminal observation that integrity require-
ments may be significantly easier to fulfill with leakage than confidentiality re-
quirements. For example, Grade-2 designs achieve stronger integrity guarantees
(with decryption leakage) than confidentiality guarantees (without decryption
leakage). In Barwell et al.’s all-in-one definition, removing decryption leakage
could only be done jointly for confidentiality and integrity guarantees. On the
other hand, the security gains of some design tweaks cannot be reflected in the
leakage-resilience setting. For example, excluding the challenge leakage implies
that an implementation leaking challenge messages (and ephemeral keys) in full
is deemed secure according to Barwell et al.’s definition. Hence, ephemeral key
evolution has no impact in this case (and the construction in [7] is indeed based
on CFB). We insist that this observation does not invalidate the interest of
the leakage-resilience setting: whether (stronger) leakage-resistance or (weaker)
leakage-resilience is needed depends on application constraints. In general, our
only claim is that the definitional framework of Guo et al. enables a fine-grain
analysis that can capture various designs and application constraints which are
not apparent when using an all-in-one definition of leakage-resilience.

3 From leakage-resistance to side-channel security

In this section, we first discuss how the physical assumptions used in leakage
security proofs can be translated into minimum requirements for implementers.
Next, we illustrate what are these minimum requirements for concrete instances
of existing AE schemes. From the current literature, we identify Grade-0, Grade-
1a, Grade 2 and Grade-3 AE schemes, which suggests the design of an efficient
Grade-1b instance as an interesting scope for further investigations. We show
that the minimum requirements suggested by security proofs are (qualitatively)
tight and that failing to meet them leads to realistic SPA and DPA attacks.

3.1 Translating physical assumptions into implementation goals

Leakage security proofs for AE schemes rely on physical assumptions. As men-
tioned in introduction, the quest for sound and realistic assumptions is still a
topic of ongoing research. In this section, we observe that the (sometimes strong)
assumptions needed in proofs can be translated into minimum security require-
ments, expressed in terms of security against practical side-channel attacks.

Integrity with leakage requirements can be limited to the KGF, TGF (and
optionally verification functions) for AE schemes with good leakage properties,
and are extended to full implementations for modes of operation without such
good properties (see Section 5 for the details). The simplest assumption is to
consider the underlying blocks to be leak-free [72]. A recent relaxation introduces

8

a weaker requirement of unpredictability with leakage [12]. In both cases, these
assumptions need that the implementations which hold a long-term key limit
the probability of success of key-recovery DPA attacks, which we express as:

Pr
[
AL(.,.)

kr

(
X1, L(X1,K), . . . , Xq, L(Xq,K)

)
→ K|K u← {0, 1}n

]
≈ 2−n+q·λ(r),

(1)

where AL(.,.)
kr is the key recovery adversary able to make offline calls to the

(unkeyed) leakage function L(., .), X1, . . . , Xq the different inputs for which the
primitive is measured, K the long-term key of size n bits and λ(r) the (informal)
amount of information leakage obtained for a single input Xi measured r times
(i.e., repeating the same measurement multiple times can be used to reduce the
leakage noise). For security against DPA, it is required that this probability
remains small even for large q values, since there is nothing that prevents the
adversary to measure the target implementation for many different inputs. Such
DPA attacks reduce the secrecy of the long-term key exponentially in q. Hence,
preventing them requires a mechanism that counteracts this reduction. For ex-
ample, masking can be used for this purpose and makes λ(r) exponentially small
in a security parameter (i.e., the number of masks or shares) [22,35].

Confidentiality with leakage requirements are significantly more challeng-
ing to nail down. For the KGF and TGF parts of the implementation, they at
least require the same DPA security as required for integrity guarantees. For the
message processing part, various solutions exist in the literature:

1. Only computation leaks assumption and bounded leakage, introduced by Dziem-
bowski and Pietrzak [36]. By splitting a key in two parts and assuming that
they leak independently, it allows maintaining some computational entropy
in a key evolution scheme under a (strong) bounded leakage assumption.4

2. Oracle-free and hard-to-invert leakage function, introduced by Yu Yu et
al. [92]. The motivation for Dziembowski and Pietrzak’s alternating struc-
ture is to limit the computational power of the leakage function, which can
otherwise compute states of a leaking device before they are even produced
in the physical world. A straightforward way to prevent such unrealistic at-
tacks is to assume the underlying primitives of a symmetric construction
to behave as random oracles and to prevent the leakage function to make
oracle calls. This comes at the cost of an idealized assumption, but can be
combined with a minimum requirement of hard-to-invert leakages.5

4 Precisely, [36] assumes high min-entropy or high HILL pseudoentropy, which are
quite high in the hierarchy of assumptions analyzed by Fuller and Hamlin [39]. Note
also that for non-adaptive leakages, the “alternating structure” that splits the key
in two parts can be replaced by alternating public randomness [92,38,91].

5 The hard-to-invert leakage assumption was introduced beforehand [32,31], and is
substantially weaker than entropic leakage requirements (see again [39]). For exam-
ple, suppose L(K) is the leakage, where K is secret and L is a one-way permutation.
Then the leakage is non-invertible, but the conditional entropy of K could be 0.

9

3. Simulatability, introduced by Standaert et al., is an attempt to enable stan-
dard security proofs with weak and falsifiable physical assumptions, without
alternating structure [83]. It assumes the existence of a leakage simulator that
can produce fake leakages that are hard to distinguish from the real ones,
using the same hardware as used to produce the real leakages but without
access to the secret key. The first instances of simulators were broken in [61].
It remains an open problem to propose new (stronger) ones.

Despite technical caveats, all these assumptions aim to capture the same in-
tuition that an ephemeral key manipulated minimally also leaks in a limited
manner, preserving some of its secrecy. As a result, they share the minimum
requirement that the probability of success of a key-recovery SPA attack re-
mains small. Such a probability of success has a similar expression to the one of
Equation 1, with as only (but paramount) difference that the number of inputs
that can be measured is limited by design. Typically, q = 2 for leakage-resilient
stream ciphers where one input is used to generate a new ephemeral key and the
other to generate a key stream to be XORed with the plaintexts [74,92,91,83].

Note that because of these limited q values, the possibility to repeat mea-
surements (by increasing the r of the leakage expression λ(r)) is an important
asset for SPA adversaries. As will be detailed next, this creates some additional
challenges when leakages can be obtained with nonce misuse or in decryption.

Besides the aforementioned requirements of security against key-recovery
DPA and SPA, definitions of leakage-resistance provide the adversary with the
leakage of the challenge query. In this setting, another path against the confi-
dentiality of an AE scheme is to directly target the manipulation of the message
blocks (e.g., in Figure 1, this corresponds to the loading of the Mi blocks and
their XOR with the rate of the sponge). Following [85], we express the probability
of success of such Message Comparison (MC) attacks with:

Pr
[
AL(.,.)

mc

(
X0, X1, L(Xb,K)

)
→ b|K u← {0, 1}n, b u← {0, 1}

]
. (2)

In this case, the adversary has to find out whether the leakage L(Xb,K) is
produced with input X0 or X1. As discussed in [49], there are currently no
mode-level solutions enabling to limit this probability of success to negligible
values. So implementers have to deal with the goal to minimize the message
leakage with lower-level countermeasures. Yet, as will be discussed next, even in
this case it is possible to leverage mode-level protection mechanisms, by trying
to minimize the manipulation of sensitive messages (e.g., in decryption).

Discussion. We note that combining leakage-resistance with misuse-resistance
would require to resist attacks similar to the one of Equation 2, but with a “State

Comparison” (SC) adversary AL(.,K)
sc able to make offline calls to a keyed leakage

function. As discussed in [49,85], this allows the adversary to win the game by
simply comparing L(X0,K) and L(X1,K) with L(Xb,K), which is believed to
be hard to avoid (unless all parts of the implementations are assumed leak-free).
As a result, we next consider a combination of misuse-resilience with leakage-
resistance as our strongest target for confidentiality with leakage.

10

Summary. The heuristic security requirements for the different parts of an AE
scheme with leakage (following the decomposition of Section 2.1) include:

– For integrity guarantees:

• For the KGF and TGF: security against (long-term key) DPA.
• For the message processing part: security against (ephemeral key) DPA

or no requirements (i.e., full leakage of ephemeral device states).
• For tag verification: security against DPA or no requirements.

– For confidentiality guarantees:

• For the KGF and TGF: security against (long-term key) DPA.
• For the message processing part: security against (ephemeral key) DPA

or (ephemeral key) SPA and security against MC attacks.

As detailed next, for some parts of some (leakage-resistant) AE schemes, different
levels of physical security are possible, hence enabling leveled implementations.
For readability, we will illustrate our discussions with the following color code:
blue for the parts of an AE scheme that require DPA security, light (resp., dark)
green for the parts of an AE scheme that require SPA security without (resp.,
with) averaging, light (resp., dark) orange for the parts of an AE scheme that
require security against MC attacks without (resp., with) averaging and white
for the parts of an AE scheme that tolerate unbounded leakages.6 We draw the
tag verification in light grey when it is not computed (i.e., in encryption).

We note that precisely quantifying the implementation overheads associated
with SPA and DPA security is highly implementation-dependent, and therefore
beyond the scope of this paper. For example, the number of shares necessary to
reach a given security level in software (with limited noise) may be significantly
higher than in (noisier) hardware implementations [35]. Yet, in order to provide
the reader with some heuristic rule-of-thumb, we typically assume that prevent-
ing SPA implies “small” overheads (i.e., factors from 1 to 5) [90] while preventing
DPA implies “significant” overheads (i.e., factors from 5 to > 100) [45,46]. Some
exemplary values will be given in our more concrete discussions of Section 4. We
insist that the only requirement for the following reasoning to be practically-
relevant is that enforcing SPA security is significantly cheaper than enforcing
DPA security, which is widely supported by the side-channel literature.

In the rest of this section, we illustrate the taxonomy of Section 2.2 with ex-
isting modes of operation. For each grade, we first exhibit how leakage-resistance
(formally analysed in Section 5) translates into leveled implementations; we then
show that this analysis is qualitatively tight and describe attacks breaking the
proposed implementations for stronger security targets than proven in Section 5;
we finally discuss the results and their applicability to other ciphers.

