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Abstract

Acting in robotics is driven by reactive and deliberative reasonings which
take place in the competition between execution and planning processes. Prop-
erly balancing reactivity and deliberation is still an open question for harmo-
nious execution of deliberative plans in complex robotic applications. We pro-
pose a flexible algorithmic framework to allow continuous real-time planning of
complex tasks in parallel of their executions. Our framework, named AMPLE,
is oriented towards robotic modular architectures in the sense that it turns
planning algorithms into services that must be generic, reactive, and valuable.
Services are optimized actions that are delivered at precise time points following
requests from other modules that include states and dates at which actions are
needed. To this end, our framework is divided in two concurrent processes: a
planning thread which receives planning requests and delegates action selection
to embedded planning softwares in compliance with the queue of internal re-
quests, and an execution thread which orchestrates these planning requests as
well as action execution and state monitoring. We show how the behavior of the
execution thread can be parametrized to achieve various strategies which can
differ, for instance, depending on the distribution of internal planning requests
over possible future execution states in anticipation of the uncertain evolution
of the system, or over different underlying planners to take several levels into
account. We demonstrate the flexibility and the relevance of our framework on
various robotic benchmarks and real experiments that involve complex planning
problems of different natures which could not be properly tackled by existing
dedicated planning approaches which rely on the standard plan-then-execute
loop.
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1 Introduction

While most robots can nowadays autonomously adapt to their local environment
(e.g. avoiding obstacles, reacting to wind gusts, stabilizing flight) or complete simple
missions in static environments (e.g. joining waypoints given by hands), few of
them can achieve higher-level missions in unknown or highly dynamic environments,
which requires to reason globally in terms of both space and time. For instance,
a fully autonomous search and rescue mission would require to continuously map
the surrounding and distant areas, allocate and schedule the various tasks that are
needed to search for survivors and help them while avoiding moving obstacles, by
anticipating the long-term dynamics of the environment which is itself impacted by
the effects of the robot’s current actions.

One of the key ingredients in making fully autonomous robots is the ability to
select and organize actions over time in order to fulfill some high level objectives
(e.g. maximizing reward functions, reaching symbolic system states that aggregate
topological robot locations and mission status). This implies controlling the course
of potentially uncertain events that may occur due to the execution of the actions:
their effects on the environment, as well as the imperfection of sensors and actuators
onboard the robot, are indeed various sources of exogenous events impacting the
mission (Ingrand and Ghallab, 2014).

Artificial Intelligence planning (Nau et al., 2004) is a model-based and theorem-
proving approach to this problem. Given a dynamical model of the actions of the
robot, which includes environmental conditions on their applicability and descrip-
tions of their effects on the world, AI planning aims at formally proving whether a
sequence of actions named plan can fulfill a given objective. Whereas AI planning
does not provide any means to actually generate the high-level mission objectives, it
allows the robot to autonomously select relevant actions and organize them over time
in order to achieve these objectives. Many variants of AI planning have been studied,
ranging from single-agent deterministic “classical” planning, where effects of actions
and environmental observations of a single agent are deterministic, to multi-agent
probabilistic planning with concurrent durative actions, where many agents execute
in parallel time-dependent actions with probabilistic action effects and observations
of the world, and including many intermediate models of variable computational
tractability or practical usability.

However, planning has, until recent years, been seen under a purely theoretical
prism with relatively little consideration for the real test cases, especially applications
that involve time-constrained interleaving of planning and acting, as is typically the
case in robotics. In such situations, as time goes on, the actions that were planned few
seconds ago might be no more suitable nor feasible in the current situation because
of the increasing discrepancy between the expected situation and the observed one.
Therefore, a robot might have to continuously change its plan, and an ill thought out
autonomous system might permanently chase after the current changing world state
without being able to execute its planned actions. Such poorly-designed systems
are generally unable to achieve complex missions due to their inability to properly
execute the plans that are needed to achieve high-level mission objectives. Thus, an
important aspect of real-time planning in robotics is the necessary tight coordination
between the predicted evolution of the environment and the time required to generate
plans so as to maximize the chance that planned actions are valid in the states where
they were expected to be executed.

Many successful planning frameworks for autonomous systems have been de-
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signed in the specific case of scheduling which consists in ordering a set of parallel
actions, i.e. concurrently executed, so as to minimize the total execution time or
to maximize the number of executed actions, whith an action selection mechanism
that uses the strong assumption that the environment is deterministic: e.g. EU-
ROPA (Barreiro et al., 2012), IxTeT and IxTet-ExEc (Lemai and Ingrand, 2004) or
T-REX (McGann et al., 2008). Such approaches are particularly useful in the field of
robotics, because multiple concurrent subsystems (e.g. arms, cameras, wheels, etc.)
have to be concurrently controlled and activated in parallel. This is even more true
for synchronous languages as well, where languages as PLEXIL (Verma et al., 2006)
assume that the only source of the non-determinism comes from the environment, so
they specify the plan as sets of conditional actions organized in a tree structure and
relying on a reactive platform for execution, similarly to how conditional planners do.
Our approach, however, follows the direction of reactive or continuous planning (e.g.
CASPER (Knight et al., 2001)) where an “iterative planning” procedure focuses on
fixing flaws in the proposed plans, when an anomaly occurs at execution-time, and
on continuously updating goals, state, and planning horizon. Even with this ap-
proach, continuous planners do not guarantee to converge toward a solution within
the time and resource constraints given; we improve this approach by giving to the
planning framework, the capability to switch between planning strategies, with the
guarantee to provide a plan anytime, with respect to time constraints.

The need for improving deliberative solutions is also highlighted by Nau et al.
(2015) and Ghallab et al. (2014). They focus on two interconnected principles: a
hierarchical structure to integrate the actor’s deliberation functions, and continual
online planning and reasoning throughout the acting process. Their argument is
that the importance and difficulty of deliberative acting has been underestimated so
far, and they consequently call for more research on the problems that arise when
endeavoring to integrate acting with continuous planning and deliberation.

A system interacting with a real environment would need, 1) to move toward a
more expressive and general planning model, built upon the classical deterministic
one, to extend the scope of the solver, and 2) the ability to recover from execution
errors, and to actively interact with the environment. This second point aims at a
general framework for plan execution that goes further the single action of planning
or simply an integration of planning and acting. To address this issue, we decided to
tackle planning in real-world applications by developping a “planning framework”
that actively supports the planning process through execution. This is necessary
because, during the execution, the planner could need to reactively adapt to the
changes in the environment, to revise its preferences, and to simply provide a revised
solution to the problem.

In this sense, we have worked in developing AMPLE - Anytime Meta PLannEr
(Teichteil-Konigsbuch et al., 2011; Carvalho Chanel et al., 2013, 2014), which is a
general framework for continuous and anticipatory planning while executing. AMPLE
is generic with regards to planning algorithms, strictly anytime in the sense of policy
execution under time constraints, conditional by prioritizing future execution states
and reactive to environment changes (and to other components’ requests). AMPLE

has been successfully applied to solve UAV’s missions such as : target detection
(Carvalho Chanel et al., 2013, 2014) and autonomous landing (Teichteil-Konigsbuch
et al., 2011), using (Partially Observable) Markov Decision Process planning algo-
rithms.

The contribution of this paper is first a detailed description of planning paradigms
for managing several kind of uncertainty (Sect. 2), that leads to a general schema
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for solving such problems. This schema generalizes the AMPLE framework as we show
that we can encompass any planning paradigm (not only (PO)MDP as in (Teichteil-
Konigsbuch et al., 2011; Carvalho Chanel et al., 2013, 2014)). We then describe
AMPLE (Sect. 3), better justify the variants, and present a new variant for integrating
several deterministic planning algorithms to manage uncertainty by solving several
sub-problems at the same time. Finally, we present several experiments (some al-
ready published in (Teichteil-Konigsbuch et al., 2011; Carvalho Chanel et al., 2013,
2014)) in a unified way, showing the complementarity and the interest of each eval-
uation. These experiments also include a new application to an indoor mobile robot
navigation problem (Sect. 4). These experiments emphasize that AMPLE is an effective
framework for anytime planning and executing in dynamic and uncertain domains:
it can manage several planning paradigms in a unified framework, it has been suc-
cessfully applied to solving probabilistic problems onboard robots in real-time, and
allows to implement execution strategies to adapt to specific missions.

