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Consensus-based formation control of networked
nonholonomic vehicles with delayed communications

Mohamed Maghenem Antonio Lorı́a Emmanuel Nuño Elena Panteley

Abstract—For a network of nonholonomic vehicles communicating
according to an undirected connected graph, a consensus-based formation
control problem is solved via a smooth time-varying, proportional-
derivative, δ−persistently-exciting, controller. It is assumed that the com-
munication between agents is affected by time-varying, non-differentiable,
communication delays and uniform global asymptotic stability is demon-
strated. This goes beyond the more-often encountered property of non-
uniform convergence and, what is more, for the first time in the literature,
a strict Lyapunov-Krasovskiı̆ functional is provided.

Index Terms—Formation control, persistency of excitation, Lyapunov
design, nonholonomic systems

I. INTRODUCTION

For a group of (first or second order) integrators the problem
of consensus, which consists in the state variables of all agents
converging to a common value, is well studied and solved under
many different scenarios [1]. For instance, for simple integrators
interconnected over an undirected, static and connected graph, the
consensus equilibrium corresponds to the (weighted) average to the
initial conditions. However, the problem is more complex if one
considers the agents’ dynamics [2], [3], network constraints, such
as communication delays [4], [5], or nonholonomic constraints that
restrict the systems’ motion [6].

For autonomous nonholonomic vehicles, which can obviously not
converge to a common position, the objective may be formulated
as the requirement that the vehicles converge to specific positions to
form a geometric pattern anywhere on the plane. While the formation
is predetermined by defining a position vector originating at the center
of the formation, the said center is not imposed a priori, but it results
from the initial positions, the network’s topology and the dynamic
behavior of the agents. We refer to this goal as consensus-based
formation control.

As a set-point stabilization problem, consensus-based formation
control for nonholonomic systems is not solvable via smooth time-
invariant feedback. Akin to [7], [8] for the case of one robot, in [6]
necessary and sufficient conditions for consensus of nonholonomic
vehicles are established.

From a control-theory viewpoint, it is relevant to make a distinction
according to the model that is used as well as the state variables that
are regulated. In terms of modelling, in many works a kinematics-
only (hence simplified) model is used —see e.g., [6], [9], [10], and
[11]. In this note we employ a force-controlled (hence full) model
—cf. [12], [13]. Concerning the regulated variables, in some works
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the orientation of the vehicles is completely disregarded [6], so
formation control applies only to the Cartesian positions of a point
on the plane. In this note, as in [14], we address the problem of
partial consensus which pertains to the case in which all the agents
are required to converge to a formation around an unknown center
and the orientation of each vehicle is required to be stabilized to a
desired given reference. In [15], [10], [17], [16] the full consensus
problem is addressed; that is, it is also required for the robots to
acquire a common, non-a priori given, orientation. Other problems’
classifications may be made rather in terms of the communications
topology that is employed, as well as on the nature of available
measurements, regardless of the model used [18].

Measurements may come from global-positioning systems [10],
from proximity sensors [11], or both [9]. The first yield usually
reliable measurements with respect to a fixed frame and may be
used to achieve formation consensus from initially far-away positions;
the latter deliver relative distances and orientations and are useful to
maintain the formation while tracking a trajectory. In this note it
is assumed that global-positioning measurements are available and
that each robot communicates its position and orientation to a set of
neighbors through a wireless network. Consequently, the information
that each agent receives is affected by a delay.

Consensus of nonholonomic vehicles under delayed measurements
is addressed, for instance, in [9], [11] and [19]. In [9] the delays
are assumed to be constant, in [11] the delays are assumed to be
constant and equal for all agents, and in [19], they are assumed to
be differentiable with bounded derivatives (up to the fourth). In this
note, we relax these hypotheses by assuming that the delays are time-
varying and non-differentiable, and bounded. Such relaxations are
clearly motivated by realistic scenarios such as in the case of package
dropouts, intermittent communications, blackouts, etc. [4], [20].

The main contribution, however, is of a more theoretical nature. We
prove uniform global asymptotic stability for the closed-loop system,
which is a much stronger property than mere (non-uniform) conver-
gence, as most-often encountered in the literature (including most
of the previous references). Establishing uniform global asymptotic
stability is crucial for time-varying nonlinear systems because, unlike
convergence, it guarantees robustness of the system with respect to
bounded disturbances. Furthermore, for the first time in the literature,
we provide a strict Lyapunov-Krasovskiı̆ functional. A significant
use of the latter is in incorporating further restrictions in the control
problem, such as obstacle avoidance, but this is not addressed here.

This note is a byproduct of [21] and it builds upon the previous
articles [14], [19], and [22]. In [19] only convergence is demonstrated
under more restrictive conditions on the time delays. In [14] and [22]
uniform global asymptotic stability is established, but in the absence
of delays. We also emphasize that our controller, which is inspired
from that in [19], is smooth time-varying and of the δ-persistently-
exciting class [23]. The crafting of the strict Lyapunov-Krasovskiı̆
functional relies on the powerful Mazenc construction [24], [25].

In the next section we describe the networked systems’ model and
we formulate the problem at hand. The main result is presented in
Section III and some simulation results are provided in Section IV.
Concluding remarks are presented in Section V.
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II. MODEL AND PROBLEM FORMULATION

Let us consider a swarm of N autonomous vehicles modeled as
unicycles, hence, with kinematics

ẋi = vi cos(θi) (1a)

ẏi = vi sin(θi) (1b)

θ̇i = ωi, i ≤ N (1c)

and dynamics

v̇i = uvi (2a)

ω̇i = uωi. (2b)

The variables xi and yi denote Cartesian coordinates of a fixed point
on the vehicle relative to a fixed frame, θi denotes its orientation
with respect to the horizontal axis, and vi and ωi denote the forward
and angular velocities respectively. The pair (uvi, uωi) corresponds
to the control inputs, which may depend on the current vehicle’s local
coordinates and time, but also on the coordinates of its neighbors.