6 For the MC attacks, SPA without averaging is only possible in the single-challenge
setting. In case multiple challenges are allowed, all MC-SPA attacks are with aver-
aging. This change is not expected to create significant practical differences when
the adversary can anyway use challenge messages with many identical blocks.

11

3.2 Grade-0 case study: OCB-Pyjamask

Mode-level guarantees. The OCB mode of operation does not provide mode-
level security against leakage. This is due to the use of the same long-term key
in all the (T)BC invocations of the mode. As a result, all the (T)BC calls must
be strongly protected against DPA. For completeness, a uniformly protected
implementation of OCB-Pyjamask is illustrated in Appendix B, Figure 13.

Proofs’ (qualitative) tightness. Not applicable (no leakage-resistance proofs).

Discussion. As mentioned in introduction (cautionary notes) and will be further
illustrated in Section 3.6, the absence of mode-level leakage-resistance does not
prevent a mode of operation to be well protected against side-channel attacks: it
only implies that the protections have to be at the primitive, implementation or
hardware level. In this respect, the Pyjamask cipher is better suited to masking
than (for example) the AES and should allow efficient masked implementations,
thanks to its limited multiplicative complexity. A similar comment applies to
the NIST lightweight candidates SKINNY-AEAD and SUNDAE-GIFT.

3.3 Grade-1a case study: PHOTON-Beetle

Mode-level guarantees. As detailed in Section 5.2, PHOTON-Beetle is CCAL1
and CIL1 under physical assumptions that, as discussed in Section 3.1, translate
into SPA security requirements for its message processing part. Therefore, it can
be implemented in a leveled fashion as illustrated in Figure 2. Note that nonce
repetition is prevented in the CCAL1 and CIL1 security games, which explains
the light grey and orange color codes (for SPA security without averaging).

Fig. 2: PHOTON-Beetle, leveled implementation, CCAL1, CIL1.

Proofs’ qualitative tightness. As soon as nonce misuse or decryption leakages
are granted to the adversary, the following DPA becomes possible against the
message processing part of PHOTON-Beetle: fix the nonce and the ephemeral
key K∗; generate several plaintext (or ciphertext) blocks M1 (or C1); recover
the capacity part of the state including M1 (or C1) and finally inverse the per-
mutation to recover the long-term key K. The number of plaintext/ciphertext
blocks that can be measured in this way equals 2r, where r (i.e., the rate of the

12

sponge) equals 128 in the case of PHOTON-Beetle. This is (considerably) more
than needed to perform a successful side-channel attack against a permutation
without DPA protections [64]. Hence, we conclude that for any stronger security
target than CCAL1 and CIL1, uniform protections are again needed.

Discussion. A similar analysis applies to many IKS designs in the literature, for
example the NIST lightweight candidates Gimli and Oribatida and the CAESAR
competition candidate Ketje. It formalizes the intuition that when encrypting
without misuse, it is not necessary to protect the message processing part of
IKS modes as strongly as their KGF. But this guarantee vanishes with nonce
misuse or decryption leakage because it is then possible to control the ephemeral
keys and the KGF is invertible. Hence, for stronger security targets, lower-level
countermeasures have to be uniformly activated, the cost of which again depends
on the structure (e.g., multiplicative complexity) of the underlying primitives.
We mention the special case of the NIST candidate DryGascon which is a Grade-
1a design, but uses a re-keying mechanism aimed at preventing DPA attacks
everywhere (which we will further discuss in Section 4.4). So the interest of
leveled implementations for this cipher is limited by design. The practical pros
and cons of leveled implementations will be discussed in Section 4.1.

3.4 Grade-2 case studies: Ascon and Spook

Mode-level guarantees. As detailed in Section 5.3, Ascon and Spook are
CCAmL1 and CIML2 under different sets of physical assumptions for confiden-
tiality and integrity guarantees. They represent interesting case studies where
the composite nature of Guo et al.’s security definition enables different practical
requirements for different parts of a mode and different security targets. We note
that the previous requirement of DPA security for the KGF and TGF cannot be
relaxed, so it will be maintained in this and the next subsection, without further
discussion. By contrast, the security requirements for the message processing
and tag verification parts can significantly vary, which we now discuss.

We start with Ascon’s CCAmL1 requirements, illustrated in Figure 3. They
translate into SPA security (without averaging) for the message processing part
even with nonce misuse. This is because (i) in the misuse-resilience setting, the

Fig. 3: Ascon, leveled implementation, CCAmL1.

13

challenge query of Definition 2 comes with a fresh nonce (i.e., nonce misuse
is only granted during non-challenge queries), and (ii) even a full permutation
state leakage obtained for non-challenge queries (e.g., thanks to the same DPA
as described against PHOTON-Beetle) does not lead to the long-term key K
on which confidentiality relies (thanks to the strengthened KGF). A similar
situation holds for Spook and is illustrated in Appendix B, Figure 14.

We follow with Spook’s CIML2 requirements, illustrated in Figure 4. The
main observation here is that integrity is proven in a weak (unbounded leakage)
model where all the intermediate permutation states are given in full to the
adversary. This is possible thanks to the strengthening of the KGF and TGF
which prevent any of these ephemeral states to leak about long-term secrets and
valid tags. In the case of Spook, even the tag verification can be implemented
in such a leaky manner (thanks to the inverse-based verification trick analyzed
in [15]). Optionally, a direct tag verification verifB can be used but requires DPA
protections. A similar situation holds for the integrity of Ascon and is illustrated
in Appendix B, Figure 15, with as only difference that it can only be implemented
with a direct DPA-secure tag verification. Note that without an inverse-based or
DPA-secure verification, it is possible to forge valid messages without knowledge
of the master key [15], which is for example critical for secure bootloading [71].
We will confirm the practical feasibility of such attacks in Section 4.3.

Fig. 4: Spook, leveled implementation, CIML2.

Proofs’ qualitative tightness. From Figure 3 (and 14 in Appendix B), it can
be observed that as soon as decryption leakages are granted to the adversary,
a DPA attack against the confidentiality of the messages becomes possible. The
beginning of the attack is exactly the same as the one against PHOTON-Beetle:
fix the nonce and the ephemeral key K∗; generate several plaintext (or cipher-
text) blocks M1 (or C1) and recover the capacity part of the state including M1

(or C1). This time, the full state leakage cannot lead to the long-term key K but
it still allows recovering all the decrypted messages in full. Note that this attack
actually targets a weaker notion than CCAmL2 since it only exploits the decryp-
tion leakage, without access to the decryption oracle. Yet, as discussed in [15], it
is a quite practical one in case of applications where IP protection matters (e.g.,
when a code or content can be decrypted and used but not copied).

14

Discussion. A similar analysis applies to other IKS designs with strengthened
KGF and TGF, for example the NIST lightweight candidates ACE, WAGE and
SPIX and the CAESAR competition candidate GIBBON. The TBC-based TET
scheme also offers the same guarantees [13]. These designs reach the best integrity
with leakage but due to their one-pass nature, cannot reach CCAmL2. The main
concrete differences between Ascon and Spook are: (i) The KGF and TGF of
Ascon are based on a permutation while Spook uses a TBC for this purpose, and
(ii) the tag verification of Spook can be implemented in a leaky way with an
inverse TBC call or in a DPA-protected way with a direct TBC call, while the
tag verification of Ascon can only be implemented in the DPA-protected manner.
The pros and cons of these options will be discussed in Sections 4.2 and 4.3.

3.5 Grade-3 case studies: ISAP and TEDT

Mode-level guarantees. Leveled implementations of Ascon and Spook reach
the highest security target for integrity with leakage (i.e., CIML2) but are only
CCAmL1 without uniform protections. ISAP and TEDT cross the last mile and
their leveled implementations are proven CCAmL2 in Section 5.4, while also
maintaining CIML2 security. The integrity guarantees of ISAP and TEDT follow
the same principles as Ascon and Spook (with the same difference that TEDT
can optionally use an inverse-based tag verification that ISAP cannot). Hence,
we only give their CIML2 implementations in Appendix B, Figures 16 and 17,
and next focus on their confidentiality with decryption leakage requirements.

We start with the ISAP design for which a leveled implementation is illus-
trated in Figure 5. For now skipping the details of the re-keying function RK
which aims at providing “out-of-the-box” DPA security without implementation-
level countermeasures such as masking, the main observation is that ISAP is a
two-pass design where the tag verification does not require manipulating plain-
text blocks. Hence, as long as the KGF, TGF (instantiated with RK) and tag
verification are secure against DPA, the only attack paths against the confiden-
tiality of the encrypted message are a SPA against the message processing part
and a MC attack against the manipulation of the plaintext blocks. In both cases,
averaging is possible due to the deterministic nature of the decryption.

The default tag verification of Figure 5 must be secure against DPA. An
exemplary attack path that becomes possible if this condition is not fulfilled is
the following: given a challenge ciphertext (C,Z), flip some bits of C leading to
related ciphertexts C ′, C ′′, . . . (which, due to the malleability of the encryption
scheme, correspond to messages M ′,M ′′, . . . with single bits flipped compared to
the target M); forge valid tags for these ciphertexts thanks to the leaking mes-
sage comparison (as experimentally validated in Section 4.3) and finally perform
a DPA against M thanks to the related messages’ decryption leakage, which
breaks the SPA requirements guaranteed by the proofs in Section 5.4 and leads
to the same (practical) IP protection issue as mentioned for Ascon and Spook.
Alternatively, ISAP also comes with a tag verification that provides similar guar-
antees as Spook’s inverse one at the cost of another permutation call.

15

Fig. 5: ISAP, leveled implementation, CCAmL2.

TEDT’s CCAmL2 requirements, illustrated in Appendix B, Figure 18, are
mostly identical: the only difference is that the RK function is replaced by a
TBC which must be secure against DPA thanks to masking or other low-level
countermeasures, and optionally enables an inverse-based tag verification.