2 Planning models

Real world applications, as robotics, are very demanding in terms of performance and
reactivity in a priori unknown environments. Dynamic domains are challenging as
they imply several complex aspects that participate to the decision making process,
namely, non-determinism, exogenous events, partial observability, etc.

Automated Planning is the model-based approach to autonomous behavior, the
branch of Artificial Intelligence dedicated to decision making and acting. Methods
for classical planning have had great success, and are in continual development and
subject of research.

Yet, the classical planning model has been extended in several directions to em-
brace more general problems that deterministic planning cannot handle. These ex-
tensions go in the direction of more elaborate models of planning to include incom-
plete information and sensing, motivated by realistic applications when the planning
agent can be immersed in a non perfectly known environment, where the effects of
acting can be non-deterministic or encoded as probabilities of success. In the do-
main of robotics, it is common to consider continuous (or hybrid) state spaces, rather
than discrete state spaces: in many cases the formulations appear identical, but the
continuous case is generally more complicated, even if it usually maintains some of
the properties from the discrete case. In the following pages, we will consider only
discrete state spaces, for sake of simplicity; in the AMPLE framework, neither the
applications, nor the use of the planner are dependent from the paradigm considered.

In the next section, we first describe general models of classical planning, and then
extensions to models used for decision-making under uncertainty, namely conformant
and contingent planning. Such models are then extended to include probabilistic
models, where uncertainty about actions’ outcomes are modeled as a probability
distribution function; consequently the goals are represented as utility functions.

2.1 Classical Planning

The paradigm of classical planning can be translated as a directed graph whose
nodes represent states, and whose edges represent actions. The change of state is
then represented as a transition from a source node toward a target node representing
the next state. The objective of automated planning is to find a plan, a path from
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the node in the graph representing the initial state to a goal node representing a
state recognized as a goal state of the problem. In classical planning, the plan is
represented as a linearly ordered finite sequence of actions that drive the system from
an initial state to a goal state. The formal model underlying the domain-independent
planning problem can be described as follows:

Definition 2.1 (Classical Planning Model) The classical planning model M is
defined as the tuple M = 〈S, s0, SG, A, ϕ〉 where:

• S is a finite set of states,

• s0 ∈ S is the initial state,

• SG ⊆ S is the set of goal states,

• A is the set of actions,

• ϕ :

∣∣∣∣ S ×A → S
(s, a) 7→ ϕ(s, a) = s′

is a state transition function where s′ is the

state resulting from applying the action a to a given state s.

An action a is applicable in a state s when at least one target state s′ such that
ϕ(s, a) = s′ exists. We define the applicability domain of an action a as the subset
Sa such that, ϕ|Sa is injective. Executing a sequence of applicable actions [a0, . . . , an]
in a given state s0, results in a chain of states such that ϕ (s0, [a0, . . . , an]) =
[s0, . . . sn+1], with ϕ(si, ai) = si+1, for 0 ≤ i ≤ n, and ai an applicable action
in si. We define the action a0 as the noop action, such that ϕ(s0, a0) = s0.

2.1.1 General algorithmic schema for classical planning.

Several approaches to solve classical planning problems have been developed, all
based on building a structure to express the problem, and then searching in that
structure for solutions. SATPlan expresses the problem as a set of clauses derived
from a GraphPlan-style planning graph up to a finite horizon (Blum and Furst, 1995),
where each specific instance of an action or fluent at a point in time is a proposition;
a general purpose SAT solver is then used to try to find a satisfying truth assignment
for the formula, allowing parallel computations when certain conditions do hold on
actions (Kautz and Selman, 1996; Rintanen et al., 2006).

However, the majority of actual planners are based on search in a graph (Hoff-
mann and Nebel, 2001; Richter and Westphal, 2010; Helmert et al., 2011; Lipovetzky
and Geffner, 2012). The search can be either boosted by fast heuristics automatically
extracted from the declarative representation of the problem, or not. Satisfiability
planning has, in fact, considerably improved thanks to state-of-the-art heuristics
that select, from a relaxed version of the problem, the more promising nodes of the
graph to expand (Bonet and Geffner, 2001; Keyder et al., 2014; Domshlak et al.,
2015), while blind searches use different criteria for node selection. Even if heuristics
based on an estimation of the goal distance are the most historically successful and
widespread, evaluation techniques using width-based algorithms (i.e. considering the
novelty of the values encoutered in the newly expanded nodes in the search graph)
that make no use of heuristic estimators, helpful actions (Hoffmann and Nebel, 2001),
landmarks (Hoffmann et al., 2004; Richter et al., 2008), have recently been proved
to obtain excellent performances (Lipovetzky and Geffner, 2017; Katz et al., 2017).
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We represent in Alg. 1 the general search algorithm for a solution in a graph,
using the heuristic evaluation function f(n) to order the open list to select the most
promising node to be expanded next. The search algorithm we use here to illustrate
a search in a graph is a variant of the best-first search (BFS) algorithm.

Algorithm 1: General schema of BFS algorithms

input : M = 〈S, s0, SG, A, ϕ〉
output: Plan π

1 open = {s0};
2 while open 6= ∅ do
3 n← pop(open);
4 if is goal( n ) then
5 π ← [ ];
6 while n 6= s0 do
7 n← parent(n);
8 π ← π ◦ n;

9 return π;

10 else
11 for each a ∈ A do
12 open ← next(n, a) ;

13 return fail;

The data structures are initialized by inserting the initial state s0 in the open
list, at line 1. The nodes in open are then expanded, meaning that their successors
are added to the list (line 12), following the heuristic order, and while the goal is
not reached (line 2). When a goal is encountered, the plan is built backward up to
the initial state as shown in line 8.

This algorithm stops when the first valid plan is encountered, without searching
for optimality. An optimal solution, even in the case of an almost perfect heuristic,
would require an exponential number of node expansions with the algorithms of the
family of A* that are used currently (Helmert et al., 2008).

The classical planning model is based on some strong assumptions, namely: a
finite state space, deterministic transitions between states, caused by the agent’s ac-
tions, and full information about the initial state. Thus, the only means of changing
the environment are the actions triggered by the planning agent.

Such assumptions on the behavior of the environment limit the applicability scope
of classical planning. However, even if limited, the good results of classical planning
techniques have cleared the path to approaches that allow several relaxations for
more general classes of models that extend both the expressive power and the solving
capacity of automated planning systems.

2.2 Non-deterministic planning, incomplete information, and par-
tial observability

A research agenda has emerged in the last 20 years focused on developing solvers to
a range of intractable models. The planning models that address to more general
classes of models relax several aspects of classical planning. For instance, relaxing
the determinism in the action effects brings to non-deterministic models, that permit
to describe tasks with exogenous events and unexpected action’s outcomes.

Directly solving the planning model involving non-deterministic actions’ effects
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is a challenging and difficult problem, that is generally tackled by techniques that
use classical planners to find a solution plan, and eventually, replan from a newly
generated problem (Kuter et al., 2008). In fact, even if it is generally considered as
a separate characteristic of the planning task, non-determinism is usually tackled by
regarding it as uncertainty on the initial state. It can indeed be proven that those
two features (non-deterministic effects, and incomplete information on the initial
situation) are equivalent, as non-deterministic effects can be eliminated by using
hidden artificial conditions on the initial state that must be introduced afresh each
time a non-deterministic action is applied (Albore et al., 2010).

Considering uncertainty about the current state of the planning agent extends the
classical planning paradigm toward two powerful models for decision-making under
uncertainty: conformant and contingent planning. These two generalizations relax
the conditions of classical planning on the initial situation, considering problems
where the current state is uncertain. On top of this uncertainty, the contingent
planning paradigm relaxes further the classical planning model by considering that
the current state is only partially observable. It implies then to deal with belief
states. Formally, in this context, a belief state can be defined by a set of states
deemed possible in a given time step. The formal model of contingent planning can
be described as follows.