Remark 1: We emphasize that, in contrast with a greater body
of literature (e.g., [6], [9], [15], and [11]) in which the dynamics
(2) is neglected, we assume here that the nonholonomic vehicle is
torque controlled. From a physical viewpoint, there exists a direct
relation between the wheels’ input torque and the controls (uvi, uωi).
For simplicity, however, we model the dynamics using an integrator.
There is little loss of generality in such simplification since, typically,
Equations (2) correspond to those of a fully-actuated (hence feedback
linearizable) Lagrangian system [12], [13].

It is assumed that the ith vehicle communicates its positions
(xi, yi) and its orientation θi to a group of neighbors over a network;
the topology of which is assumed to be defined by a connected,
undirected, and static graph. The connectivity of the latter is defined
by the Laplacian L := [`ij ] ∈ RN×N , where

`ij =

{ ∑
j∈Ni

aij if i = j

−aij if otherwise,
(3)

aij > 0 if the ith and jth vehicles communicate with each other, and
aij = 0 otherwise.

Remark 2: By construction, L has a zero row sum, i.e., L1N = 0,
where 1N ∈ RN corresponds to the vector [1 · · · 1]>. Moreover,
since the interconnection graph is connected, undirected and static,
L is symmetric, it has a single zero-eigenvalue, and the rest of the
spectrum of L is positive. Thus, rank(L) = N − 1.

For a group of N vehicles, we formulate the formation control
problem, consisting in making the vehicles take positions according
to a geometric pattern centered at a position on the plane not known
a priori, as a consensus problem. To that end, let zc := [xc, yc]

>

denote the unknown coordinates of the said center and, for each
i ≤ N , let δi := [δxi, δyi]

> denote a vector compatible with physical
constraints. Then, defining

zi :=

[
xi − δxi
yi − δyi

]
, z :=

[
z>1 · · · z>N

]>
, v := [v1 · · · vN ]> ∈ RN ,

(4)
one may set as control objective that

lim
t→∞

z(t) = 1N ⊗ zc, lim
t→∞

v(t) = 0 (5)

A more complete formulation, however, is the so-called called partial
consensus [14]. In this reference it is required that, in addition to (5),
the orientation angles converge to respective given constant references
θdi, that is,

lim
t→∞

θ(t) = θd lim
t→∞

ω(t) = 0 (6)

where θ := [θ1 · · · θN ]> ∈ RN , idem θd and ω.
For nonlinear non-autonomous systems, however, the properties

(5) and (6) are fairly weak since they do not include neither stability
nor uniformity and, hence, offer no guarantee of robustness with
respect to external disturbances. In contrast to this, uniform (global)
asymptotic stability guarantees that the system is totally stable [26].
For this reason in this note we solve the more challenging problem
of rendering the consensus set

Spc := {z = 1N ⊗ zc, θ = θd, v = ω = 0}

uniformly globally asymptotically stable, for the system

ż = Φ(θ)v (7a)

v̇ = uv (7b)

θ̇ = ω (7c)

ω̇ = uω, (7d)

where Φ(θ) = diag[φ(θi)], φ(θi) := [cos(θi) sin(θi)]
>, uv :=

[uv1 · · ·uvN ]>, and uω := [uω1 · · ·uωN ]>.
Remark 3: Uniform global asymptotic stability of Spc implies (5)

and (6), but not the opposite.
Now, for the purpose of analysis via Lyapunov’s direct method,

we redefine the consensus problem for (7) as one of stabilization of
an equilibrium, as opposed to that of a set. To that end, let

ei = φ(θi)
>
∑
j∈Ni

aij(zi − zj), (8)

si = φ(θi)
⊥>

∑
j∈Ni

aij(zi − zj), (9)

where φ(θi)
⊥ = [sin(θi) − cos(θi)]

> or, in compact form,

e = Φ(θ)>Lz, s = Φ(θ)⊥>Lz, (10)

where L := L⊗ I2, Φ(θ)⊥ = diag[φ(θi)
⊥], e := [e>1 · · · e>N ]>, and

s := [s>1 · · · s>N ]>. The advantage of this change of variable is that,
since the matrix

[
Φ(θ) Φ(θ)⊥

]
is invertible for all θ ∈ RN and the

communication graph is connected,

Lz = 0 ⇔ (e, s) = (0, 0). (11)

Thus, defining θ̃ := θ − θd, uniform global asymptotic stabil-
ity of the set Spc is equivalent to that of the equilibrium point
(e, s, θ̃, v, ω) = (0, 0, 0, 0, 0). This is established in the next section.

III. MAIN RESULTS

A. Control design and main statement

We use a certainty-equivalent version of the δ-persistently-exciting
controller proposed in [14], in the absence of delays; this yields

uv = −Kdtv −Kpted, (12)

uω = −Kdθω −Kpθ θ̃ − p(t)κ(sd, ed), (13)

where Kdt, Kpt, Kdθ , and Kpθ are diagonal positive definite
matrices, θ̃ := θ − θd, κ : R2N → RN is defined as

κ(sd, ed) :=
1

2
[s2d1 + e2d1, · · · , s2dN + e2dN ]>,

and ed := [ed1, · · · edN ]> and sd := [sd1, · · · sdN ]> are the
measured errors affected by bounded delays t 7→ Tij(t), that is,
for each i ≤ N ,

edi = φ(θi)
>
∑
j∈Ni

aij(zi(t)− zj(t− Tij(t))), (14)

sdi = φ(θi)
⊥>

∑
j∈Ni

aij(zi(t)− zj(t− Tij(t))). (15)
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The term p(t)κ(sd, ed) is an essential component of the control
law (13). It is assumed that this term is δ-persistently-exciting [27]
that is, for any δ > 0 there exist Tδ and µδ > 0 such that∣∣∣∣[edsd

]∣∣∣∣ ≥ δ =⇒
∫ t+Tδ

t

κ(ed, sd)|p(τ)|dτ ≥ µδ ∀ t ≥ 0, (16)

where | · | denotes the Euclidean norm. In turn, for the condition (16)
to hold, it is necessary to impose that the function p : R≥0 → R be
persistently exciting in the usual sense, that is, that there exist T and
µ > 0 such that ∫ t+T

t

|p(τ)|dτ ≥ µ ∀ t ≥ 0. (17)

Furthermore, we impose the following conditions on the function
t 7→ p(t) and its derivatives:

Assumption 1: There exists bp > 0 such that

max
{
|p|∞, |ṗ|∞, |p̈|∞, |p(3)|∞

}
≤ bp, (18)

where |p|∞ := supt≥0 |p(t)| and, moreover, ṗ(t) is persistently
exciting with excitation parameters (Tp, µp).