Discussion. TEDTSponge, a sponge-based variant of TEDT with similar guar-
antees, is proposed in [50]. Besides their DPA resistant tag verifications, the main
difference between ISAP and TEDT is their KGF and TGF. The concrete pros
and cons of both approaches will be discussed in Section 4.4. We also mention
that TBC-based constructions allow proofs in the standard model (under the
simulatability assumption), which is currently not possible with sponge-based
constructions, for which idealized assumptions are frequently used even in black
box security proofs. Whether this gap can be bridged (with the simulatability
or a weaker physical assumption) is an interesting open problem.

3.6 Summary table

The practical requirements that implementers must ensure for the different parts
of the different modes of operation investigated in this section are summarized
in Figure 6, in function of the security target. It nicely supports the conclusion
that security against side-channel attacks can be viewed as a tradeoff between
mode-level and implementation-level (or hardware-level) protections.

In general, even the highest security targets (i.e., CCAmL2 and CIML2) can
be reached by modes without any leakage-resistance features like OCB, but then
require strong low-level countermeasures for all the implementation parts. As
the security targets and the quantitative security levels needed by an applica-
tion increase, it is expected that leveled implementations will lead to better
performance figures, which will be further analyzed in the next section.

16

15

OCB-
Pyjamask

CCAL1 CCAmL1 CCAmL2 CIL1 CIML1 CIML2

DPA DPA DPA DPA DPA DPA

DPA DPA DPA DPA DPA DPA

NA NA unb. NA NA DPA

KGF/TGF

mess. proc

verif.

SPA SPA SPA+avg NA NA NAMC

PHOTON-
Beetle

DPA DPA DPA DPA DPA DPA

SPA DPA DPA SPA DPA DPA

NA NA unb. NA NA DPA

KGF/TGF

mess. proc

verif.

SPA SPA SPA+avg NA NA NAMC.

Ascon

DPA DPA DPA DPA DPA DPA

SPA SPA DPA unb. unb. unb.

NA NA unb. NA NA DPA

KGF/TGF

mess. proc

verif.

SPA SPA SPA+avg NA NA NAMC.

Spook

DPA DPA DPA DPA DPA DPA

SPA SPA DPA unb. unb. unb.

NA NA unb. NA NA unb.

KGF/TGF

mess. proc

verif.

SPA SPA SPA+avg NA NA NAMC.

ISAP

DPA DPA DPA DPA DPA DPA

SPA SPA SPA+avg unb. unb. unb.

NA NA DPA NA NA DPA

KGF/TGF

mess. proc

verif.

SPA SPA SPA+avg NA NA NAMC.

TEDT

DPA DPA DPA DPA DPA DPA

SPA SPA SPA+avg unb. unb. unb.

NA NA DPA NA NA unb.

KGF/TGF

mess. proc

verif.

SPA SPA SPA+avg NA NA NAMC.

Fig. 6: Leveled implementations requirements (NA refers to attacks that cannot
be mounted as they need access to leakage that is not available in the game).

4 Design choices and concrete evaluations

The framework of Section 2 allowed us to put forward a range of AE schemes
with various levels of leakage-resistance in Section 3. These modes of operation
leverage a combination of design ideas in order to reach their security target.
In this section, we analyze concrete questions related to these ideas and, when
multiple options are possible, we discuss their pros and cons in order to clarify
which one to use in which context. We insist that our goal is not to compare the
performances of AE schemes but to better understand their designs.7

4.1 Uniform vs. leveled implementations

Research question. One important pattern shared by several designs analyzed
in the previous section is that they can enable leveled implementations where
different parts of the designs have different levels of security against side-channel

7 For unprotected implementations, we refer to ongoing benchmarking initiatives for
this purpose. For protected ones, this would require agreeing on security targets and
evaluating the security levels that actual implementations provide.

17

attacks. This raises the question whether and to what extent such leveled im-
plementations can be beneficial. In software, it has already been shown in [13]
that gains in cycles can be significant and increase with the level of security and
message size. We next question whether the same observation holds in hardware,
which is more tricky to analyze since enabling more speed vs. area tradeoffs. Pre-
cisely, we investigate whether leveled implementations can imply energy gains
(which is in general a good metric to capture a design’s efficiency [56]).

Experimental setting. In order to investigate the energy efficiency aspects
of leveled implementations in presence of side-channel protections, we have de-
signed FPGA and ASIC leveled implementations of Spook. We applied the mask-
ing countermeasure with d = 2 and d = 4 shares (with the HPC2 masking
scheme [20]) to the Clyde 128-bit TBC (used as KGF and TGF in Spook), and
no countermeasure to the Shadow 512-bit permutation. We used a 32-bit archi-
tecture for Clyde and a 128-bit architecture for Shadow. The FPGA implementa-
tions have been synthesized, tested and measured on a Sakura-G board, running
on a Xilinx Spartan-6 FPGA at a clock frequency of 6 MHz. As a case study,
we encrypted a message composed of one block of authentication data and six
blocks of plaintext. ASIC implementations have been designed using Cadence
Genus 18 with a commercial 65 nm technology, and the power consumption has
been been estimated post-synthesis, running at a clock frequency of 333 MHz.

Experimental results. The power consumption versus time of the Spook FPGA
implementation is shown in Figure 7. Its main phases can be recognized: first,
the Clyde KGF, then the Shadow executions and finally the Clyde TGF. We ob-
serve that a Shadow execution (48 clock cycles) is shorter than a masked Clyde
execution (157 clock cycles). The power consumption of Shadow is independent
of the masking order d, while the one of Clyde increases with d. The figure intu-

0 2 4

15

20

25

30

Time [ms]

P
ow

er
[m

W
]

(a) d = 2

0 2 4

15

20

25

30

Time [ms]

P
ow

er
[m

W
]

(b) d = 4

Fig. 7: Power consumption of a leveled implementation of Spook with a masked
Clyde on a FPGA (Xilinx Spartan 6) at clock frequency fCLK = 6 MHz, for the
encryption of one block of associated data and 5 blocks of message.

18

itively confirms the energy gains that leveled implementations enable. We note
that larger architectures for Clyde would not change the picture: latency could
be reduced down to 24 cycles (i.e., twice the AND depth of the algorithm) but
this would cause significant area and dynamic power consumption increases.

We confirm this intuitive figure with performance results for the ASIC im-
plementations of Spook. For this purpose, we have extracted energy estimations
for one execution of Clyde (about 3.4 nJ for d = 2 and 8.1 nJ for d = 4) and
one execution of (unprotected) Shadow (about 1.2 nJ) independently, in order
to easily study the contributions of the two primitives. Assuming that only the
execution of the primitives consumes a significant amount of energy, we can then
estimate the energy consumption per byte for both Spook (i.e., 2 Clyde execu-
tions and n + 1 Shadow executions where n is the number of 32-byte message
blocks) and OCB-Clyde-A (resp., OCB-Clyde-B), asumming n + 2 (resp., n + 1)
Clyde executions (where n is the number of 16-byte message blocks). The OCB
mode was used as an example of Grade-0 mode, and we used the Clyde TBC in
order to have a fairer comparison between the modes. The A (resp., B) variant
models the case where the OCB initialization is not amortized (resp., amortized)
over a larger number of encryptions. The estimated energy per byte encrypted
on ASIC is shown in Figure 8. For short messages (at most 16 bytes) and for
both masking orders, OCB-Clyde-B consumes the least (with 2 Clyde executions),
followed by Spook (2 Clyde and 2 Shadow executions), and OCB-Clyde-A is the
most energy-intensive (with 3 Clyde executions). For long messages, both OCB-
Clyde-A and -B converge to 1 Clyde execution per 16-byte block, while Spook
converges to 1 Shadow execution per 32-byte block. In that scenario, a leveled
implementation of Spook is therefore much more energy-efficient than OCB (e.g.,
5 times more efficient for d = 2, and the difference increases with d).

100 101 102 103 104 105

10−1

100

101

Message length [bytes]

E
n
er

g
y

[n
J
/
B

]

Spook

OCB-Clyde-A

OCB-Clyde-B

(a) d = 2

100 101 102 103 104 105

10−1

100

101

Message length [bytes]

E
n
er

g
y

[n
J
/
B

]

Spook

OCB-Clyde-A

OCB-Clyde-B

(b) d = 4

Fig. 8: Energy consumption of leveled Spook and uniform OCB-Clyde implemen-
tations on ASIC (65 nm technology), in function of the message length.

19

Discussion. Both the FPGA measurements and the ASIC synthesis results
confirm that leveled implementations can lead to significant energy gains for
long messages. This derives from the fact that the energy per byte of a protected
primitive is larger than for a non-protected one. More interstingly, even for short
messages our results show that leveled implementations can be beneficial. For
example, Spook requires only two TBC executions. Hence, it is always more
energy-efficient than OCB, excepted when the OCB initialization is perfectly
amortized, and the message lenght is less than 16 bytes. Furthermore, even in
this case, the Spook overhead is only 35% for d = 2 and 15% for d = 4.

These energy gains come at the cost of some area overheads since the leveled
nature of the implementations limits the possibility to share resources between
their strongly and weakly protected parts. In the case of Spook studied in this
section, the total area requirements of a 2-share (resp., 4-share & 8-share) leveled
implementation is worth 53,897 (resp., 90,311 & 191,214) µm2. The Shadow-512
part of the implementation is only 22% of this total for the 2-share implemen-
tation and decreases to 13% (resp., 6%) with 4 shares (resp., 8 shares).8

4.2 TBC-based vs. Sponge-based KGF and TGF

Research question. The Grade-2 designs Ascon and Spook use strengthened
KGF and TGF instantiated with a permutation and a TBC. This raises the
question whether both approaches are equivalent or if one or the other solu-
tion is preferable in some application context. We next answer this question by
leveraging recent results analyzing the (software) overheads that masked imple-
mentations of the Ascon permutation and Spook TBC imply.