Definition 2.2 (Contingent Planning) The deterministic contingent planning model
M is a tuple 〈S, S0, SG, A, O, ϕ, ω〉, where:

• S is a finite set of states,

• S0 ⊆ S is the initial non empty belief state,

• SG ⊆ S is the set of goal states,

• A is the set of actions,

• O is the set of sensing actions (the observations), s.t. O ⊆ S,

• ϕ : S × A → S is a state transition function that maps states to states s.t.
(s, a) 7→ ϕ(s, a) = s′.
The successor state s′ = ϕ(s, a) results from applying the executable action a
to a given state s

• ω : S ×O → S is an observation function that associates each state to itself if
the state is observable, the empty set otherwise: s.t. (s, o) 7→ ω(s, o) = {∅, s}.

We will indicate with b′ = ϕ(b, a) the belief state b′ resulting from applying the
action a to the belief state b. Applying an observation o on a belief b results in
the set of states compatible with observation coming from o and is denoted bo =
b ∩ {ω(s, o) | s ∈ b}.

Conformant planning is a particular case of contingent planning, where no disam-
biguation can be done on the belief state as the model considers null observability. In
a conformant planning problem the set of observations O is empty, and consequently
the observation function o : S → O never associates an observation to a state. A
conformant problem can be thus defined by the tuple 〈S, S0, SG, A, ϕ〉.

Conformant planning with deterministic actions is one of the simplest form of
planning with uncertainty. A deterministic conformant problem is like a classical
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problem but with many possible initial states instead of one, and a plan is confor-
mant when it is a valid plan for each possible initial state. In spite of its simplicity,
the conformant planning problem is harder than classical planning, as plan veri-
fication remains hard even under polynomial restrictions on plan length (Haslum
and Jonsson, 1999; Baral et al., 2000; Rintanen, 2004; Turner, 2002). Few practical
problems are purely conformant, but the ability to find conformant plans is needed
in planning with sensing, of which conformant planning is a special case where no
sensing is allowed. Indeed, relaxations of planning with sensing into conformant
cases lies at the heart of recent methods for computing contingent plans (Hoffmann
and Brafman, 2005; Albore et al., 2009) and deriving finite-state controllers (Bonet
et al., 2009).

The plan can be interpreted as an automaton, whose execution controls the
system by synchronously reading the output of the system (sensing) and providing
step by step the input for the system (the planned actions).

The idea of performing sensing is strongly bound to solving contingent planning
problems, as it provides information that consequently reduces the size of the be-
lief state: after applying a sensing action, only the states compatible with what is
observed are possible. Such sensing actions can be considered as part of the con-
trol system, when an offline plan is generated for contingent problems; the plan is
tree-shaped1, branching on every possible sensing result. But, in dynamic tasks,
an online approach is often preferred, where observations are gathered at execution
time and new actions are synthesized consequently by the planner.

2.2.1 General algorithmic schema for non-deterministic planning.

Planning under uncertainty as described in the previous sections, can be formulated
as a path-finding problem in belief space. Computational challenges faced in this
formulation are the derivation of heuristics to guide the search, and belief repre-
sentation and update (Bonet and Geffner, 2000). This formulation is the basis of
the most recent conformant planners such as Conformant-FF (Brafman and Hoff-
mann, 2004), MBP (Bertoli et al., 2006), POND (Bryce et al., 2006), CNF (To
et al., 2010), DNF (To et al., 2011), and T1 (Albore et al., 2011). The exception is
the planner T0 which is based on a translation of conformant problems P in classi-
cal problems K(P ) that are solved by off-the-shelf classical planners (Palacios and
Geffner, 2009).

The approach to planning with incomplete information about the agent’s current
state is however solvable by heuristic search in the belief states space (Bonet and
Geffner, 2000), thus considering sets of states instead of single states during the
search. The general schema for the search algorithm follows Alg. 1 above, and
is particularly true in the case of conformant planning, which is a deterministic
planning model in the belief space. Thus, at line 1, the open list is initialized with
the initial situation, that is a set of states in the case of conformant planning.

When sensors are part of the planning problem, the outcome of observing the
truth value of some state variable affects the belief state and thus the search. Con-
tingent planning can then be solved as a non-deterministic search in the belief space,
considering a noiseless sensor model (noise in the observations are considered when
discussing the POMDPs in Sect. 2.3). The difference with previous models is that
a strong solution for a non-deterministic problem exists only if the goal is reachable

1A graph can be considered instead, when repeated states are taken into account.
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regardless the possible observations that can occur during the execution path. This
implies that branching is introduced during the search not only when a deterministic
choice occurs (like in previous planning models), but when non-deterministic out-
comes are dictated by the observations. We will thus differentiate the search between
what are called the And nodes (the non-deterministic choices) and the Or nodes (the
deterministic choices) in Alg. 2. This representation yields a solution shaped as a
“decision tree” rather than a sequence of actions.

Algorithm 2: General schema of AND-OR search algorithm

input : M = 〈S, S0, SG, A,O, ϕ, ω〉
output: Plan π

1 return OR search(S0, [ ])

1 Procedure OR search(n,π)
2 if is goal( n ) then
3 return [ ];

4 foreach a ∈ A do
5 n′ ← next(n, a);
6 π ← AND search(n′, [ ]);
7 if π 6= fail then
8 return π ◦ a;

9 return fail;

1 Procedure AND search(n,π)
2 foreach oi ∈ O do
3 ni ← next(n, oi);
4 πi ← OR search(ni, [ ]);
5 if π = fail then
6 return fail;

7 return
[
if oi then πi

]
i

;

In Alg. 2, the search is then carried on differently depending if an observation
node or an action node are expanded, and starts from calling OR search on the initial
belief state (line 1), which represents all the states that are deemed possible initially.
Procedure OR search acts very closely to Alg. 1, expanding nodes following an or-
der possibly determined by an heuristics. The main difference is in the AND search

procedure, that considers the solutions from all the possible observation oi, concate-
nating them in a decision tree, where selecting the branch to execute depends on the
sensing (line 7).

Note that observations can be passive, meaning that they are applied directly
to the belief state during action execution; in such cases, the function next yields a
belief state resulting from both (active) acting and sensing.

2.3 Planning under probabilistic uncertainties

The models of planning under uncertainty we saw in the former section can be gen-
eralized by considering probabilistic effects, where the problem changes from finding
a solution that drives the environment/agent to a desired goal, into a minimization
problem related to finding a path to the goal with the highest probability of success.
Decision-theoretic planning (DTP) frameworks (Boutilier et al., 1999; Blythe, 1999)
deal with the problems of planning with incomplete information about the environ-
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ment by adopting, as underlying models, the stochastic planning models MDPs and
POMDPs to consider the expected information or reward that could be gained by
selecting an action rather than another. DTP is successfully applied in the field of
robotics, providing, among the other advantages, a common framework that take
advantage of utility functions to reason about localisation quality and navigation
cost (Carrillo et al., 2015; Makarenko et al., 2002).

The uncertainty about the outcomes of the actions can be modeled as a probabil-
ity distribution, adding to the non-deterministic model discussed above a probability
to each possible effect of an action. Markov Decision Processes (MDPs, Puterman,
1994) –in the fully observable case– and Partially Observable MDPs (Kaelbling et al.,
1998) when probabilistic uncertainty affects the sensing results (observations) as well,
are then similar in spirit to non-deterministic planning in the sense that each ac-
tion can have different outcomes, but they differ from contingent planning in several
important aspects.

The probability attached to each action effect implies that the goals are usually
represented as utility functions, i.e. numeric functions that can express preferences
over the executed actions and the desired final states, instead of a set of goal states.
Thus, to a state and an action are associated a probability of transition to a state, a
possible reward, and, in the partially observable case, an observation probability. In
such frameworks, a plan is expressed as a policy π that provides the action to execute
in each state, s.t. π : S → A, with the planning problem reduced to an optimization
problem where a solution is a (optimal) policy maximizing the expected utility. This
implies also that the planning algorithms for solving the probabilistic problems differ
substantially from the search algorithms in a graph seen above.

Definition 2.3 ((Partially Observable) Markov Decision Process) The (Par-
tially Observable) Markov decision process model M is a tuple M = 〈S,A,O,Φ, R,
Ω, γ, b0〉 where:

• S is a finite set of states,

• A is the set actions,

• O is the set of observations

• Φ : S × A × S → [0, 1] is the transition function where (s, a, s′) 7→ Φ(s, a) =
Pr(s′ | a, s) is a state probabilistic transition function that maps a transition
from state to state in a transition probability, in which the successor state s′

results from applying the executable action a to a given state s.