Theorem 1: Consider the system (7) in closed loop with the
controller (12)–(13) with Kdt, Kpt, Kdθ , and Kpθ diagonal positive
definite and let Assumption 1 hold. Suppose, in addition, that there
exists T ∗ > 0 such that Tij(t) ∈ [0, T ∗] for all i, j ≤ N , t ≥ 0 and
the matrices Kdt and Kpt satisfy

1−
(
1 +N2ā2

)
T ∗λM (KptK

−1
dt ) ≥ 0, (19)

where λM (·) denotes the largest eigenvalue, ā := max{aij}. Then,
the origin in the closed-loop state space, i.e, {(e, s, θ̃, v, ω) =
(0, 0, 0, 0, 0)}, is uniformly globally asymptotically stable.

The proof of Theorem 1 is based on Lyapunov’s direct method. For
clarity of exposition, it is divided in two main parts: first, we derive
the closed-loop equations and, then, we present the main guidelines
to construct a strict Lyapunov-Krasovskiı̆ functional.

B. The closed-loop equations

The first two error equations are obtained by differentiating on
both sides of the the two equations in (10) and using (7a) and

Φ̇(θ) = −Φ(θ)⊥ω̄, Φ̇(θ)⊥ = Φ(θ)ω̄, (20)

where ω̄ := diag[ωi] ∈ RN×N , to obtain

ė = −ω̄s+ Φ(θ)>LΦ(θ)v (21)

ṡ = ω̄e+ Φ(θ)⊥>LΦ(θ)v. (22)

Then, by direct substitution of (12) and (13) in (7b) and (7d),
respectively, we obtain

v̇ = −Kdtv −Kpted (23a)
˙̃
θ = ω (23b)

ω̇ = −Kdθω −Kpθ θ̃ − p(t)κ(sd, ed). (23c)

Note the dependence on the delayed errors ed and sd in (23a) and
(23c) —for the purpose of analysis we stress that, after (14) and (15),
ed and sd may be expressed in function of e and s as

ed = e+ Φ(θ)>A(żt), (24a)

sd = s+ Φ(θ)⊥>A(żt), (24b)

where żt is short notation for żt(∆) := ż(t+∆), with ∆ ∈ [−T ∗, 0]
and the vector A(żt) ∈ R2N is defined as

A(żt) :=

A1(żt)
...

AN (żt)

 , Ai(żt) =
∑
j∈Ni

aij

∫ t

t−Tji(t)
żj(τ)dτ.

Furthermore, κ(ed, sd) in (23c) may be expressed as

κ(ed, sd) = κ(e, s) + κd(e, s, θ, żt) (25)

where

κd =
1

2


A>1 A1 + 2e1φ

>
1 A1 + 2s1φ

⊥>
1 A1

...
A>NAN + 2eNφ

>
NAN + 2sNφ

⊥>
N AN

 . (26)

Remark 4: If measurements are not affected by delays,A>i (żt) = 0
and we recover the error-dynamics equations from [14], [22].

Remark 5: The smooth time-varying stabilization mechanism may
be roughly explained as follows. On one hand, the term −p(t)κ(s, e)
acts as a perturbation to the angular dynamics, (23c), as long as either
of the errors, ed and sd are away from a δ-neighbourhood of the
origin. This is necessary because without the term −p(t)κ(sd, ed),
even in the absence of delays, θ would converge exponentially fast to
the reference θd. Now, on {v = 0, ω = 0}, we have ė(t) = ṡ(t) = 0
—see (21), (22) without guarantee that consensus has been reached,
i.e., that both, e(t) = 0 and s(t) = 0 —see Eq. (11). On the other
hand, the control input uv steers v, ed, and sd to zero, rendering the
“perturbation” −p(t)κ(sd, ed) smaller in norm and thereby allowing
for θ̃ to converge to zero as well. For further insight on δ-persistently-
exciting controllers see [23], [28], [14].

Next, akin to latter reference, for the purpose of analysis let us
introduce the new errors

eθ = θ̃ + q(t)κ(s, e), eω = ω + q̇(t)κ(s, e) (27)

where q : R≥0 → RN×N is a differentiable function defined
dynamically as

q̈ +Kdθ q̇ +Kpθq = p(t)IN , (28)

where Kdθ and Kpθ are diagonal positive definite matrices and IN
denotes the N ×N identity matrix. Therefore, in view of (18) there
exists bq > 0 such that

max
{
|q|∞, |q̇|∞, |q̈|∞, |q(3)|∞

}
≤ bq. (29)

In the new equivalent coordinates (27), the closed-loop dynamics
equations become

Ẋt =

−Kdt −Kpt 0
0 0 q̇κ̄− ēω
0 −q̇κ̄+ ēω 0

Xt
+

 0

Φ>L
Φ⊥>L

Φv −

KptΦ
>

0
0

A(żt) (30a)

Ẋr =

[
0 IN
−Kpθ −Kdθ

]
Xr +

[
q
q̇

] [
ēΦ>+ s̄Φ⊥>

]
LΦv −

[
0
p

]
κd,

(30b)

where κ̄ :=diag[s2i + e2i ], ēω :=diag[eωi ], Xt := [v> e> s>]>,
and Xr := [e>θ e

>
ω ]>. The rest of the proof consists in establishing

uniform global asymptotic stability of the origin for (30).

C. Stability analysis

We proceed now to construct a Lyapunov-Krasovskiı̆ functional for
(30), by relying on the Lyapunov function proposed in [22] for the
system (21)–(23) subject to (ed, sd) = (e, s), that is, without delays.