Experimental setting. The Ascon permutation (used for the KGF and TGF)
and Spook TBC have conveniently similar features: both are based on a quadratic
S-box and both have 12 rounds. Hence, both have the same multiplicative depth
and the different number of AND gates that these primitives have to mask (which
usually dominates the overheads as soon as the number of shares increases)
only depends on their respective sizes: 384 bits for the Ascon permutation and
128 bits for the Spook TBC. We next compare the cycle counts for masked
implementations of these two primitives in an ARM Cortex-M4 device.

Experimental results. A work from Eurocrypt 2020 investigates the proposed
setting. It uses a tool to automatically generate masked software implementa-
tions that are secure in the (conservative) register probing model [8]. The Ascon
permutation and Spook TBC (denoted as Clyde) are among the analyzed prim-
itives. As expected, the resulting cycle counts for the full primitive are roughly
doubled for Ascon compared to Clyde (reflecting their state sizes). For example,
with a fast RNG to generate the masks and d = 3 (resp., d = 7) shares, the
Ascon permutation requires 42,000 (resp., 123,200) cycles and Clyde only 15,380
(resp., 56,480). When using a slower RNG, these figures become 53,600 (resp.,
182,800) for the Ascon permutation and 30,080 (resp., 121,280) for Clyde.

8 All the results in this subsection include the cost of the PRNG used to generate the
shares (we used a 128-bit LFSR) and the area costs include the interface.

20

Discussion. Assuming similar security against cryptanalysis, Spook’s TBC al-
lows reduced overheads for the KGF and TGF by an approximate factor two com-
pared to Ascon’s permutation. Since TBCs generally rely on smaller state sizes
than the permutations used in sponge designs, we believe this conclusion gener-
ally holds qualitatively. That is, a DPA-protected KGF or TGF based on a TBC
allows reduced multiplicative complexities compared to a (wider) permutation-
based design. It implies performance gains, especially for small messages for
which the execution of the KGF & TGF dominates the performance figures.
This gain comes at the cost of two different primitives for Spook (which can be
mitigated by re-using similar components for these two primitives). Based on
the results of Section 4.1, we assume a similar conclusion holds in hardware.
So overall, we conclude that the TBC-based KGF/TGF should lead to (mild)
advantages when high security levels are required while the permutation-based
design enjoys the simplicity of a single-primitive mode of operation which should
lead to (mild) advantages in the unprotected (or weakly protected) cases.

4.3 Forward vs. inverse tag verification

Research question. Another difference between Ascon and Spook is the possi-
bility to exploit an inverse-based tag verification with unbounded leakage rather
than a DPA-protected direct verification. We next question whether protecting
the tag verification is needed and describe a DPA against an unprotected tag
verification enabling forgeries for this purpose. We then estimate the cost of
these two types of protections and discuss their benefits and disadvantages.

Experimental setting. We analyze a simple 32-bit tag verification algorithm
implemented in a Cortex-M0 device running at 48 [MHz], and measured the
power side-channel at a sampling frequency of 500 [MSamples/s]. It computes the
bitwise XNOR of both tags and the AND of all the resulting bits. The adversary
uses multivariate Gaussian templates estimated with 100, 000 profiling traces
corresponding to random tag candidates and ciphertexts [23]. During the online
phase, she performs a template attack on each byte of the tag individually. To
do so, she records traces corresponding to known random tag candidates.

Experimental results. Figure 9 shows the guessing entropy of the correct tag
according to the number of attack measurements. It decreases with the number of
traces meaning that the attack converges to the correct tag. After the observation
of 300 tag candidates, the guessing entropy is already reduced below 232. The
correct tag can then be obtained by performing enumeration (e.g., with [76]).

Discussion. The DPA of Figure 9 is slightly more challenging than attacks
targeting non-linear operations (e.g., S-box outputs) [77], but still succeeds in
low number of traces unless countermeasures are implemented. As discussed in
Section 3.4, two solutions can be considered to prevent it. First, protecting the
tag verification against DPA with masking. Masking the XNOR operations is
cheap since it is an affine operation. Masking the AND operations is more costly
and implies performing 127 two-input secure AND gates (for a 128-bit tag), with
a multiplicative depth of at least 7. The overall cost can be estimated as about

21

100 101 102 103 104

Attack traces

20

216

232

248

264

280

296

2112

2128

T
ag

G
u

es
si

n
g

E
n
tr

op
y

Fig. 9: Security of tag verification on ARM Cortex M0.

15% of a Clyde execution in cycle count / latency (in software and hardware),
and corresponds to 20% in hardware area (for a 32-bit architecture similar to
the one of Section 4.1). The second method is only applicable to TBC-based
TGF. It computes the inverse of the TBC on the candidate tag, allowing a secure
comparison with unbounded leakage. Being unprotected, the comparison is cheap
but the inverse leads to overheads. For example, for the Clyde TBC, the inverse
does not change the execution time, but increases the hardware area by 24% or
the software code size by 23%.9 We conclude that protecting the tag verification
leads to limited overheads in front of other implementation costs, with a (mild)
simplicity and performance advantage for the inverse-based solution.

We recall that ISAP also comes with a possibility to avoid the DPA-protected
tag verification, at the cost of an additional call to its internal permutation. It
implies an increase of the execution time (rather than area overheads).

4.4 Masked vs. deterministic initialization/finalization

Research question. One important difference between ISAP and TEDT is the
way they instantiate their KGF and TGF. TEDT relies on a TBC that has to
resist DPA thanks to masking, for which we can rely on a wide literature. ISAP
rather uses a re-keying mechanism which is aimed to provide out-of-the-box DPA
security. In this case, the best attack is a SPA with averaging, which is a much
less investigated context. We therefore question the security of ISAP against
advanced Soft Analytical Side-Channel Attacks (SASCA) [89], and then discuss
its pros and cons compared to a masked TBC as used in TEDT.

We insist that the following results do not contradict the security claims of
ISAP since the investigated attacks are SPA, not DPA. Yet, they allow putting
the strengths and weaknesses of ISAP and TEDT in perspective.

Experimental setting. In order to study the out-of-the-box side-channel se-
curity of ISAP, we target its reference implementation where the permutations
of Figure 5 are instantiated with the Keccak-400 permutation. We performed
experiments against a Cortex-M0 device running at 48 [MHz], and measured the
power side-channel at a sampling frequency of 500 [MSamples/s]. Even though
this target has a 32-bit architecture, the compiler generates code processing 16-
bit words at a time. This is a natural approach since it is the size of a lane in

9 https://www.spook.dev/implementations

22

https://www.spook.dev/implementations

100 101 102

Averaging

20

216

232

248

264

280

296

K
ey

G
u

es
si

n
g

E
n
tr

op
y Unknown random IV

Known ISAP IV

Known random IV

Fig. 10: Security of ISAP’s re-keying in an ARM Cortex M0.

Keccak-400. Therefore, the intermediate variables exploited are 16-bit wide. We
used 10, 000 averaged traces corresponding to known (random) IVe and K val-
ues for profiling. The profiling method is a linear regression with a 17-element
basis corresponding to the 16 bits manipulated by the implementation and a
constant [81]. We profiled models for all the intermediate variables produced
when computing the permutation. During the attack phase the adversary is pro-
vided with a single (possibly averaged) leakage and optionally with IVe (which
is public in ISAP). She performs SASCA following the same (practical) steps
as [48], but with 16-bit intermediate targets rather than 8-bit ones. For time &
memory efficiency, she only exploits the first round of the full permutation.

Experimental results. Figure 10 shows the guessing entropy of the 128-bit
key K in function of the number of times the leakage is averaged. We note that
the adversary can average her measurements for the permutations of ISAP’s re-
keying, since the first permutation has a fixed input and the next ones only
integrate the nonce bit per bit (so for example, even without controlling the
nonce, 50% of the second permutation calls are identical). Increased averaging
allows reducing the noise and therefore reducing the key’s guessing entropy.

Overall, if IVe is known (as in the ISAP design) the guessing entropy of the
key is already lower than 232 without averaging. The correct key can then be
retrieved by performing key enumeration. Interestingly, we observe that the value
of IVe has some impact on the attack success (i.e., the ISAP value, which has
a lot of zeros, leads to slightly more challenging attacks than a random value).
We further analyzed the unknown IVe case and could successfully perform the
same attack with a slight averaging (i.e., the attack trace measured ten times).
The difference with the known IVe case derives from the additional efforts that
the adversary has to pay for dealing with more secret intermediate states.

Discussion. One important difference between the ISAP and TEDT approaches
relates to the presence of a security parameter. While masking a TBC can use a
number of shares as security parameter, there is no such security parameter for
ISAP if used out-of-the-box. In this respect, the choice between one or the other
approach can be viewed as a tradefoff between simplicity and expertise. On the
one hand, implementations of ISAP deployed without specific countermeasures
already enjoy security against a wide-class of (DPA) attacks; on the other hand,
the deterministic nature of the (out-of-the-box implementation of the) re-keying
function makes it susceptible to advanced (SPA) attacks that randomized coun-
termeasures such as masking can prevent for TEDT implementations.

23

Admittedly, this conclusion is in part implementation-specific and the effi-
ciency of SASCA generally degrades with the size of the implementation. In this
respect, targeting 32-bit operations would be more challenging, which is an in-
teresting scope for further investigations. Yet, we note that in case the size of
the architecture makes power analysis attacks difficult, advanced measurement
capabilities may be used [88], maintiaining the intuition that for high-security
levels, some algorithmic amplification of the noise is generally needed.

We mention that our results are in line with the recent investigations in [54]
where similar attacks are reported. The authors conclude that “unprotected im-
plementations should always be avoided in applications sensitive to side-channel
attacks, at least for software targets”, and suggest (low-order) masking and shuf-
fling as potential solutions to prevent SPA. The concrete investigation of these
minimum protections and their implementation cost is an interesting open prob-
lem given the difficulty to protect embedded software implementations [19].

A second important difference is that the performance overheads of ISAP
are primitive-based while they are implementation-based for the TBC used in
TEDT, which can therefore be masked in function of application constraints.

Overall, we conclude that in their basic settings, ISAP and TEDT target
different goals: easy-to-deploy DPA security with primitive-based performance
oveaheads for ISAP and high-security against advanced adversaries with more
flexible overheads (e.g., if side-channel security is not needed) for TEDT.