• R : S ×A× S → R is the reward function assigning a reward R(s, a, s′) to the
outcome of the transition Φ(s, a, s′);

• Ω is the probabilistic observation function Ω : S × A × O → [0, 1] associating
a probability Ω(s′, a, o) = Pr(o | a, s′) to an observation in a state; in the fully
observable case, Ω(s′, a, o) = 1{s′=o},

• b0 is the initial probability distribution over states,

• γ ∈ [0, 1] is the discount factor.

For convenience, we define the application function app : A → 2S , such that,
for all a ∈ A, app(a) is the set of states where action a is applicable. Besides, the
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successor function succ : S × A → 2S defines, for all s ∈ S and a ∈ A, the set of
states succ(s, a) that are directly reachable in one step by applying action a in state s.
Please note that it holds only for the fully observable case; for the partial observable
case an extension of the POMDP model has been proposed by Carvalho Chanel and
Teichteil-Königsbuch (2013).

When planning for MDPs, the state of the system is always observable, but when
partial observability is considered, in a time step, the state space is given in terms
of belief states. In this case, belief states b are probability distributions over all
possible states s such that

∑
s b(s) = 1, where b(s) is the probability assigned to

the particular state s in the belief b. In this context, at each time step t, after the
application of an action a ∈ A in a belief state, defined as an element bt ∈ ∆, and an
observation o ∈ O perceived, the agent updates its belief state using the Bayes’ rule
(Smallwood and Sondik, 1973). A policy is then a function that maps belief states
to actions, s.t. π : ∆→ A, where ∆ is the belief state space.

2.3.1 General algorithmic schema of (PO)MDP solving.

Solving (PO)MDPs consists in computing an action policy that optimizes some nu-
meric criterion V , named value function. In general, for a given policy π, this
criterion is defined as the discounted expected sum of stochastic rewards gathered
when successively applying π(s) (or π(b)) from the beginning of the decision process
over an infinite horizon.

In the MDP case, the execution of the policy corresponds to a Markov Chain, an
infinite sequence of states where each state depends on the previous one, as states
are completely observable and then π : S → A is directly applicable over the state
space. As each state has a different probability to be visited during the execution,
the expected reward for being in a particular state s, following some fixed policy π
in the infinite horizon case, is given by the equation below:

Vπ(s) = R
(
s, π(s)

)
+ γ

∑
s′

Pr
(
s′|s, π(s)

)
Vπ(s′) (1)

where γ is the discount factor such that γ ≤ 1. Equation (1) describes the expected
reward Vπ(s) for starting in a state s and applying the actions in some policy π,
considering the immediate reward R(s, π(s)) =

∑
s′ Pr(s

′|s, π(s)) · R(s, π(s), s′) for
applying action π(s) in s.

Like contingent planning, POMDPs model planning problems when the assump-
tion of full (or null) observability does not hold. This implies that an optimal policy
will not depend on the current state only, but as well on the information available up
to that point from the sequence of past observations. In the POMDP case, states are
not directly observable, so that the policy is not applicable over the hidden states of
the system. Instead, the policy is applied over the history of actions performed and
of observations gathered from the beginning of the decision process, which allows the
planner to compute a probability distribution over the possible current states of the
system at each time step, thanks to successive applications of Bayes’ rule. In other
words, if an action is executed and an observation is gathered, the agent can use
Bayes’ rule to update its belief state. Note that the new belief state only depends
on the action, on the observation, and on the previous belief state (the belief state
is Markovian). Such modelling allows a POMDP to be formulated as a MDP where
every belief is represented as a state, and state transitions probabilities are products
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of actions and observations, resulting in a belief MDP whose value function is given
in terms of belief states (Kaelbling et al., 1998).

Some algorithms optimize π over all the possible initial (belief) states of the
world, like linear programming, value iteration, policy iteration (Puterman, 1994;
Hoey et al., 1999), exact value iteration (Sondik, 1978) or witness (Kaelbling et al.,
1998). Some others use the knowledge of the system’s initial (belief) state, and
sometimes of goal states to reach, in order to compute a partial policy that is only
defined over a subset of (belief) states reachable from the initial (belief) state when
successively applying all possible actions from the initial (belief) state. Examples
of such algorithms are LAO∗ (Hansen and Zilberstein, 2001), (L)RTDP (Bonet and
Geffner, 2003), RFF (Teichteil-Königsbuch et al., 2010), HAO∗ (Meuleau et al., 2009),
PBVI (Pineau et al., 2006; Spaan and Vlassis, 2005), HSVI (Smith and Simmons,
2004), SARSOP (Kurniawati et al., 2008), offline and online AEMS (Ross and Chaib-
Draa, 2007), RTDP-Bel (Bonet and Geffner, 2009).

To the best of our knowledge, most recent (PO)MDP algorithms, at least heuristic
ones, follow the algorithmic schema depicted in Alg. 3.

Algorithm 3: General schema of (PO)MDP algorithms

input : (PO)MDP M, 0 < γ 6 1, ε > 0, N ∈ N∗, initial (belief) state I
output: Value function V and policy π

1 initialize bounds(I,V ) ;
2 while stop criterion ε not reached do
3 explore(I,ε,0) ;

4 computing π from V ;
5 return (V, π) ;

1 Procedure explore(I,ε,t)
2 if V has converged for the (belief) state I then
3 return;
4 else
5 choose an action a∗ (and an observation o∗) according to the exploration

heuristics ;
6 computing next (belief) state I ′;
7 call explore(I ′,ε,t+ 1) ;
8 update bounds, value function V and policy π for the (belief) state I);

They first initialize data structures and store the set of possible initial states
(MDPs) or the initial belief state (POMDPs) and initialize bounds usually used
to define the heuristic of (belief) state exploration as shown in line 1. Then, they
improve the value function (and the policy) performing an exploration considering
future steps (see line 3). This function implements trials choosing actions and obser-
vations, randomly or based on the heuristic function (bounds), and calling recursively
this same function (lines 5 to 7) until the value of the considered (belief) state has
converged possibly using the discount factor (line 2). In the end of a trial, these
algorithms update the policy for the set of explored states (heuristic search MDP
algorithms) or belief states (point-based and heuristic search POMDP algorithms)
by backtracking the value of these explored states (line 8). The main iteration is
performed until a convergence test becomes true (line 2), for instance when the dif-
ference between two successive value functions is ε-bounded, or when the difference
of the value of the bounds of V is less than ε for the initial (belief) state, or when
two successive policies are equal, or when the policy becomes closed, or when a
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maximum number of iterations N is reached. Some sampling-based algorithms like
RTDP or RTDP-Bel may eventually converge after an infinite number of iterations.
Finally, the optimized value function is returned and the corresponding policy (see
line 5) is extracted from this value function. Furthermore, in some cases, the policy
is computed for the first time during this final step, once the value function has con-
verged. An optimal policy can be of course obtained for POMDPs by pushing the
convergence until a fix point; but, as in the case of classical planning, computation
time could exponentially rise in that case.

2.4 General schema

Most recent planning algorithms can be rewritten into a more general algorithmic
schema shown in Alg. 4. Please note that Alg. 1, 2 and 3 have the same main
steps: initialization (line 1 in Alg. 1, line 1 in Alg. 2 and line 1 in Alg. 3), policy
improvement until some criterion is reached (lines 2-12 in Alg. 1, lines 2-3 in Alg. 3,
and procedures OR search and AND search in Alg. 2), and returning the result (line
8 in Alg. 1, line 5 in Alg. 3, and lines 3, 8 and 7 in Alg. 2). In this sense, the purpose
of Alg. 4 is to generalize in a unique algorithm these common functions of planning
algorithms: solve initialize for the initialization, solve progress for the policy
improvement, and solve end when returning the resulted policy. In the sequel of this
paper, we will refer to Alg. 4 as the general algorithm schema for solving planning
problems presented before. Without loss of generality, this algorithm returns the
policy for a planning problem given an initial set of (belief) states.