First, we observe that the translational part of the system, i.e.,
Eq. (30a), admits the following non-strict Lyapunov-Krasovskiı̆ func-
tional

V (v, z, żt) = v>K−1
pt v + z>Lz +

∫ 0

−T∗

∫ t

t+θ

|ż(τ)|2dτdθ. (31)
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After [14, Lemma 1], we have

λ2(L)z>Lz ≤ |e|2 + |s|2 ≤ λN (L)z>Lz, (32)

where λi(L) denotes the ith eigenvalue of L so, in view of the
inequality∫ 0

−T∗

∫ t

t+θ

|ż(τ)|2dτdθ ≤ T ∗
∫ t

t−T∗
|ż(τ)|2 dτ,

it follows, according to [29], that the functional V is positive definite
and radially unbounded with respect to Xt. Furthermore, the time-
derivative of V along the trajectories of (30a) is

V̇ =− 2v>K−1
pt Kdtv + 2v>Φ(θ)>A(żt) + T ∗|v|2

−
∫ t

t−T∗
|ż(τ)|2dτ

≤− [2− T ∗λM (KptK
−1
dt )]v>K−1

pt Kdtv + 2v>Φ(θ)>A(żt)

− 1

ā2N

N∑
j=1

N∑
i=1

a2ij

∫ t

t−Tij
|żi(τ)|2dτ. (33)

Now, on one hand, after Jensen’s inequality, we have

−
∫ t

t−Tij
|żi(τ)|2dτ ≤ − 1

T ∗ij

∣∣∣∣∣
∫ t

t−Tij
żi(τ)dτ

∣∣∣∣∣
2

(34)

while, on the other, the second term on the right-hand
side of (33) satisfies 2v>Φ(θ)>A(żt) ≤ (N/2ε)|A(żt)|2 +
ελM (KptK

−1
dt )v>K−1

pt Kdtv for any ε > 0. Let ε = N2āT ∗. Then,
using

|A(żt)|2 ≤N
N∑
j=1

N∑
i=1

a2ij

∣∣∣∣∣
∫ t

t−Tij
żi(τ)dτ

∣∣∣∣∣
2

(35)

and (19), we obtain

V̇ ≤ − v>K−1
pt Kdtv − Y (żt) (36)

Y (żt) :=
1

2ā2NT ∗

N∑
j=1

N∑
i=1

a2ij

∣∣∣∣∣
∫ t

t−Tij
żi(τ)dτ

∣∣∣∣∣
2

which is negative semidefinite. That is, V is a non-strict Lyapunov-
Krasovskiı̆ functional for the system (30a).

Next, following the Mazenc construction method of strict Lya-
punov functions [25], [24], we introduce a function (t,Xt, V ) 7→
W (t,Xt, V ). We recall the function proposed in [22]:

W = γ(V )V + V κ(s, e)>Υ(t)κ(s, e) + α(V )e>v − c1V e>q̇s
+ c1bqλN (L)V 2 +

[
λN (L) + |Kpt|

]
α(V )V (37)

where bq > 0 is defined in (29), γ and α are non decreasing functions
mapping R≥0 to R>0 chosen as polynomials of V —see the appendix
for details—, and

Υ(t) := 1 + 2b2qTIN −
2

T

∫ t+T

t

∫ m

t

q̇(τ)2dτ dm. (38)

Remark 6: We stress for further development that e>v and e>s
are quadratic terms that, in view of the triangle inequality, (31), and
(32), satisfy e>v + e>s ≤ cV for some appropriate value of c > 0.
Therefore, in view of (29),

α(V )e>v − c1V e>q̇s ≤ c α′(V ) (39)

for some continuous non-decreasing function α′ : R≥0 → R>0. The
specific definitions of c and α′ are irrelevant, but in the sequel we
use extensively this type of bound.

The computation of Ẇ involves lengthy but straightforward steps
that are relegated to the appendix —cf. [21]. We rather underline

the purpose of the terms that compose W and the main steps in the
differentiation of this function.

The purpose of the term γ(V )V is to generate in Ẇ the term
−γ(V )v>K−1

pt Kdtv, whose negativity is “enforced” by the factor
γ(V ) —cf. (36). The second term on the right-hand side of (37),
generates the negative term − µ

T
V |κ(e, s)|2. This is in virtue of the

fact that

Υ̇(t) ≤ − 2

T

∫ t+T

t

q̇(τ)2dτ + 2b2qIN ∀ t ≥ 0 (40)

and q̇ is persistently exciting, as per Assumption 1. Indeed, this
follows because q̇ is solution to

q(3) +Kdθ q̈ +Kpθ q̇ = ṗ(t)IN

—cf. (28), [30].
Next, the respective derivatives of the third and fourth terms on

the right hand side of (37) satisfy, respectively,

d

dt

[
α(V )e>v

]
≤− ∂α

∂V
e>vv>KdtK

−1
pt v + α(V )

[
v>Φ>LΦv

+s>q̇κ̄v − e>Kdtv − e>Kpte− v>ēωs
]

(41)

d

dt

[
−c1V e>q̇s

]
≤−e>q̈sV c1 + c1[e>q̇s]v>KdtK

−1
pt v

−c1V
[
v>Φ>LΦq̇s+ s>κ̄q̇2s− e>q̇2κ̄e

+e>q̇Φ⊥>LΦv − s>ēω q̇s+ e>q̇ēωe
]
. (42)

Note the non-positive terms −α(V )e>Kpte and −c1V s>κ̄q̇2s in
(41) and (42) respectively; all the other terms are of undefined sign
and may be bounded as those in (39). On the other hand, in view
of (36), the total derivative of the last two terms that define W is
negative semidefinite and serves in bounding from above the terms
of undefined sign in (41) and (42). Thus, for an appropriate choice
of γ(V ) and α(V ) —see the appendix for details—, we obtain

Ẇ ≤− 1

2
γ(V )v>KdtK

−1
pt v −

1

4
α(V )e>Kpte−

µ

2T
V |κ(s, e)|2

− α(V )v>ēωs+ c1V s
>q̇ēωs− q̇c1V e>q̇ēωe

− α(V )e>KptΦ(θ)>A(żt)