We also mention the case of DryGascon, which implements a re-keying func-
tion sharing some similarities with the ISAP one, but with more secret material
(somewhat building on the ideas outlined in [67]). The results of our attacks with
secret IVe suggest that this idea could lead to improved security. As mentioned
in Section 3.3, and contrary to other ciphers that we consider in the paper, Dry-
Gascon was not designed so that it can be implemented in a leveled manner. It
suggests both the investigation of DryGascon’s re-keying and the tweak of Dry-
Gascon in order to enable leveled implementations and become more efficient
(for some security targets) as other possible directions for future research.

4.5 TBC-based vs. Sponge-based message processing

We finally mention that another significant difference between ISAP and TEDT
(and more generally between different leakage-resistant AE schemes) is the way
they instantiate the message processing part (i.e., with permutations or TBCs).
Since in the context of leveled implementation, the message processing part is
weakly protected (or even not protected at all), the respective interest of these
two approaches essentially depends on their performances in this (unprotected)
setting. We refer to the literature on lightweight cryptography (e.g., the survey
in [17]) for this purpose, observe that the most notable differences are due to
more or less aggressive parameters and conclude that both solutions can lead to
good results. We also recall that in the current state-of-the-art, and as already
observed in Section 3.5, TBC-based solutions seem more amenable to proofs in
the standard model than their permutation-based counterparts.

24

5 Formal qualitative analysis

We conclude the paper with the security analysis of Beetle, Spook, Ascon, TEDT
and ISAP, in the ideal permutation model. All the theorems below highlight that
integrity requires weaker assumptions than confidentiality even in attack models
where the adversary gets more leakage and nonce-misuse capabilities. The reader
can find the formal definitions of the security notions in Appendix A.

5.1 Background: definitions and assumptions

For leaking components, we follow [50] and enforce limitations on the leakages
of the permutation calls as well as those of the XOR executions. Precisely:

– For the former, we define (Lin(U), Lout(V)) as the leakages of a permutation
call π(U) → V , where both Lin and Lout are probabilistic functions. Note
that this means the leakage of a single permutation call is viewed as two
independent “input” and “output” halves. And we assume the following
non-invertibility: given the leakages (Lout(Y ‖X), Lin(Y ′‖X)) of a secret c-
bit value X and two adversarially chosen r-bit values Y, Y ′, the probability
to guess X is negligible. Note that this is a special case of Equation (1).

– For the XOR executions, we define L⊕(Y,M) as the leakage of an XOR com-
putation Y ⊕M → C, where L⊕ is also a probabilistic function. This time,
we make an assumption on the following message distinguishing advantage:
given the leakages (Lout(Y ‖X), L⊕(Y,M b)) of a secret r-bit key Y and adver-
sarially chosen r-bit values X,M0,M1, the probability to guess b is bounded
to ε. Note that this assumption is a special case of Equation (2).

5.2 CCAL1 and CIL1 security of PHOTON-Beetle

We first consider Grade-1a schemes and focus on PHOTON-Beetle. As mentioned
in Section 3.3, the leakage properties of other IKS schemes are similar.

Theorem 1. Assuming that a PHOTON-Beetle implementation satisfies (i) its
KGF is leak-free, and (ii) the leakage of unprotected permutation calls are non-
invertible as assumed in Section 5.1, the circuit ensure CIL1 integrity. Moreover,
if this implementation also satisfies (iii) the leakages of XOR executions are
bounded as assumed in Section 5.1, the circuit ensures CCAL1 confidentiality.

Proof (Sketch). We rely on an idealized scheme Beetleπ
′
, which performs its

computations using a secret random function π′ that is independent from the
publicly accessible permutation π. Denote by G1 the game capturing the inter-
action between any adversary A and the real Beetle circuit using π, and by G2

the game capturing the interaction between A and the idealized scheme Beetleπ
′
.

The crucial step of the proof is to establish the equivalence of G1 and G2. For this
purpose, we identify the following two bad events in G1: (1) A makes a forward
query to π(?‖S) or a backward query to π−1(?‖S) using the capacity part S of
any of the internal state involved in encryption/decryption queries; (2) A makes
a forward query to π(?‖K) using the secret master key K. In order to reason
about the first event, we need to consider two types of state values.

25

– Case 1: the partial state S is only involved decryption queries. Then S is
random and perfectly secret as no leakage about S is given, and thus S
appears in adversarial π queries with only a negligible probability;

– Case 2: the state S is involved in encryption queries. Then its corresponding
probability can be bounded using the non-invertible assumption. Assume
that A triggers the second event with an overwhelming probability, then we
can build an adversary A′ recovering its challenge secret X from the leakages
(Lout(Y ‖X), Lin(Y ′‖X)): A′ simulates the encryption and decryption of a
real Beetle circuit against A, plugs (Lout(Y ‖X), Lin(Y ′‖X)) at a random
position in its simulation, and then extracts X from the π queries made by
A. The simulation is possible because: (i) the encryption queries are nonce
respecting, which means the probability that the same partial state appears
in two different encryption queries is negligible, and thus A′ does not need
two “copies” of the leakages on X;10 (ii) A′ does not need to serve additional
leakages of X during simulating decryption queries since they don’t leak.

Conditioned on that the first event does not occur, the second event is also
negligible, since the master key K is random and secret with no leakage, and
since no query of the form π−1(?‖S) happened for any key generation action
π(N‖K)→ (?‖S) that appeared during encryption actions. It can be seen that
G1 and G2 behave the same as long as neither of the above two events occurs.
Hence, G1 and G2 are indistinguishable. Then, no adversary could forge in the
game G2: this follows from the standard unforgability result of Beetle [21]. By
the above equivalence, this implies the CIL1 security of the real Beetle circuit.

For CCAL1, we consider two games G2,0 and G2,1. For b = 0, 1, the game G2,b

captures the interaction between an arbitrary CCAL1 adversary A and the ideal-

ized Beetleπ
′
, in which Beetleπ

′
encrypts M0 among the two challenge messages

(M0,M1). The gap between G2,0 and G2,1 can be bounded by the bounded leak-
age assumption on XOR executions. A bit more precisely, following the method-
ology of [72,50], the gap can be bounded to O(`ε), where ` is the number of

blocks in M0. This means Beetleπ
′

is CCAL1 secure, which further implies the
CCAL1 security of the real Beetle circuit by the above equivalence. ut

5.3 CCAmL1 and CIML2 security of Ascon/Spook

As the mode of Spook is analyzed in [50], we only focus on Ascon.

Theorem 2. Assuming that an Ascon implementation satisfies (i) its KGF is
leak-free, and (ii) the tag verification process is leak-free, the circuit ensures
CIML2 integrity. Moreover, if the Ascon implementation also satisfies (iii) the
leakages of unprotected permutation calls are non-invertible as assumed in Sec-
tion 5.1, and (iv) the leakages of XOR executions are bounded as assumed in
Section 5.1, then the Ascon implementation ensures CCAmL1 confidentiality.
10 By our non-invertibility assumption, A′ obtains a single copy of the leakages

(Lout(Y ‖X), Lin(Y ′‖X)). So if the partial state X appears twice in encryption queries
(with nonce reuse), A′ does not have enough leakages to simulate the answers.

26

Proof (Sketch). The proof flow follows the proof ideas of Spook in [50]. In detail,
we first modify Ascon as follows to obtain an idealized scheme:

– First, we replace KGFK(N) := π(N‖K) ⊕ (0b−|K|‖K) by a secret random
function F (N) that maps N to b-bit uniform values, and next,

– We replace TGFK(S) := lsb|K|
(
π(S ⊕ (0b−|K|‖K))

)
⊕K by another secret

random function G(S) mapping b-bit inputs S to |K|-bit uniform values.

It can be seen that both KGFK(N) and TGFK(S) are based on the “partial-key
Even-Mansour cipher” [2], the PRF security of which follows from [2]. Therefore,
the idealized Ascon circuit is indistinguishable from the real Ascon circuit.

For CIML2 integrity, we can actually leak all the intermediate values to the
adversary. With this “unbounded leakage” scenario, it can be seen that the
idealized Ascon collapses to a Hash-then-PRF MAC, which consists of two steps:
(1) S ← H(N, c), (2) Z ← G(S). The sponge-based hash H is non standard.
Though, via a deeper analysis, it can be shown that H(N, c) is collision resistant,
which implies the unforgability of the idealized Ascon— or the Hash-then-PRF
MAC — even if nonces are reused in the encryption queries. Since the ideal and
the real Ascon circuits are indistinguishable, the CIML2 security follows.

For CCAmL1 confidentiality, we denote by G1 the game capturing the interac-
tion between any CCAmL1 adversary A and the real Ascon circuit, and by G2 the
game capturing the interaction between A and the idealized Ascon circuit. We
further introduce a game G3, which deviates from G2 in the following aspects: (1)
in G3, the challenge encryption actions are performed using uniformly random
internal states that are independent from π; (2) in G3, decryption queries always
return ⊥. By the already established CIML2 result, the second change makes
essentially no difference. The gap due to the first change is bounded using the
non-invertibility leakage assumption, and the proof idea resembles the proof of
Theorem 1. Note that this is possible because: (i) challenge encryption queries
are nonce respecting; (ii) the initial states for challenge and non-challenge en-
cryption queries are derived by F using different nonce values, and are thus
independent; and (iii) decryption queries do not leak and thus do not affect the
encryption query leakages. Hence, the gap between G2 and G3 is negligible.

Finally, following the methodology of [72,50], the CCAmL1 advantage of A in
G3 can be bounded to O(`ε), where ` is the number of blocks in M0, and ε is the
assumed leakage distinguishability advantage of a single XOR execution. Since
we have proved that G1 ⇔ G2 ⇔ G3, the Ascon circuit is CCAmL1 secure. ut

5.4 CCAmL2 and CIML2 security of ISAP/TEDT

We finally consider 2-pass Encrypt-then-MAC designs. TEDT has been thor-
oughly analyzed in [13]. Hence we focus on (the 2.0 version of) ISAP.