Algorithm 4: General schema of planning algorithms

input : Planning problem P, parameters αp, stop criterion ε, states or belief state I
output: policy π

1 solve initialize(P,I,αp);
2 repeat solve progress(P,I,αp); // graph exploration, update V or π

3 until solve converged(ε) ;
4 solve end(); // compute π if not done yet

5 return π;

2.5 Towards planning for robotic applications

As discussed in Sect. 1, robotic problems are challenging for decision making algo-
rithms. They involve uncertainty in the environment changes, in the effects of the
actions, in the observations outcomes. Some of these aspects can be dealt with by
using some automated planning algorithms presented in the previous sections (e.g.,
conformant planning, POMDP, . . . ). Nevertheless, an important requirement for ef-
ficient decision making in robotics is the reactiveness to environment changes (from
the point of view of the robot, including observing new parts of the environment).
When tackling real critical applications, the autonomous system is required to pro-
vide some basic guarantees to ensure the safety of the mission. For instance, in case
of UAVs, operators require that the executed policy never puts the robot in dan-
ger, which may happen in many situations like being out of battery or fuel. More
generally, the absence of an action to execute in a given situation can cause system
failures, or an unbearable waste of mission time.

To tackle the problem of reactive planning and execution, decision making al-
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gorithms have been improved to provide anytime solutions. An anytime solution
guarantees to provide an executable action for any time threshold specified. Such
anytime algorithms generally improve their first solution using as much results from
former computation efforts as possible (Likhachev et al., 2008), and they are effec-
tive when the environment does not change much between two plan computations
(Stentz, 1995; Koenig and Likhachev, 2001). Anytime algorithms quickly build an
applicable suboptimal policy, and then refine the solution, improving it if more plan-
ning time is available. A particular case of anytime planning algorithms consists in
the online planning algorithms which aim at providing as fast as possible a feasible
policy in the current execution state.

Different anytime algorithms were proposed for the different planning models
presented before (Smith and Simmons, 2004; Likhachev et al., 2008; Bonet and
Geffner, 2009; Richter et al., 2010; Korf, 1990; Cannon et al., 2012; Barto et al.,
1995; Keller and Eyerich, 2012; Ross et al., 2008; Ross and Chaib-Draa, 2007). These
so-called real-time or anytime planning approaches implement the same steps of the
general schema of planning algorithms presented before (Alg. 4). They control, for
example, how many policy improvements (trials) they will perform, like in (L)RTDP

(Bonet and Geffner, 2003), in Point-Based Value Iteration (PBVI ) algorithm for
POMDP planning (Pineau et al., 2006; Spaan and Vlassis, 2005), or in SARSOP

(Kurniawati et al., 2008).
In a more classical plan-replan approach, even using an anytime algorithm for

replanning, there is no guarantee that the replanning episode will end before the given
deadline is reached. Furthermore, the replanning requests are usually performed
when a planned action is not applicable in the current state, this is done regardless of
the time still available for planning, or of the information available to quickly update
or optimize the current plan. Consequently, when the execution controller queries
for an action in the current state at a precise time point, the previously calculated
policy may be broken and not applicable, even when using online algorithms. Such
a circumstance is not acceptable for time-constrained robotic missions, specially in
UAV applications, as battery life is precious and execution has to be continuous.

We claim that these anytime algorithms are not strictly anytime in the sense
that the execution of their continually improved policy is not guaranteed to succeed
under strict time constraints. While the prediction of the environment evolution is
properly dealt with by most planning approaches, very few of them take into account
their own computational time as a cost to optimize along with standard action costs.
These algorithms only aim at rapidly producing a first feasible plan from the current
state that is then continuously improved, yet without controlling the time required
to generate the first solution with regards to the time point where the current state
will change and the plan will not be valid anymore. For instance, when improving a
policy in the probabilistic case, no time threshold is given, except for AEMS (Ross and
Chaib-Draa, 2007) which suggests to improve the value function until a time deadline
is reached: telapsed > tdeadline, but there is no guarantee that the new launched opti-
mization loop will terminate when the deadline is reached. Guaranteeing to update
the plan as quickly as possible in order to minimize the unavailability time of the
planning system, is clearly unsatisfactory for robotics missions where time is critical
and actions have to be immediately available when queried by the execution engine.
To overcome these issues, fine control of the planning process and its interaction
with the possible future execution states of the robot are required.

Actually, the approach described below recalls goal reasoning and other tech-
niques that manage goals ordering which have been used in planning in order to
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increase agents efficiency and autonomy (Vattam et al., 2013). Sequencing the goals
of a problem to make easy the search of an overall solution, sometimes reactively,
has been used in past approaches: a form of goal reasoning is present in almost
all the recent planning agents, from the FF’s “goal agenda” (Hoffmann and Nebel,
2001) to other systems like goal managment (De Giacomo et al., 2016), goal moti-
vation (Munoz-Avila et al., 2015), learning goal priorities (Young and Hawes, 2012),
using heuristics for goal formulation (Wilson et al., 2013), and operational goal se-
mantics (Harland et al., 2014). ActorSim (Roberts et al., 2016) is a development
environment to simulate goal reasoning, and it provides the semantics to model both
hierarchical task and goal planning in a single framework. ActorSim relates to our
work with AMPLE because it addresses the same concern about providing a single
framework for planning and executing tasks while reasoning about goal selection
strategies, even if ActorSim does not develop the (actual) anytime planning aspect,
even if it can theoretical rely on existing anytime planners; instead, it relies on a re-
finment of HTN (Hierarchical Task Network) planning that integrates goal planning.
Like ActorSim, other platforms deal with the need of integrating in the same frame-
work planning tasks, monitoring, and execution. The goals analysis and selection
is so central in complex systems implementations that frameworks as SOTA (State
Of Affairs) (Abeywickrama and Zambonelli, 2012) have been developped to permit
an early and goal-oriented analysis of the systems in order to adapt the design to
the identified requirements in an automated manner. SOTA uses model-checking
to identify off-line, thus differently from AMPLE which is a reactive platform, any
incompleteness of the goal-oriented requirements model, by checking for single goal
or utility to detect deadlocks or any inconsistency.

In the more general framework of planning, recent theoretical advances have
been made to intimately reason about both the evolution of the environment and
the computational time of the planning algorithm (Burns et al., 2013; Lin et al.,
2015). Such systems are required to perform some kind of meta-reasoning, meaning
that the planners should reason about the performance of their planning algorithms,
yet under certain limits since they still cannot guarantee to produce valid executable
actions exactly when the execution engine requires them.

On the same line of these approaches, AMPLE aims at generalising the unified
framework for execution-driven planning in robotics, steering and abstracting exist-
ing planning algorithms – if possible being anytime, for a better responsiveness of
deliberative solutions – in such a way that valid actions are always available when
queried at execution-time. In the next section, we present AMPLE, an anytime plan-
ning and execution framework which precisely manages planning requests and the
planning process in such a way that the execution engine can query for feasible
actions at any time.

3 AMPLE: Anytime planning, conditional planning, and
parallel policy optimization and execution

AMPLE (Anytime Meta PLannEr), is a generic planning framework dedicated to
robotic embedded architectures. The proposed paradigm can be seen as an any-
time generic planner. AMPLE was designed to be strictly anytime in the sense of
policy execution under time constraints. It is composed of an execution thread
and a planning thread, which are a complete rewriting of routines for solving the
planning models described in Sect. 2 that conform to the general algorithmic schema
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depicted in Alg. 4. The generic planning thread, which drives any dedicated planner,
is designed to fulfill high-level requirements hereafter discussed:

• strictly anytime in the sense of policy execution under time constraints: the
planning thread ensures to return an applicable action in any possible execution
state at a precise time point, exactly when required by the execution thread;

• reactive to environment changes dictated through other components’ requests.
It can be achieved by a parallel management of policy execution and planning
requests;

• conditional, by prioritizing future execution states and computing a partial
(incomplete) but applicable policy for each of them.