−
[
γ(V )− c1e>q̇s+

[ ∂α
∂V

e>v
]]
Y (żt). (43)

Now, for any σ > 0 we have

α(V )v>ēωs ≤
λN (L)|K−1

dt
Kpt|

σ
α(V )V v>KdtK

−1
pt v + σ

4
α(V )|eω|2,

(44)

c1V e
>
ω q̇ (s̄s− ēe) ≤ c1V bq

[
σ

4
|eω|2 +

4

σ
|κ(s, e)|2

]
. (45)

Furthermore,

−α(V )e>KptΦ(θ)>A(żt) ≤
α(V )

16
e>Kpte+4α(V )λM (Kpt) |A|2 ,

and

|A|2 ≤ N
N∑
j=1

N∑
i=1

a2ij

∣∣∣∣∣
∫ t

t−Tij
żi(τ)dτ

∣∣∣∣∣
2

hence, |A(żt)|2 ≤ 2N2T ∗ā2Y (żt) and for an appropriate choice of
γ(V ) and α(V ), the sum of the last two terms on the right-hand side
of (43) is non-positive. Furthermore, after (44)–(45), if we set

σ(V ) =
4λN (L)

∣∣K−1
dt Kpt

∣∣α(V )V

γ(V )
+

16Tc1bq
µ

(46)

we obtain

Ẇ ≤− 1

4
γ(V )v>KdtK

−1
pt v −

1

8
α(V )e>Kpte
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− µ

4T
V |κ(s, e)|2 +

σ

4

[
α(V ) + bqc1V

]
|eω|2. (47)

Note that, apart from the last term on the right-hand side of (47), Ẇ
is negative definite in Xt.

The next step in the construction of a Lyapunov-Krasovskiı̆ func-
tional for the closed-loop system is to design a function of Xr whose
derivative contains terms that are sufficiently negative to dominate
over the last term on the right-hand side of (47). Let

Z(Xr) = c2
[
e>ω eω + e>θ Kpθeθ

]
+ e>θ eω (48)

which is positive definite in Xr for an appropriate choice of c2 > 0.
For clarity of exposition in the computation of Ż along the trajectories
of (30b) let, for the time being, κd ≡ 0. Then, the derivative of Z
along the trajectories of (30b) satisfies

Ż(Xr) ≤−
[
c2
4
e>ωKdθeω +

1

4
e>θ Kpθeθ

]
+
c2
2

∣∣ēΦ>LΦv
∣∣2 +

c2
2

∣∣s̄Φ⊥>LΦv
∣∣2 (49)

Furthermore, using the inequalities∣∣ēΦ>LΦv
∣∣2 ≤ λN (L)V

∣∣Φ>LΦ
∣∣2
∞

∣∣K−1
dt Kpt

∣∣ v>KdtK
−1
pt v,∣∣s̄Φ⊥>LΦv

∣∣2 ≤ λN (L)V
∣∣Φ⊥>LΦ

∣∣2
∞

∣∣K−1
dt Kpt

∣∣v>KdtK
−1
pt v

and defining

ρ3(V ) =
c2λN (L)

∣∣K−1
dt Kpt

∣∣
2

[ ∣∣Φ>LΦ
∣∣2
∞ +

∣∣Φ⊥>LΦ
∣∣2
∞

]
,

we obtain

Ż(Xr) ≤−
[
c2
4
e>ωKdθeω +

1

4
e>θ Kpθeθ

]
+ 2ρ3(V )V v>KdtK

−1
pt v.

By a simple inspection one may see that Ẇ+[ · ]Ż can be rendered
negative semidefinite if Z(Xr) is scaled appropriately by a factor
depending on V . Let V 7→ ρ1(V ) be a strictly increasing function
of V such that ρ1(0) > 0. Then, the total derivative of ρ1(V )Z(Xr)
along the trajectories of (30b) yields

d

dt

[
ρ1(V )Z(Xr)

]
≤− ρ1(V )

[
c2
4
e>ωKdθeω +

1

4
e>θ Kpθeθ

]
+ ρ1(V )ρ3(V )V v>KdtK

−1
pt v + 2ρ1(V )Kptc2e

>
ωκd

+ ρ1(V )Kpte
>
θ κd + Z(Xr)V̇ (50)

and we recall that V̇ satisfies (36). Then, we use the identity

κd(ed, sd) =
1

2

 |A1|2
...

|AN |2

+ ēΦ>A(żt) + s̄Φ⊥>A(żt)

as well as the inequalities

λM (Kpt)c2ρ1(V ) |eω| |A|2 ≤
λM (Kpt)c2

2ε1
|eω|2 |A|2

+ λM (Kpt)c2ρ1(V )2
ε1
2
|A|2 ,

1

2
λM (Kpt)ρ1(V ) |eθ| |A|2 ≤

λM (Kpt)

4ε1
|eθ|2 |A|2

+ λM (Kpt)ρ1(V )2
ε1
4
|A|2 ,

2ρ1(V )Kptc2e
>
ω

[
ēΦ>+ s̄Φ⊥>

]
A(żt) ≤ 2

λM (Kpt)ρ1(V )c2
ε

|eω|2

+ ελM (Kpt)c2ρ1(V )
(
e2 + s2

)
|A|2 ,

ρ1(V )Kpte
>
θ

[
ēΦ> + s̄Φ⊥>

]
A(żt) ≤

λM (Kpt)ρ1(V )

ε
|eθ|2

+ ρ1(V )λM (Kpt)
(
e2 + s2

) ε
2
|A|2 ,

which hold for any ε, ε1 > 0, to obtain

d

dt

[
ρ1(V )Z(Xr)

]
≤ −ρ1(V )

[
c2
4
e>ωKdθeω +

1

4
e>θ Kpθeθ

]
+ ρ1(V )ρ3(V )V v>KdtK

−1
pt v + Z(Xr)V̇

+
λM (Kpt)ρ1(V )

ε
[2c2 + 1]

[
|eω|2 + |eθ|2

]
+
λM (Kpt)

2ε1

[
c2 +

1

2

][
|eω|2 + |eθ|2

]
|A|2

+ λM (Kpt)ρ1(V )
[
c2 +

1

2

] [
ρ1(V )

ε1
2

+ λN (L)V ε
]
|A|2 .