Theorem 3. Assuming that an ISAP implementation satisfies (i) its KGF is
leak-free, and (ii) the tag verification process is leak-free, the circuit ensures
CIML2 integrity. Moreover, if the ISAP implementation also satisfies (iii) the

27

leakages of unprotected permutation calls are non-invertible as assumed in Sec-
tion 5.1, and (iv) the leakages of XOR executions are bounded as assumed in
Section 5.1, then the ISAP implementation ensures CCAmL2 confidentiality.

Proof (Sketch). The proof flow follows the proof idea of TEDT in [13]. In de-
tail, we first modify ISAP as follows to obtain an idealized scheme: (1) we
replace KGFK(N) by a secret random function F (N) that maps a nonce N
to (b − n)-bit uniform values, and (2) we replace TGFK(Y ‖U) by a secret
random function G(Y ‖U) that maps a b-bit input Y ‖U to n-bit uniform val-
ues. By the specification of ISAP 2.0, the core component of KGF and TGF
is a standard inner keyed duplex function ISAPRKK (RK in Figure 5), the
PRF security of which has been studied [2,26]. By this, it is easy to see that
TGFK(Y ‖U) = msbn

(
π4(ISAPRKK(Y)‖U)

)
is a PRF. Therefore, the aforemen-

tioned idealized ISAP circuit is indistinguishable from the real ISAP circuit.

For CIML2 integrity, with “unbounded leakages” the idealized ISAP collapses
to a Hash-then-PRF MAC made of two steps: (1) Y ‖U ← H(N, c), (2) Z ←
G(Y ‖U). It can be seen that the sponge-based hash function H(N, c) is collision
resistant, and thus the unforgability of the idealized ISAP follows. Since the ideal
and the real ISAP circuits are indistinguishable, the CIML2 proof is completed.

For confidentiality CCAmL2 security, we denote by G1 the game capturing
the interaction between any CCAmL2 adversary A and the real ISAP circuit, and
by G2 the game capturing the interaction between A and the above idealized
ISAP circuit. We further introduce a new game G3, which deviates from G2 in
the following aspects: (1) in G3, the challenge encryption actions are performed
using uniformly random internal states that are independent from π; (2) in G3,
decryption queries always return ⊥. By the already established CIML2 result, the
second change makes essentially no difference. The gap due to the first change
is bounded using the non-invertibility leakage assumption, and the proof idea
resembles the proof of Theorem 1. Note that this is possible because: (i) challenge
encryption queries are nonce respecting, (ii) the initial states for challenge and
non-challenge encryption queries are derived by F using different nonce values,
and are thus independent, and (iii) decryption queries only leak some random
public values that have nothing to do with the encryption actions, and thus do
not affect the encryption query leakages (which slightly deviates from the proof
of Theorem 2). Overall, the gap between G2 and G3 is negligible.

Following the methodology of [72,50], the CCAmL2 advantage of A in G3

can be bounded to O(`ε), where ` is the number of blocks in M0, and ε is the
assumed leakage distinguishability advantage of a single XOR execution. With
the games equivalence, it proves the CCAmL2 security of the ISAP circuit. ut

We note that the analyses in Sections 5.2, 5.3 and 5.4 use a leak-free model
for the KGF & TGF for simplicity. The recent work in [12] relaxes this assump-
tion (to unpredicatbility with leakage) for integrity guarantees. Both assumption
translate to DPA requirements in our simplifying framework of Section 3.1.

28

6 Conclusion and open problems

The research in this work underlines that there is no single “right definition”
of leakage-resistant AE. As the security targets (e.g., the grades of the designs
we investigated) and the security levels required by an application increase, it
becomes more interesting to exploit schemes that allow minimizing the imple-
mentation overheads of side-channel countermeasures. This observation suggests
the connection of actual security targets with relevant application scenarios and
the performance evaluation of different AE schemes to reach the same security
levels as a natural next step of this study. Looking for security targets that are
not captured by our taxonomy and improving existing designs to reach various
targets more efficiencly are other meaningful goals to investigate.

Acknowledgments. Gaëtan Cassiers, Thomas Peters and François-Xavier Stan-
daert are PhD student, postdoctoral researcher and senior research associate of
the Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been
funded in parts by the ERC project 724725 (acronym SWORD), the Win2Wal
project PIRATE and the UCLouvain ARC project NANOSEC.

References

1. M. Abdalla, S. Beläıd, and P. Fouque. Leakage-resilient symmetric encryption via
re-keying. In CHES, volume 8086 of LNCS, pages 471–488. Springer, 2013.

2. E. Andreeva, J. Daemen, B. Mennink, and G. Van Assche. Security of Keyed
Sponge Constructions Using a Modular Proof Approach. In FSE 2015, pages 364–
384, 2015.

3. T. Ashur, O. Dunkelman, and A. Luykx. Boosting authenticated encryption ro-
bustness with minimal modifications. In CRYPTO (3), volume 10403 of LNCS,
pages 3–33. Springer, 2017.

4. J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F. Standaert. On the cost of
lazy engineering for masked software implementations. In CARDIS, volume 8968
of LNCS, pages 64–81. Springer, 2014.

5. Z. Bao, A. Chakraborti, N. Datta, J. Guo, M. Nandi, T. Peyrin, and K. Yasuda.
PHOTON-Beetle. Submission to the NIST Lightweight Cryptography Standardiza-
tion Effort, 2019.

6. G. Barthe, S. Beläıd, F. Dupressoir, P. Fouque, B. Grégoire, P. Strub, and R. Zuc-
chini. Strong non-interference and type-directed higher-order masking. In ACM
CCS, pages 116–129. ACM, 2016.

7. G. Barwell, D. P. Martin, E. Oswald, and M. Stam. Authenticated encryption in
the face of protocol and side channel leakage. In ASIACRYPT (1), volume 10624
of LNCS, pages 693–723. Springer, 2017.

8. S. Beläıd, P. Dagand, D. Mercadier, M. Rivain, and R. Wintersdorff. Tornado: Au-
tomatic generation of probing-secure masked bitsliced implementations. In EURO-
CRYPT (3), volume 12107 of Lecture Notes in Computer Science, pages 311–341.
Springer, 2020.

9. S. Beläıd, V. Grosso, and F. Standaert. Masking and leakage-resilient primitives:
One, the other(s) or both? Cryptography and Communications, 7(1):163–184, 2015.

29

10. S. Beläıd, F. D. Santis, J. Heyszl, S. Mangard, M. Medwed, J. Schmidt, F. Stan-
daert, and S. Tillich. Towards fresh re-keying with leakage-resilient prfs: cipher
design principles and analysis. J. Cryptographic Engineering, 4(3):157–171, 2014.

11. D. Bellizia, F. Berti, O. Bronchain, G. Cassiers, S. Duval, C. Guo, G. Leander,
G. Leurent, I. Levi, C. M. Charles, O. Pereira, T. Peters, F. Standaert, and
F. Wiemer. Spook: Sponge-based leakage-resistant authenticated encryption with a
masked tweakable block cipher. Submission to the NIST Lightweight Cryptography
Standardization Effort, 2019.

12. F. Berti, C. Guo, O. Pereira, T. Peters, and F. Standaert. Strong authenticity
with leakage under weak and falsifiable physical assumptions. In Inscrypt, volume
12020 of Lecture Notes in Computer Science, pages 517–532. Springer, 2019.

13. F. Berti, C. Guo, O. Pereira, T. Peters, and F. Standaert. TEDT, a leakage-
resist AEAD mode for high physical security applications. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(1):256–320, 2020.

14. F. Berti, F. Koeune, O. Pereira, T. Peters, and F. Standaert. Ciphertext integrity
with misuse and leakage: Definition and efficient constructions with symmetric
primitives. In AsiaCCS, pages 37–50. ACM, 2018.

15. F. Berti, O. Pereira, T. Peters, and F. Standaert. On leakage-resilient authen-
ticated encryption with decryption leakages. IACR Trans. Symmetric Cryptol.,
2017(3):271–293, 2017.

16. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Duplexing the sponge:
Single-pass authenticated encryption and other applications. In Selected Areas in
Cryptography, volume 7118 of LNCS, pages 320–337. Springer, 2011.

17. A. Biryukov and L. Perrin. State of the art in lightweight symmetric cryptography.
IACR Cryptology ePrint Archive, 2017:511, 2017.

18. E. Boyle, S. Goldwasser, A. Jain, and Y. T. Kalai. Multiparty computation secure
against continual memory leakage. In STOC, pages 1235–1254. ACM, 2012.

19. O. Bronchain and F. Standaert. Side-channel countermeasures’ dissection and the
limits of closed source security evaluations. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2020(2):1–25, 2020.

20. G. Cassiers, B. Grégoire, I. Levi, and F. Standaert. Hardware private circuits: From
trivial composition to full verification (aka repairing glitch-resistant higher-order
masking). IACR ePrint Archive, 2020.

21. A. Chakraborti, N. Datta, M. Nandi, and K. Yasuda. Beetle Family of Lightweight
and Secure Authenticated Encryption Ciphers. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(2):218–241, 2018.

22. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In CRYPTO, volume 1666 of LNCS, pages
398–412. Springer, 1999.

23. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In CHES, volume 2523 of
LNCS, pages 13–28. Springer, 2002.

24. C. Clavier, J. Coron, and N. Dabbous. Differential power analysis in the presence
of hardware countermeasures. In CHES, volume 1965 of LNCS, pages 252–263.
Springer, 2000.

25. J. Coron, C. Giraud, E. Prouff, S. Renner, M. Rivain, and P. K. Vadnala. Con-
version of security proofs from one leakage model to another: A new issue. In
COSADE, volume 7275 of LNCS, pages 69–81. Springer, 2012.

26. J. Daemen, B. Mennink, and G. Van Assche. Full-State Keyed Duplex with Built-In
Multi-user Support. In ASIACRYPT 2017(2), pages 606–637, 2017.

30

27. J. P. Degabriele, C. Janson, and P. Struck. Sponges resist leakage: The case of
authenticated encryption. In ASIACRYPT (2), volume 11922 of LNCS, pages
209–240. Springer, 2019.