3.1 The AMPLE architecture

The AMPLE framework is a multi-thread architecture as depicted in Fig. 1 where the
main execution thread requests optimization chunks from a planning thread by using
some meta logics described thereafter. The planning thread can be compared to a
server thread; it manages the plan optimization while answering to client requests.
The execution thread is a client thread which sends requests to the planning thread
in order to build and execute a policy according to the system’s and environment’s
evolutions.
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get effects: which effects when applying ‘a’ in ‘s’?

possible next states are ‘T (s, a)’

get effects of given state and action from which to add planning requests

Figure 1: AMPLE architecture: connections between the execution thread and the
planning thread

The execution thread’s strategy2 conforms to a state machine whose concrete
instantiation can lead to various “planning-while-executing” logics as described in
further subsections. The planning thread contains an instance of the planning algo-
rithm, called Planner. Most of the requests that can be addressed to the planning

2in this paper, we call strategy the way the execution thread manages planning requests and
actions execution; the optimized action plan given a planning request is called policy; note that
these two terms are sometimes used as synonyms in the planning under uncertainty community.
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thread from the execution thread concern planning requests, the others corresponding
to getting information about the planning problem being solved.

3.2 Planning Requests

Planning requests are sent by the execution thread to the planning thread. When
received, the latter must compute and update the current policy depending on the
information included in the request. We formalize planning requests as follows:

Definition 3.1 (Planning Request) A planning request R is a tuple 〈I,∆, α, αp〉
with:

• I is a (belief) state from which the policy must be updated ;

• ∆ is the (continuous) maximum duration of the policy update ;

• α is an algorithmic variant of the planner; note that some planners can only
provide one variant;

• αp are the parameters of α; note that αp is general enough to take into account
any parameter required to handle the request.

State I is not necessarily reachable from the current execution state of the system;
this opens the execution engine to the possibility of requesting plans from different
initial states, anticipating future requests or dynamically reacting to unexpected
situations.

The next paragraphs dig deeper in the planning and execution threads to under-
stand how the items described above are designed and implemented.

3.3 AMPLE initialization

AMPLE’s main routine is depicted in Proc. 1 and explained in the next, where each
procedure or algorithm presented relies on parts of the following data structures and
notations. Please note that bold italic data are shared between the execution and
planning threads. We define:

• P, the planning problem;

• psm, the state machine that formalizes the interaction between the execution
and planning threads of AMPLE (detailed in Sect. 3.5);

• pln, the planner driven by AMPLE in the planning thread;

• πd, the default policy generated before the execution;

• pr, list of planning requests managed by the execution thread and solved by
the planning thread.

• πsr, the backup policy for solved requests;

• stopCurrentRequest, a boolean indicating whether the current request being
solved in the planning thread must be interrupted;

• stopPlannerRequested, a boolean indicating whether AMPLE must be stopped
(for instance when the mission is finished).
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Procedure 1: AMPLE main
input: P, pln

1 Create empty list of planning requests: pr ;
2 Create empty backup policy for solved requests: πsr;
3 stopCurrentRequest← false;
4 stopPlannerRequested← false;
5 psm← load AMPLE state machine();
6 πd ← load default policy(M);
7 launch thread(AMPLE planning(P, pln, psm, pr, πsr, stopCurrentRequest,

stopPlannerRequested));
8 launch thread(AMPLE execute(P, psm, πd, pr, πsr, stopCurrentRequest,

stopPlannerRequested));

After creating an empty list of planning requests, an empty backup policy for
solved requests and initializing stopping condition booleans (lines 1 to 4) , AMPLE
loads the state machine (line 5) that defines the states and interactions of the plan-
ning thread with the system’s execution engine. Next, AMPLE loads the default policy,
required to guarantee reactivity (line 6).

It then launches two concurrent threads: the planning thread, where queued plan-
ning requests are solved, and the execution thread, that interacts with the system’s
execution engine and queues planning requests (lines 7 and 8).

3.4 AMPLE execution thread

The execution thread adds and removes planning requests according to the current
execution state and to the future evolutions of the system, and gets the action to
execute in the current state from the current updated policy, or from the default one.
When interacting with the planning thread, the execution thread can use several
methods:

• load problem loads an initial problem in the planner;

• add plan request adds a request R to the queue of pending planning requests
pr ;

• remove plan request directly removes a request R if it is not being solved by
the planning thread, i.e. only if it is not in the front of the list of pending
planning requests pr ; otherwise, it sets the stopCurrentRequest variable to
true to inform the planning thread to stop solving and to remove this request;

• get action reads the optimized action to be executed in the current state if
it is included in the (backup) policy πsr, otherwise an action defined by the
default policy πd is read.

Other methods allow to make queries on the planning model itself:

• get effects returns the set of states that can be reached by applying action
a in state s;

• get actions returns the set of actions that are applicable in state s.

Managing planning requests can follow different strategies. Some of them are
described later (see Sect. 3.6).
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3.5 AMPLE planning thread

The planning thread is a complete reorganization of standard planning main steps
depicted in Alg. 4, in order to automatically manage the queue of planning requests
and to locally update the policy in bounded time for each planning request. The
revisited planning algorithm is presented in Alg. 5.

Algorithm 5: AMPLE planning

1 solvingRequest← false;
2 while true do
3 if psm.state = LOADING PROBLEM then
4 pln.load problem(P);
5 psm.state← PROBLEM LOADED;

6 else if psm.state = PLANNING then
7 if solvingRequest = false then
8 launch front request();

9 else
10 t← get current CPU time ;
11 if pln.solve converged(pr.front.αp)

or t− requestStartT ime > pr.front.∆
or stopCurrentRequest = true
or stopPlannerRequested = true then

12 pln.solve end();
13 πsr ← πsr ∪ subpln.policy(pr.front.I);
14 pr.pop front();
15 stopCurrentRequest← false;
16 if pr is not empty then
17 launch front request();

18 else
19 psm.state← PROBLEM SOLVED;
20 solvingRequest← false;

21 else
22 pln.solve progress(pr.front.αp);
23 πsr ← πsr ∪ pln.policy(pr.front.I);

24 Procedure launch front request

25 solvingRequest← true;
26 pln.set algorithm(pr.front.α,pr.front.αp);
27 requestStartT ime← get current CPU time ;
28 pln.solve initialize(pr.front.I);

The algorithm is conceived as an endless loop that looks at, and accordingly
reacts to, the current mode of the state machine defined in Fig. 2.

If the mode is LOADING PROBLEM (further to an activation of the load problem

command in the execution thread), it loads the planning problem P and changes
the mode to PROBLEM LOADED (lines 3 to 5). If the mode is PLANNING (further to an
add plan request command in the execution thread), it first tests if the procedure
solving the current planning request must end (lines 7 then 11), which can happen
if the sub-planner procedure has converged or finished, or if the time allocated to
solving the current request has been consumed, or if the solving of the current request
must end (further to an activation of the remove plan request in the execution
thread), or if the AMPLE planner has to be stopped.
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Figure 2: State machine of the AMPLE planning thread

Otherwise, it launches the optimization of the front request in the queue (lines 25
to 28), which mainly consists in recording the current CPU time and calling the
solve initialize procedure of the sub-planner. Lines 22 to 23 consist in optimizing
the current planning request by calling the solve progress procedure of the sub-
planner and then updating the backup policy πsr for the (belief) state queried by
the current planning request.

Note that, the backup policy πsr, which is, roughly speaking, a copy of the
policy π being optimized, needs to be updated during the optimization process (after
solve progess procedure, or for solved requests – see Alg. 5 and Fig. 1). This
backup policy is the one used to answer the get action requests of the execution
thread. Note also that the default policy πd is different from the backup policy. The
default policy is the “rescue” policy, which can be: either a parametric off-line expert
policy whose parameters are on-line adapted to the actual problem; or a heuristic
policy quickly computed on-line before computing the optimal policy, or even written
by hand. The default policy, contrary to the backup one, is not updated during the
planning process.

3.6 Some helpful instantiations of AMPLE

Now, we have defined all necessary elements to design anytime planning algorithms,
depending on how the AMPLE state machine (Fig. 2) is used. Since AMPLE planning
thread automatically manages the queue of the planning requests to solve (see Alg. 5),
we just have to take care of adding and removing planning requests in the execution
thread according to the current execution state and to the future probable evolutions
of the system.

First of all, we have to bootstrap the planner so that it computes a first optimized
action in the initial (belief) state of the system. Many strategies seem possible, but
we present a simple one in Proc. 2.