(51)

We see that for sufficiently large values of ε, the sum of the first and
fourth terms on the right-hand side of (51) is non-positive and so is
the sum of the third and fifth terms, in view of (36) and

Z(Xr) ≥ min {1, λm(Kpθ)}
[
|eθ|2 + |eω|2

]
,

|A|2 ≤ N
N∑
j=1

N∑
i=1

a2ij

∣∣∣∣∣
∫ t

t−Tij
żi(τ)dτ

∣∣∣∣∣
2

.

Therefore, we have

d

dt

[
ρ1(V )Z(Xr)

]
≤ −ρ1(V )

[
3c2
16

e>ωKdθeω +
3

16
e>θ Kpθeθ

]
+ λM (Kpt)ρ1(V )

[
c2 +

1

2

] [
ρ1(V )

ε1
2

+ λN (L)V ε
]
|A|2

+ ρ1(V )ρ3(V )V v>KdtK
−1
pt v. (52)

Thus, in view of (47) and (52), the total derivative of

V(t,Xt, Xr) = W (t, V, v, e, s) + ρ1(V )Z(Xr) + ρ2(V )V

along the trajectories of (30), where

ρ2(V ) = 2λM (Kpt)ρ1(V )[1 + c2]N2ā2T ∗[λN (L)εV + ε1ρ1(V )]

+ 2ρ1(V )ρ3(V )V,

satisfies

V̇ ≤ − 1

8
γ(V )v>KdtK

−1
pt v −

1

16
α(V )e>Kpte−

µ

8T
V |κ(s, e)|2

− ρ1(V )

[
c2
16
e>ωKdθeω +

1

16
e>θ Kpθeθ

]
, (53)

which is negative definite since, by design, ρ1(0) > 0. Also,
V(t,Xt, Xr) is positive definite. The result follows.

IV. SIMULATION RESULTS

We present now some illustrative numerical simulations using four
differential wheeled mobile robots. The desired formation pattern is
fixed to be a rhomboid with an open-chain interconnection graph; its
Laplacian and schematic representation are given in Figure 1.

1 2

34

L =


1 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1


Fig. 1. Interconnection undirected graph and Laplacian matrix

The initial positions and the relative distances with regards to
the center of the formation are given in Table I. The control gains
have been set to: Kdt = 60I4; Kpt = 30I4; Kdθ = 30I4; and
Kpθ = 10I4. The persistently exciting function p(t) is given by
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p(t) = −3 + 2π sin(0.5t). For simplicity, the time-varying delay is
the same for all the interconnections and is depicted in Fig. 2, its
bound has been taken as T ∗ = 0.37. These delays follow a normal
Gaussian distribution with a mean of 0.3 and a variance of 0.0003
—cf. [31]. Under this scenario, condition (19) is satisfied.

TABLE I
INITIAL CONDITIONS AND DESIRED ORIENTATIONS AND RELATIVE

xi(0) yi(0) θi(0) δxi δyi θdi
1 5 -7 −(1/3)π -2 0 -1
2 -4 7 (2/3)π 0 2 1
3 -2 -5 (4/3)π 2 0 0
4 7 3 0 0 -2 0.5

2 4 6 8 10
0.24

0.28

0.32

0.36

Fig. 2. Time delay in the network interconnection.

-5 0 5

-6

-4

-2

0

2

4

6

8

Fig. 3. Trajectories and formation of the network of mobile robots.

-4

0

3

6

0 10 20 30 40 50
-9

-6

-3

0

3

Fig. 4. Evolution of the relative positions zi.

Fig. 3 shows the xi, yi trajectories of the nonholonomic mobile
robots, while Figs. 4 and 5 depict the relative positions zi and the
orientation of the robots. From these plots it can be observed that

the robots reach the target formation and their respective orientations
converge to the desired values. The “zigzaggy” motion is common
in stabilization of nonholonomic robots —cf. [9], [6], [11], [15].

0 10 20 30 40 50

0

2

4

6

Fig. 5. Orientation of each mobile robot in the network.

V. CONCLUSIONS

A decentralized smooth time-varying controller that guarantees
partial-consensus among groups of nonholonomic mobile robots
interacting over a network that is affected by time-varying commu-
nication delays was presented. Uniform global asymptotic stability
of the consensus set is formally established via constructive proof (a
strict Lyapunov-Krasovskiı̆ functional is provided). From a practical
viewpoint, however, the solution presented has the limitation of
relying on global-positioning systems which, in a variety of con-
crete robotics scenarii, are unavailable. Current research focuses on
consensus control using relative-positioning measurements, including
under the influence of delays.
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APPENDIX

Detailed computation of Ẇ , after (37)

We evaluate the total derivative of each term on the right-hand side
of (37). First, since γ is non-decreasing, we have

d

dt

[
γ(V )V

]
≤− γ(V )V̇ . (54)

Now, for the second term, we have

d

dt

[
V κ>Υ(t)κ

]
≤− V κ> 1

T

∫ t+T

t

q̇(s)2dsκ+

V κ>q̇(t)2κ+ 2V κ>Υ
[
ēΦ>LΦv + s̄Φ⊥>LΦv

]
and since q̇ is persistently exciting with parameters(µ, T ) and the
following identities hold: κ>ΥēΦ>LΦv = e>κ̄ΥΦ>LΦv and
κ>Υs̄Φ⊥>LΦv = s>κ̄ΥΦ⊥>LΦv, we obtain

d

dt

[
V κ>Υ(t)κ

]
≤ − µ

T
V |κ|2 + V κ>q̇(t)2κ

+ 2V κ>Υ
[
ēΦ>LΦv + s̄Φ⊥>LΦv

]
≤− µ

T
V |κ|2 + V κ>q̇(t)2κ+ 2V e>κ̄ΥΦ>LΦv

+ 2V s>κ̄ΥΦ⊥>LΦv.