28. C. Dobraunig, M. Eichlseder, S. Mangard, F. M. B. Mennink, R. Primas, and
T. Unterluggauer. ISAP v2.0. Submission to the NIST Lightweight Cryptography
Standardization Effort, 2019.

29. C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Ascon v1.2. Submission
to the NIST Lightweight Cryptography Standardization Effort, 2019.

30. C. Dobraunig and B. Mennink. Leakage resilience of the duplex construction. In
ASIACRYPT (3), volume 11923 of LNCS, pages 225–255. Springer, 2019.

31. Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Public-
key encryption schemes with auxiliary inputs. In TCC, volume 5978 of LNCS,
pages 361–381. Springer, 2010.

32. Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography with auxiliary input. In
STOC, pages 621–630. ACM, 2009.

33. Y. Dodis and K. Pietrzak. Leakage-resilient pseudorandom functions and side-
channel attacks on feistel networks. In CRYPTO, volume 6223 of LNCS, pages
21–40. Springer, 2010.

34. A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From probing
attacks to noisy leakage. In EUROCRYPT, volume 8441 of LNCS, pages 423–440.
Springer, 2014.

35. A. Duc, S. Faust, and F. Standaert. Making masking security proofs concrete - or
how to evaluate the security of any leaking device. In EUROCRYPT (1), volume
9056 of LNCS, pages 401–429. Springer, 2015.

36. S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In FOCS, pages
293–302. IEEE Computer Society, 2008.

37. S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum. Leakage-resilient signatures.
In TCC, volume 5978 of LNCS, pages 343–360. Springer, 2010.

38. S. Faust, K. Pietrzak, and J. Schipper. Practical leakage-resilient symmetric cryp-
tography. In CHES, volume 7428 of LNCS, pages 213–232. Springer, 2012.

39. B. Fuller and A. Hamlin. Unifying leakage classes: Simulatable leakage and pseu-
doentropy. In ICITS, volume 9063 of LNCS, pages 69–86. Springer, 2015.

40. B. Gammel, W. Fischer, and S. Mangard. Generating a session key for authenti-
cation and secure data transfer, 2014. US Patent 8,861,722.

41. B. Gérard, V. Grosso, M. Naya-Plasencia, and F. Standaert. Block ciphers that
are easier to mask: How far can we go? In CHES, volume 8086 of LNCS, pages
383–399. Springer, 2013.

42. S. Goldwasser and G. N. Rothblum. Securing computation against continuous
leakage. In CRYPTO, volume 6223 of LNCS, pages 59–79. Springer, 2010.

43. L. Goubin and J. Patarin. DES and differential power analysis (the ”duplication”
method). In CHES, volume 1717 of LNCS, pages 158–172. Springer, 1999.

44. D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, and S. M. Sim.
Pyjamask v1.0. Submission to the NIST Lightweight Cryptography Standardization
Effort, 2019.

45. D. Goudarzi and M. Rivain. How fast can higher-order masking be in software?
In EUROCRYPT (1), volume 10210 of LNCS, pages 567–597, 2017.

46. H. Groß, S. Mangard, and T. Korak. An efficient side-channel protected AES
implementation with arbitrary protection order. In CT-RSA, volume 10159 of
LNCS, pages 95–112. Springer, 2017.

31

47. V. Grosso, G. Leurent, F. Standaert, and K. Varici. LS-Designs: Bitslice encryption
for efficient masked software implementations. In FSE, volume 8540 of LNCS, pages
18–37. Springer, 2014.

48. V. Grosso and F. Standaert. ASCA, SASCA and DPA with enumeration: Which
one beats the other and when? In ASIACRYPT (2), volume 9453 of LNCS, pages
291–312. Springer, 2015.

49. C. Guo, O. Pereira, T. Peters, and F. Standaert. Authenticated encryption with
nonce misuse and physical leakage: Definitions, separation results and first con-
struction - (extended abstract). In LATINCRYPT, volume 11774 of LNCS, pages
150–172. Springer, 2019.

50. C. Guo, O. Pereira, T. Peters, and F. Standaert. Towards low-energy leakage-
resistant authenticated encryption from the duplex sponge construction. IACR
Trans. Symmetric Cryptol., 2020(1):6–42, 2020.

51. C. Herbst, E. Oswald, and S. Mangard. An AES smart card implementation
resistant to power analysis attacks. In ACNS, volume 3989 of LNCS, pages 239–
252, 2006.

52. Y. Ishai, A. Sahai, and D. A. Wagner. Private circuits: Securing hardware against
probing attacks. In CRYPTO, volume 2729 of LNCS, pages 463–481. Springer,
2003.

53. Y. T. Kalai and L. Reyzin. A survey of leakage-resilient cryptography. In Providing
Sound Foundations for Cryptography, pages 727–794. ACM, 2019.

54. M. J. Kannwischer, P. Pessl, and R. Primas. Single-trace attacks on keccak. IACR
Cryptol. ePrint Arch., 2020:371, 2020.

55. J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage re-
silience. In ASIACRYPT, volume 5912 of LNCS, pages 703–720. Springer, 2009.

56. S. Kerckhof, F. Durvaux, C. Hocquet, D. Bol, and F. Standaert. Towards green
cryptography: A comparison of lightweight ciphers from the energy viewpoint. In
CHES, volume 7428 of LNCS, pages 390–407. Springer, 2012.

57. E. Kiltz and K. Pietrzak. Leakage resilient elgamal encryption. In ASIACRYPT,
volume 6477 of LNCS, pages 595–612. Springer, 2010.

58. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In CRYPTO, volume 1109 of LNCS, pages 104–113. Springer,
1996.

59. P. C. Kocher. Leak-resistant cryptographic indexed key update, 2003. US Patent
6,539,092.

60. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO,
volume 1666 of LNCS, pages 388–397. Springer, 1999.

61. J. Longo, D. P. Martin, E. Oswald, D. Page, M. Stam, and M. Tunstall. Simulatable
leakage: Analysis, pitfalls, and new constructions. In ASIACRYPT (1), volume
8873 of LNCS, pages 223–242. Springer, 2014.

62. T. Malkin, I. Teranishi, Y. Vahlis, and M. Yung. Signatures resilient to continual
leakage on memory and computation. In TCC, volume 6597 of LNCS, pages 89–
106. Springer, 2011.

63. S. Mangard. Hardware countermeasures against DPA ? A statistical analysis of
their effectiveness. In CT-RSA, volume 2964 of LNCS, pages 222–235. Springer,
2004.

64. S. Mangard, E. Oswald, and T. Popp. Power analysis attacks - revealing the secrets
of smart cards. Springer, 2007.

65. S. Mangard, T. Popp, and B. M. Gammel. Side-channel leakage of masked CMOS
gates. In CT-RSA, volume 3376 of LNCS, pages 351–365. Springer, 2005.

32

66. M. Medwed, F. Standaert, J. Großschädl, and F. Regazzoni. Fresh re-
keying: Security against side-channel and fault attacks for low-cost devices. In
AFRICACRYPT, volume 6055 of LNCS, pages 279–296. Springer, 2010.

67. M. Medwed, F. Standaert, V. Nikov, and M. Feldhofer. Unknown-input attacks
in the parallel setting: Improving the security of the CHES 2012 leakage-resilient
PRF. In ASIACRYPT (1), volume 10031 of LNCS, pages 602–623, 2016.

68. S. Micali and L. Reyzin. Physically observable cryptography (extended abstract).
In TCC, volume 2951 of LNCS, pages 278–296. Springer, 2004.

69. M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In
CRYPTO, volume 5677 of LNCS, pages 18–35. Springer, 2009.

70. S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation of non-
linear functions in the presence of glitches. J. Cryptology, 24(2):292–321, 2011.

71. C. O’Flynn and Z. D. Chen. Side channel power analysis of an AES-256 bootloader.
In CCECE, pages 750–755. IEEE, 2015.

72. O. Pereira, F. Standaert, and S. Vivek. Leakage-resilient authentication and en-
cryption from symmetric cryptographic primitives. In ACM CCS, pages 96–108.
ACM, 2015.

73. C. Petit, F. Standaert, O. Pereira, T. Malkin, and M. Yung. A block cipher based
pseudo random number generator secure against side-channel key recovery. In
AsiaCCS, pages 56–65. ACM, 2008.

74. K. Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT, volume 5479
of LNCS, pages 462–482. Springer, 2009.

75. G. Piret, T. Roche, and C. Carlet. PICARO - A block cipher allowing efficient
higher-order side-channel resistance. In ACNS, volume 7341 of LNCS, pages 311–
328. Springer, 2012.

76. R. Poussier, F. Standaert, and V. Grosso. Simple key enumeration (and rank
estimation) using histograms: An integrated approach. In CHES, volume 9813 of
LNCS, pages 61–81. Springer, 2016.

77. E. Prouff. DPA attacks and s-boxes. In FSE, volume 3557 of LNCS, pages 424–441.
Springer, 2005.

78. P. Rogaway. Authenticated-encryption with associated-data. In CCS, pages 98–
107. ACM, 2002.

79. P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of operation
for efficient authenticated encryption. ACM Trans. Inf. Syst. Secur., 6(3):365–403,
2003.

80. P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap
problem. In EUROCRYPT, volume 4004 of LNCS, pages 373–390. Springer, 2006.

81. W. Schindler, K. Lemke, and C. Paar. A stochastic model for differential side
channel cryptanalysis. In CHES, volume 3659 of LNCS, pages 30–46. Springer,
2005.

82. F. Standaert. Towards fair and efficient evaluations of leaking cryptographic de-
vices - overview of the ERC project crash, part I (invited talk). In SPACE, volume
10076 of LNCS, pages 353–362. Springer, 2016.

83. F. Standaert, O. Pereira, and Y. Yu. Leakage-resilient symmetric cryptography
under empirically verifiable assumptions. In CRYPTO (1), volume 8042 of LNCS,
pages 335–352. Springer, 2013.