We first load the planning problem model M and wait for its completion by
looking at the mode of the state machine (lines 1 to 2). Note that the bootstrap is
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Procedure 2: bootstrap execution

input : M, psm, pr
output: I: initial (belief) state

1 load problem(M);
2 Wait until psm.state = PROBLEM LOADED;
3 Create initial planning request r;
4 r.I ← initial (belief) state;
5 r.∆← choose bootstrap planning time;
6 r.α, r.αp ← choose solving algorithm;
7 add plan request(psm,pr, r);
8 Wait r.∆ amount of time;
9 return I;

a blocking procedure since any planning algorithm needs to be initialized. We then
create a first planning request, filled with the initial (belief) state of the system, a
chosen bootstrap planning time ∆, and a planning algorithm with its parameters
(lines 3 to 6). Finally, we add a plan request to the queue of planning requests (lines
7 to 9), and wait an amount ∆ of time (meanwhile the plan request is optimized in
the planning thread).

Once the planner is bootstrapped, we can go into the “planning-while-executing”
loop, for which we propose three different strategies instantiated within the execution
thread (see Fig. 1): AMPLE-NEXT, AMPLE-PATH and AMPLE-PORTFOLIO. The first two
are based on a probabilistic model of the system, allowing the decision process to
either anticipate all the next execution states, which is suitable to problems with high
variance on action effects, or to prioritize the most probable path, which is effective
if the probability to deviate from this path is low. The last strategy, which inspires
from portfolio-like planner selection (Helmert et al., 2011), has been developed for
classical planning in dynamic environments where it is profitable to use various
planners reasoning in concert about different symbolic levels or temporal horizons.

3.6.1 AMPLE-NEXT: predicting the evolution of the system one step ahead

In this setting, each time the system begins to execute an action a, all the next
possible (belief) states coming from this action are computed, based on the problem
model, and plan requests are added for each of these (belief) states. With this
strategy, the short-term evolution of the system is anticipated independently of the
heuristic used in the underlying planning algorithm. Thus, the planning thread
has a chance to provide an optimized action on time as soon as the current action
terminates in the execution thread. The AMPLE-NEXT strategy is described in Alg. 6.

Once an action has completed, the next to be executed action a is gathered by
calling the get action command for the current execution state (line 3); it is thus
executed and its expected duration ∆a is computed3 (line 5). Then, plan requests
are added for each possible next (belief) state of the system I ′, with a maximum
computation time proportional to ∆a and to the probability of getting I ′ as effect of
executing a (lines 6 to 11). The system waits for action a to complete (meanwhile
added planning requests are solved in the planning thread) and removes the previous
planning requests in case they have not yet been solved by the planning thread
(line 12). Finally, the current execution state is observed and the algorithm goes

3This expected duration can be computed based on return on experience from previous robotic
missions, or, for instance, based on the expectation of minimum travel time.
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back to the beginning of the execution loop.

Algorithm 6: AMPLE-NEXT

1 I ← bootstrap execution(M, psm,pr);
2 while stopPlannerRequested = false do
3 a← get action(psm, πd,P,πsr, b);
4 Start execution of action a;
5 ∆a ← expected duration of action a;
6 prNext← empty list of planning request pointers;
7 for I ′ ∈ get effects(I, a) do
8 r.I ← I ′;
9 r.∆← Pr(I ′|a, I)×∆a;

10 add plan request(psm,pr, r);
11 prNext.push back(r);

12 Wait until action a has completed;
13 for r ∈ prNext do
14 remove plan request(psm,pr, r,

stopCurrentRequest);

15 I ← observe and update current (belief) state;

3.6.2 AMPLE-PATH: reasoning about the most probable evolution of the
system

The previous strategy may lack of an execution-based long-term reasoning, even if
the sub-planner would reasons about the long-term evolution of the system while
optimizing planning requests. The strategy presented in this paragraph rather an-
alyzes the most probable execution path of the system, which can be computed by
applying the current optimized policy or the default one, if necessary, from the cur-
rent execution state via successive calls to the get action command. This strategy
is formalized in Alg. 7.

The depth for analyzing the (belief) state trajectory of the most probable ex-
ecution path is set (line 1), noted pathDepth. As in the AMPLE-NEXT strategy, we
then bootstrap the execution (line 2) and enter the execution loop, where the action
a to be applied in the current execution state is obtained, starts its execution and
its expected duration ∆a is computed (lines 4 to 6). Then (see lines 7 to 14), the
get action procedure is applied and the most probable (belief) state at each step
is obtained, starting from the current (belief) state b up to pathDepth. Note that
the get action request will return an action with respect to the current policy. For
each visited (belief) state of the explored trajectory, a plan request is added starting
from this (belief) state with a maximum computation time proportional to ∆a and
to the inverse of pathDepth. The end of the loop (lines 15 to 18) is identical to
AMPLE-NEXT.

3.6.3 AMPLE-PORTFOLIO: using several planners for solving a deterministic
problem

This strategy uses the approach of solvers portfolio from (Helmert et al., 2011): we
have a set of planners for solving the current problem, and we give each of them
some time to solve the current problem, in order to have more chance to find a
solution. Contrary to (Helmert et al., 2011), we do not train our solvers based on
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Algorithm 7: AMPLE-PATH

1 pathDepth← choose path lookahead depth;
2 I ← bootstrap execution(M, psm,pr);
3 while stopPlannerRequested = false do
4 a← get action(psm, πd,P,πsr, b);
5 Execute action a;
6 ∆a ← expected duration of action a;
7 prPath← empty list of planning request pointers;
8 I ′ ← I;
9 for 0 < k < pathDepth do

10 I ′ ← argmax
I′′∈succ(I′,a)

Pr(I ′′ | get action(I ′), I ′);

11 r.I ← I ′;

12 r.∆← ∆a

pathDepth ;

13 add plan request(psm,pr, r);
14 prPath.push back(r);

15 Wait until action a has completed;
16 for r ∈ prPath do
17 remove plan request(psm,pr, r, stopCurrentRequest);

18 I ← observe and update current (belief) state;

prior problems. The strategy is presented in Alg. 8.
The algorithm first defines a set of planning algorithms to use (line 1), then

bootstraps the optimization and enters the execution loop. Like other strategies,
the action to perform is obtained according to the current state, and then executed
(lines 4 to 6). As we are in a deterministic model, performing the given action can
lead to only one successor state (line 8). For each available algorithm, a planning
request is added, and the same computation time is allowed to all requests (lines 9 to
14). The following lines are identical to the other strategies. Some slight changes can
be made to this strategy depending on the specific problem (see 4.4 for a concrete

Algorithm 8: AMPLE-PORTFOLIO

1 Γ← {αk} a set of algorithms;
2 I ← bootstrap execution(M, psm,pr);
3 while stopPlannerRequested = false do
4 a← get action(psm, πd,P,πsr, b);
5 Execute action a;
6 ∆a ← expected duration of action a;
7 prPointers← empty list of planning request pointers;
8 I ′ ← get effects(I, a);
9 for αk ∈ Γ do

10 r.I ← I ′;

11 r.∆← ∆a

#Γ ;

12 r.α = αk;
13 add plan request(psm,pr, r);
14 prPointers.push back(r);

15 Wait until action a has completed;
16 for r ∈ prPointers do
17 remove plan request(psm,pr, r, stopCurrentRequest);

18 I ← observe and update current (belief) state;
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application). In case several planners have computed an action executable in the
current state, the get action method (line 4) uses a fixed priority list to return the
action of the most priority planner.

4 Experimental evaluation

The AMPLE architecture, with implementations of the several strategies, has been ap-
plied to real field experiments with complex missions involving autonomous planning
under high environment uncertainty. The objective of the experiments reported in
this section is threefold:

1. demonstrating that for the first time many different planning frameworks (de-
terministic/probabilistic,
partially-observable/fully-observable) can be efficiently managed within a robotic
architecture under a unique versatile planning component, the AMPLE umbrella;

2. showing that complex (PO)MDP policies can be optimized in real time on-
board robots whereas most previous approaches opted for breaking the proba-
bilistic problem down to several deterministic plan-replan problems due to the
too high complexity of solving (PO)MDPs for embedded robotic computers;

3. highlighting the original ability of AMPLE to switch between several different
planners on the fly when solving on-line a given robotic problem to reason
about various semantic levels at the same time.