Then, after the triangle inequality, the following hold for any ε > 0:

d

dt

[
V κ>Υ(t)κ

]
≤− µ

T
V κ>κ+ V κ>q̇(t)2κ

+ V

[
1

ε
e>κ̄e+ εv>Φ>LΦΥκ̄Φ>LΦv

]
+ V

[
1

ε
s>κ̄s+ εv>Φ⊥>LΦΥκ̄Φ⊥>LΦv

]
≤− µ

T
V κ>κ+ V κ>q̇(t)2κ+ V

2

ε
κ>κ

+ V εv>Φ>LΦΥκΦ>LΦv

+ V εv>Φ⊥>LΦΥκΦ⊥>LΦv

≤−
[
µ

T
− 2

ε

]
V κ>κ+ V κ>q̇(t)2κ

+ V 2ελN (L)

[∣∣∣ΥΦ>LΦ
∣∣∣2
∞

+
∣∣∣ΥΦ⊥>LΦ

∣∣∣2
∞

]
×∣∣KdtK

−1
pt

∣∣ v>KdtK
−1
pt v

for which we also used the inequalities s>κ̄s+ e>κ̄e ≤ 2κ>κ,

v>ΦTLΦΥκΦTLΦv ≤ λN (L)V
∣∣∣ΥΦ>LΦ

∣∣∣2
∞
×∣∣K−1

dt Kpt

∣∣ v>KdtK
−1
pt v,

and

v>Φ⊥>LΦΥκΦ⊥>LΦv ≤ λN (L)V
∣∣∣ΥΦ⊥>LΦ

∣∣∣2
∞
×∣∣K−1

dt Kpt

∣∣ v>KdtK
−1
pt v.

Next, using the inequality V κ>q̇(t)2κ ≤ V s>q̇(t)2κ̄s +
b2qλN (L)V 2

∣∣K−1
pt

∣∣ e>Kpte, we obtain:

d

dt

[
V κ>Υ(t)κ

]
≤−

[
µ

T
− 2

ε

]
V κ>κ+ V s>q̇(t)2κ̄s

+ b2qλN (L)V 2
∣∣K−1

pt

∣∣ e>Kpte

+ V 2ελN (L)

[∣∣∣ΥΦ>LΦ
∣∣∣2
∞

+
∣∣∣ΥΦ⊥>LΦ

∣∣∣2
∞

]
×∣∣K−1

dt Kpt

∣∣ v>KdtK
−1
pt v.

(55)

For the third term on the right-hand side of (37), we have

d

dt

[
α(V )e>v

]
≤
[
∂α

∂V
e>v

]
V̇ + α(V )

[
v>Φ>LΦv + s>q̇κ̄v

−e>Kdtv − e>Kpte− v>ēωs− e>KptΦ
>A
]

≤− α(V )e>Kpte+

[
∂α

∂V
e>v

]
V̇

+ α(V )v>
[
Φ>LΦK−1

dt Kpt

]
KdtK

−1
pt v

+ α(V )s>q̇κ̄v − α(V )e>KptKdtK
−1
pt v

− α(V )v>ēωs− α(V )e>KptΦ
>A
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≤− α(V )e>Kpte+

[
∂α

∂V
e>v

]
V̇

+ α(V )
∣∣∣Φ>LΦ

∣∣∣
∞

∣∣K−1
dt Kpt

∣∣ v>KdtK
−1
pt v

+
1

ε
s>q̇2κ̄2s+

ε

4

∣∣KptK
−1
dt

∣∣α2(V )v>KdtK
−1
pt v

+
1

ε
α(V )e>Kpte+

ε

4
α(V ) |Kdt| v>KdtK

−1
pt v

− α(V )v>ēωs− α(V )e>KptΦ
>A (56)

in which we used the inequalities

v>Φ>LΦv ≤
∣∣∣Φ>LΦ

∣∣∣
∞

∣∣K−1
dt Kpt

∣∣ v>KdtK
−1
pt v,

α(V )s>q̇κ̄v ≤ 1

ε
s>q̇2κ̄2s+

ε

4

∣∣KptK
−1
dt

∣∣α2(V )v>KdtK
−1
pt v,

and

αe>Kdtv ≤
1

ε
α(V )e>Kpte+

ε

4
|Kdt|α(V )v>KdtK

−1
pt v.

Rearranging terms, we obtain

d

dt

[
α(V )e>v

]
≤ −α(V )e>Kpte

[
1− 1

ε

]
+
λN (L)

ε
V s>q̇2κ̄s− α(V )v>ēωs

+

[
−
[ ∂α
∂V

e>v
]

+ α(V )
∣∣∣Φ>LΦ

∣∣∣
∞

∣∣K−1
dt Kpt

∣∣
+
ε

4

∣∣KptK
−1
dt

∣∣α2(V ) +
ε

4
α(V ) |Kdt|

]
v>KdtK

−1
pt v

− α(V )e>KptΦ
>A+

∂α

∂V
e>vY (żt) (57)

Next, we evaluate the derivative of the fourth term on the right-
hand side of (37). We obtain

d

dt

[
−c1V e>q̇s

]
≤− e>q̈sV c1 − c1[e>q̇s]V̇

− c1V
[
v>Φ>LΦq̇s+ s>κ̄q̇2s− e>q̇2κ̄e

+e>q̇Φ⊥>LΦv − s>ēω q̇s+ e>q̇ēωe
]

≤− c1V s>q̇2κ̄s+
ε

4
b2qc

2
1e
>e+

1

ε
V 2s>s

+
[
c1e
>q̇s

]
v>KdtK

−1
pt v +

[
c1e
>q̇s

]
Y (żt)