84. F. Standaert, O. Pereira, Y. Yu, J. Quisquater, M. Yung, and E. Oswald. Leak-
age resilient cryptography in practice. In Towards Hardware-Intrinsic Security,
Information Security and Cryptography, pages 99–134. Springer, 2010.

33

85. F.-X. Standaert. Towards and Open Approach to Secure Cryptographic Imple-
mentations (Invited Talk). In EUROCRYPT I, pages xv, https://www.youtube.
com/watch?v=KdhrsuJT1sE, 2019.

86. K. Tiri and I. Verbauwhede. Securing encryption algorithms against DPA at the
logic level: Next generation smart card technology. In CHES, volume 2779 of
LNCS, pages 125–136. Springer, 2003.

87. K. Tiri and I. Verbauwhede. A logic level design methodology for a secure DPA re-
sistant ASIC or FPGA implementation. In DATE, pages 246–251. IEEE Computer
Society, 2004.

88. F. Unterstein, J. Heyszl, F. D. Santis, R. Specht, and G. Sigl. High-resolution EM
attacks against leakage-resilient prfs explained - and an improved construction. In
CT-RSA, volume 10808 of LNCS, pages 413–434. Springer, 2018.

89. N. Veyrat-Charvillon, B. Gérard, and F. Standaert. Soft analytical side-channel
attacks. In ASIACRYPT (1), volume 8873 of LNCS, pages 282–296. Springer,
2014.

90. N. Veyrat-Charvillon, M. Medwed, S. Kerckhof, and F. Standaert. Shuffling
against side-channel attacks: A comprehensive study with cautionary note. In
ASIACRYPT, volume 7658 of LNCS, pages 740–757. Springer, 2012.

91. Y. Yu and F. Standaert. Practical leakage-resilient pseudorandom objects with
minimum public randomness. In CT-RSA, volume 7779 of LNCS, pages 223–238.
Springer, 2013.

92. Y. Yu, F. Standaert, O. Pereira, and M. Yung. Practical leakage-resilient pseudo-
random generators. In ACM CCS, pages 141–151. ACM, 2010.

A Security definitions with leakage

Definition 3 (Nonce-Based AEAD [78]). A nonce-based authenticated en-
cryption scheme with associated data is a tuple AEAD = (Gen,Enc,Dec) such
that, for any security parameter n, and keys in K generated from Gen(1n):

– Enc : K×N ×AD×M→ C deterministically maps a key selected from K, a
nonce value from N , some blocks of associated data selected from AD, and
a message from M to a ciphertext in C.

– Dec : K×N ×AD × C →M∪ {⊥} deterministically maps a key from K, a
nonce from N , some associated data from AD, and a ciphertext from C to
a message in M or to a special symbol ⊥ if integrity checking fails.

The sets K,N ,AD,M, C are completely specified by n. Given a key k ← Gen(1n),
Enck(N,A,M) := Enc(k,N,A,M) and Deck(N,A,M) := Dec(k,N,A,M) are
deterministic functions whose implementations may be probabilistic.

We recall the confidentiality definitions of CCAL1, CCAmL1 and CCAmL2 due
to [49]. We start by the strongest notion of CCAmL2 where the adversary A tries

to guess the bit b in the experiment PrivKCCAmL2,b
A,AEAD,L, described in Figure 11.

Definition 4 (CCAmL2). A nonce-based authenticated encryption with associ-
ated data AEAD = (Gen,Enc,Dec) with leakage function pair L = (LEnc, LDec)

34

https://www.youtube.com/watch?v=KdhrsuJT1sE
https://www.youtube.com/watch?v=KdhrsuJT1sE

PrivKCCAmL2,b
A,AEAD,L(1n) is the output of the following experiment:

Initialization: generates a secret key k ← Gen(1n) and sets E ← ∅
Pre-challenge queries: AL gets adaptive access to LEnc(·, ·, ·) and LDec(·, ·, ·)

(1) LEnc(N,A,M) computes C ← Enck(N,A,M) and leake ← LEnc(k,N,A,M)
updates E ← E ∪ {N} and finally returns (C, leake)

(2) LDec(N,A,C) computes M ← Deck(N,A,C) and leakd ← LDec(k,N,A,C)
and returns (M, leakd) — we stress that M = ⊥ may occur

Challenge query: on a single occasion AL submits a tuple (Nch, Ach,M
0,M1)

If M0 and M1 have different (block) length or Nch ∈ E return ⊥
Else compute Cb ← Enck(Nch, Ach,M

b) and leakbe ← LEnc(k,Nch, Ach,M
b)

and return (Cb, leakbe)

Post-challenge queries: AL can keep accessing LEnc and LDec with some restrictions
but it can also get an unlimited access to Ldecch

(3) LEnc(N,A,M) returns ⊥ if N = Nch otherwise computes C ← Enck(N,A,M)
and leake ← LEnc(k,N,A,M) and finally returns (C, leake)

(4) LDec(N,A,C) returns ⊥ if (N,A,C) = (Nch, Ach, C
b) otherwise computes

M ← Deck(N,A,C) and leakd ← LDec(k,N,A,C) and returns (M, leakd)
(5) Ldecch outputs the leakage trace leakbd ← LDec(k,Nch, Ach, C

b) of the challenge

Finalization: AL outputs a guess bit b′ which is defined as the output of the game

Fig. 11: The PrivKCCAmL2,b
A,AEAD,L(1n) game.

is (qe, qd, qc, ql, t, ε)-CCAmL2 secure for a security parameter n if, for every
(qe, qd, qc, ql, t)-bounded adversary AL,11 we have:∣∣∣Pr

[
PrivKCCAmL2,0

A,AEAD,L(1n)⇒ 1
]
− Pr

[
PrivKCCAmL2,1

A,AEAD,L(1n)⇒ 1
]∣∣∣ ≤ ε,

where the adversary AL makes at most qe leaking encryption queries, qd leak-
ing decryption queries, qc challenge decryption leakage queries and ql leakage
evaluation queries on arbitrarily chosen keys.

The security notions of CCAL1 and CCAmL1 follows the same description
as in Definition 4 based on slightly modified experiments. In PrivKCCAmL1,b

A,AEAD,L(1n),
the decryption oracle no more provides the decryption leakage LDec: at steps
(2) and (4) of Figure 11 the LDec oracle is replaced by a blackbox oracle Dec,

and step (5) is simply dropped from the experiment. For PrivKCCAL1,b
A,AEAD,L(1n), we

additionally restrict the leaking encryption being nonce-respecting so that any
repetition of a nonce in encryption is forbidden in the game.

We also recall the integrity definitions of CIL1 and CIML2.

Definition 5 (CIML2). An authenticated encryption AEAD = (Gen,Enc,Dec)
with leakage function pair L = (LEnc, LDec) provides (qe, qd, ql, t, ε)-ciphertext in-
tegrity with nonce misuse and leakages (both in encryption and decryption) given

11 The notation of AL indicates that the adversary may query L on chosen inputs
including chosen keys selected and known by the adversary A.

35

PrivKCIML2
A,AEAD,L(1n) experiment

Initialization:
1. k ← Gen(1n), S ← ∅

Finalization:
1. (N,A,C)← ALEnck,LDeck,L(1n)
2. If (N,A,C) ∈ S, return 0
3. If Deck(N,A,C) = ⊥, return 0
4. Return 1

Leaking encryption: LEnck(N,A,M)
1. C ← Enck(N,A,M)
2. S ← S ∪ {(N,A,C)}
3. Return (C, LEnc(k,N,A,M))

Leaking decryption: LDeck(N,A,C)
1. Return

(Deck(N,A,C), LDec(k,N,A,C))

Fig. 12: The CIML2 security game.

a security parameter n if, for all (qe, qd, ql, t)-bounded adversaries AL, we have:

Pr
[
PrivKCIML2

A,AEAD,L(1n)⇒ 1
]
≤ ε,

with the PrivKCIML2
A,AEAD,L game of Figure 12 where AL makes at most qe leaking en-

cryption queries, qd leaking decryption queries and ql leakage evaluation queries.

Likewise, the integrity notion CIL1 is defined in a game-based fashion but where
the adversary does not have access to the leakage in decryption with respect to
the CIML2 game, i.e. ALEnck,Deck,L, and cannot repeat nonces in LEnc.

Remark 1. An extension of all these definitions to the multi-user (or multi-key)
and multi-challenge setting can be found in [49,13,50]. But the above definitions
are enough for a qualitative analysis of the modes studied in this paper.

B Additional figures

Fig. 13: OCB-Pyjamask, uniformly protected implementation.

36

Fig. 14: Spook, leveled implementation, CCAmL1.

Fig. 15: Ascon, leveled implementation, CIML2.

Fig. 16: ISAP, leveled implementation, CIML2.

37

Fig. 17: TEDT, leveled implementation, CIML2.

Fig. 18: TEDT, leveled implementation, CCAmL2.

38

	Mode-Level vs. Implementation-Level Physical Security in Symmetric Cryptography
	Davide Bellizia1, Olivier Bronchain1, Gaëtan Cassiers1, Vincent Grosso2, Chun Guo3, Charles Momin1, Olivier Pereira1, Thomas Peters1, François-Xavier Standaert1
	Introduction
	Simplifying framework
	Leakage-resistant AE modes decomposition
	Design tweaks and security levels

	From leakage-resistance to side-channel security
	Translating physical assumptions into implementation goals
	Grade-0 case study: OCB-Pyjamask
	Grade-1a case study: PHOTON-Beetle
	Grade-2 case studies: Ascon and Spook
	Grade-3 case studies: ISAP and TEDT
	Summary table

	Design choices and concrete evaluations
	Uniform vs. leveled implementations
	TBC-based vs. Sponge-based KGF and TGF
	Forward vs. inverse tag verification
	Masked vs. deterministic initialization/finalization
	TBC-based vs. Sponge-based message processing

	Formal qualitative analysis
	Background: definitions and assumptions
	CCAL1 and CIL1 security of PHOTON-Beetle
	CCAmL1 and CIML2 security of Ascon/Spook
	CCAmL2 and CIML2 security of ISAP/TEDT

	Conclusion and open problems
	Security definitions with leakage
	Additional figures