+
ε

4
c21
∣∣K−1

dt Kpt

∣∣ ∣∣∣q̇2[Φ>LΦ
]2∣∣∣
∞
v>KdtK

−1
pt v

+
1

ε
V 2s>s+ b2qc1λN (L)V 2e>e− c1V e>q̇ēωe

+
1

ε
c1

∣∣∣q̇2[Φ⊥>LΦ
]2∣∣∣
∞

∣∣K−1
dt

∣∣V e>Kpte

+
ε

4
c1V v

>KdtK
−1
pt v + c1V s

>q̇ēωs

for which we used the inequalities:

c1V e
>q̈s ≤ ε

4
c21b

2
qe
>e+

1

ε
V 2s>s,

c1V v
>Φ>LΦq̇s ≤ ε

4
c21

∣∣∣q̇2[Φ>LΦ
]2∣∣∣
∞

∣∣K−1
dt Kpt

∣∣ v>KdtK
−1
pt v

+
1

ε
V 2s>s,

and

c1V e
>q̇Φ⊥>LΦv ≤ 1

ε
c1V

∣∣∣q̇2[Φ⊥>LΦ
]2∣∣∣
∞

∣∣K−1
dt

∣∣ e>Kpte

+
ε

4
c1V v

>KdtK
−1
pt v.

Therefore, using the inequality

V 2s>s ≤V 2λN (L)
∣∣K−1

dt

∣∣ v>K−1
pt Kdtv +

4N

λ2(L)
V κ>κ

we obtain
d

dt

[
−c1V e>q̇s

]
≤ −c1V s>q̇2κ̄s+

[
c1e
>q̇s

+
ε

4
b2qc

2
1

∣∣K−1
dt Kpt

∣∣∣∣∣[Φ>LΦ
]2∣∣∣
∞

+
ε

4
c1V

]
v>KdtK

−1
pt v

+

[
b2qc1λN (L)

∣∣K−1
pt

∣∣V 2 +
1

ε
c1

∣∣∣q̇2[Φ⊥>LΦ
]2∣∣∣
∞

∣∣K−1
dt

∣∣V
+
ε

4
b2qc

2
1

∣∣K−1
pt

∣∣] e>Kpte+
[
c1e
>q̇s

]
Y (żt)

+
2

ε
V 2λN (L)

∣∣K−1
dt

∣∣ v>K−1
pt Kdtv +

8N

λ2(L)ε
V κ>κ

+ c1V s
>q̇ēωs− c1V e>q̇ēωe. (58)

Putting the bounds (57), (58), (56), (55), and (54) together, we obtain

Ẇ ≤ −
[
γ(V )− V 2ελN (L)

[ ∣∣ΥΦ>LΦ
∣∣2
∞

+
∣∣ΥΦ⊥>LΦ

∣∣2
∞

] ∣∣K−1
dt Kpt

∣∣+
[ ∂α
∂V

e>v
]

−α(V )
∣∣Φ>LΦ

∣∣
∞

∣∣K−1
dt Kpt

∣∣− ε

4
|Kpt|α(V )2 −

[
c1e
>q̇s

]
− ε

4
α(V ) |Kdt| −

ε

4
c21
∣∣K−1

dt Kpt

∣∣ ∣∣∣[Φ>LΦ
]2
q̇2
∣∣∣
∞
− ε

4
c1V

−2

ε
V 2λN (L)

∣∣K−1
dt

∣∣] v>KdtK
−1
pt v

−
[
α(V )

[
1− 1

ε

]
− b2qλN (L)V 2

∣∣K−1
pt

∣∣
−b2qc1λN (L)

∣∣K−1
pt

∣∣V 2 − 1

ε
c1

∣∣∣q̇2[Φ⊥>LΦ
]2∣∣∣
∞
×∣∣K−1

dt

∣∣V − ε

4
b2qc

2
1

∣∣K−1
pt

∣∣] e>Kpte+
[
c1e
>q̇s

]
Y (żt)

− α(V )e>KptΦ(θ)>A(żt)−
[ ∂α
∂V

e>v
]
Y (żt)

−
[
c1 − 1− λN (L)

ε

]
V s>q̇2κ̄s−

[ µ
T
− 2

ε
− 8n

λ2(L)ε

]
V |κ|2

− α(V )v>ēωs+ c1V s
>q̇ēωs− c1V e>q̇ēωe

Then setting ε = max
{

2, 2T
µ

[
2 + 8N

λ2(L)

]}
,

γ(V ) ≥ 2V 2ελN (L)
[ ∣∣ΥΦ>LΦ

∣∣2
∞ +

∣∣ΥΦ⊥>LΦ
∣∣2
∞

]∣∣K−1
dt Kpt

∣∣
+
∂α

∂V
V
[
|Kpt|+ λN (L)

]
+
ε

2
c1V

+ 2α(V )
∣∣Φ>LΦ

∣∣
∞

∣∣K−1
dt Kpt

∣∣
∞ +

ε

2

∣∣KptK
−1
dt

∣∣α2(V )

+
ε

2
α(V ) |Kdt|+ 2c1bqλN (L)V +

4

ε
V 2λN (L)

∣∣K−1
dt

∣∣
+
ε

2
c21
∣∣K−1

dt Kpt

∣∣ ∣∣∣q̇2[Φ>LΦ
]2∣∣∣
∞
,

α(V ) ≥ 4b2qλN (L)V 2
∣∣K−1

pt

∣∣+ 4b2qc1λN (L)
∣∣K−1

pt

∣∣V 2

+ 4
1

ε
c1

∣∣∣q̇2[Φ⊥>LΦ
]2∣∣∣
∞

∣∣K−1
dt

∣∣V + 4
ε

4
b2qc

2
1

∣∣K−1
pt

∣∣
and

c1 = 1 +
λN (L)

max
{

2, 2T
µ

(
1 + 2N

λ2(L)

)} ,
we obtain

Ẇ ≤− 1

2
γ(V )v>KdtK

−1
pt v −

1

4
α(V )e>Kpte−

µ

2T
V |κ|2

− α(V )v>ēωs+ c1V s
>q̇ēωs− q̇c1V e>q̇ēωe

− α(V )e>KptΦ(θ)>A(żt)

−
[
γ(V )− c1e>q̇s+

[ ∂α
∂V

e>v
]]
Y (żt)