In the following subsection, we first present a benchmarking of the AMPLE-NEXT

and AMPLE-PATH strategies on random MDP problems. This benchmarking shows
that AMPLE-PATH is not very well suited to problems with high variance in action
effects since the chance of leaving the most probable path is most often high, leading
to an invalid strategy at almost every action, then using only the default policy.
Then, each field experiment is described in the successive subsections, with a mission
description, the way AMPLE has been instantiated, and some results obtained from
these experiments. In these applications, we have only used the AMPLE-NEXT and
AMPLE-PORTFOLIO execution strategies due to high uncertainty in the environment
making the AMPLE-PATH strategy not adequate.

4.1 Random MDP problems

We have first evaluated AMPLE on random MDP problems using both the NEXT and
PATH execution strategies. Obviously, randomness in the problems is not suitable to
the PORTFOLIO strategy because the various portfolio planners should be logically
chosen to be efficient at solving a specific problem. The solved problems are random
probabilistic graphs composed of 10000 states solved using the LAO∗ optimal heuristic
algorithm (Hansen and Zilberstein, 2001) via AMPLE planning requests. AMPLE results
are illustrated through execution and planning timelines until success (Fig. 3). Each
time slice of the execution (resp. planning) thread corresponds to the execution of
one action (resp. solving of one planning request).

Figure 3(a) shows the timelines for the AMPLE-NEXT execution strategy. After
a first bootstrap (where only the planning thread is active), we can notice that
planning continues for a few time. Then, small planning pieces are still processed
when new planning requests are sent to the planner, as it still requires the value
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function to converge on next possible states (requests’ initial states) that have not
been totally explored. Finally, the value function quickly converges for the whole
state space as shown by the evolution of the Bellman error, and we can notice that
only the execution thread still goes on.

Figure 3(b) shows the timelines for the AMPLE-PATH execution strategy with a
path depth of 1 (only the next most probable state is requested). Two behaviors
are noticeable: first, the planning thread continues much longer than in the NEXT

strategy; the later indeed explores a larger state space at each request, thus converges
faster. Second, by only considering the most probable next state, the execution is
more exposed to disturbances, i.e. to arriving in a state that has not been explored;
this is observable around time 150, where the Bellman error suddenly increases,
and replanning is needed, which leads to a slightly longer planning time. This
phenomenon is emphasized for a path depth of 3 (Fig. 3(c)) and 5 (Fig. 3(d)),
where replanning requests require a longer planning time. However, we can notice
that when the execution follows the most probable path, planning converges quite
quickly (e.g., no more planning piece after time 100 on Figure 3(c)).

To conclude with, the AMPLE-NEXT process seems to provide a more convenient
behavior with respect to problem solving and mission execution in probabilistic en-
vironments. However, when the problem has a prevailing most probable path, i.e.
deterministic environments or probabilistic ones but with small action effect vari-
ances, the AMPLE-PATH execution process may be an efficient execution framework,
with a fast planning process, and online reactive repair phases when the system
state leaves the most probable path. In the next experiments, which are conducted
on highly uncertain environments, we then decided to not implement nor test the
AMPLE-PATH strategy.

4.2 Autonomous emergency landing with uncertain observations

4.2.1 The mission:

The first UAV mission embedding the AMPLE framework consists in an autonomous
emergency landing: a UAV is performing a mission (e.g., a search and rescue mission,
an observation mission, or a cargo mission) when a critical disturbance occurs (e.g.,
one of the two engines is damaged). The UAV must then perform an autonomous
emergency landing: first, the UAV scans the zone over which it is flying, builds a
map of the zone, and deduces some flat landable sub-zones. Finding a zone to land
is urgent, as fuel consumption may be increased by the potential engine damages,
leading to an approximate landing time limited to 10 minutes. Moreover, the capac-
ity to safely land on a zone is uncertain, as it is obtained from sensor data processing
onboard (e.g., laser-based or image-based mapping). The available UAV actions are:
(1) go from a sub-zone to another, (2) perform a scan of a sub-zone at a lower al-
titude to determine precisely its landability, (3) try to land on a given sub-zone.
As both landability and action effects are uncertain, this problem is modeled as an
MDP. See (Teichteil-Konigsbuch et al., 2011) for the complete MDP model.

4.2.2 AMPLE instantiation:

AMPLE is used to solve the landing problem (once the set of landable zones has been
computed). To solve it, we use an RTDP-like algorithm (Barto et al., 1995) on an MDP
with continuous variables (Meuleau et al., 2009). The MDP has two continuous state
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variables, and more than twice the number of sub-zones as discrete state variables,
so that the number of discrete states is exponential in the number of sub-zones.
The theoretical worst-case time needed to optimize the policy with state-of-the-art
MDP algorithms on a 1 Ghz processor as the one embedded in our UAV (a Yamaha
RMax helicopter) is about 1.5 hours with 5 sub-zones, 4 months with 10 sub-zones,
more than 700 millenniums with 20 zones; whereas the mission’s duration is at most
10 minutes. Thus, time-constrained policy optimization frameworks like AMPLE are
needed to maximize the chance of achieving the mission.

While defining and loading the problem, a default policy for AMPLE is computed
by always selecting to explore the closest zone, whatever the probability distribution
is. This default policy is used when the planning process has not yet computed a
feasible action for the current state when the executor asks for one.

4.2.3 Experimental results:

Autonomous outdoor real-flight experiments have been conducted using the AMPLE-NEXT
execution strategy on a Yamaha RMax helicopter. Real flights being quite expensive,
we also extensively tested our AMPLE strategy with realistic simulations embedding
computer vision algorithms (Echeverria et al., 2012). Figure 4 shows the map built
during a real flight experiment over a small village.

Data have been collected during the flights and incorporated in additional real-
time simulations, in order to compare the performance of the AMPLE-NEXT strategy
with solving the problem offline without using AMPLE. Figure 5 shows the total mis-
sion time in two cases: 1) the online AMPLE case, where the policy is optimized
during execution, and 2) an offline case that corresponds to a strategy that first
computes the policy, and then executes it. Since we use RTDP, a heuristic algorithm,
offline computation times are actually better than the previously mentioned worst-
case times; yet we have a priori absolutely no guarantees to perform better than the
worst-case performances. The average optimization time is the time taken by the
planning thread which is the same in both cases (interleaved with execution in the
online case, preceding execution in the offline case). Actually, this offline case is not
used during flight, but shows the interest of the AMPLE execution framework: the
mission time is shorter in the online case, and moreover, with a total mission time
limited to 10 min, the offline process would have made the mission fail, while the
online process succeeds.

Figure 6 shows the rate of default actions used in the mission. We can notice
that the number of default actions is quite high in this mission (∼ 60%). However,
when a default action is used, it means that the planner has not yet computed any
policy in the corresponding state. Then, even if the default action is sub-optimal, it
is the only way to guarantee reactivity, i.e. the system does not have to wait for the
planning process to complete (which would lead to a classical “plan-then-execute”
framework). Nevertheless, the time spent to optimize the policy before the default
one is applied is not lost: subsequent actions chosen in future states may indeed
come from the optimized policy.

All the previous experiments were conducted on problems with perfect state sens-
ing, i.e. the planner reasoned directly about the true state of the system. However,
in many robotic applications, states are only partially observable which means that
some internal state features required by the planner are not directly observable. The
next section shows how the AMPLE framework performs for aerial robotics planning
in partially observable environments, which are typically harder to solve than fully
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observable problems.

4.3 Target detection and recognition with partially observable states

4.3.1 The mission:

In this section, we consider a robotic mission where an autonomous helicopter must
detect and identify a car whose model is specific among several cars scattered in an
unknown environment under real-world constraints, and has to land close to this car
(Carvalho Chanel et al., 2014). Due to the partial observability of car targets in the
scene, we model the mission as a POMDP with probabilistic beliefs on cars’ models.
The UAV can perform both high-level mission tasks and perception actions: the
go to(ẑ) (resp. go to(ĥ)) action, where ẑ (resp. ĥ) represents the zone (resp. height
level) to go to, the change view action changes the view angle when observing a
given zone, and the land action. In this mission we do not assume any prior number
of cars in the scene, which can be in any of many zones in the environment (but no
more than one car per zone). Zones are extracted once in flight by image processing,
allowing for creating online the POMDP model before optimizing the policy. For
this mission we consider that moving and landing actions are sufficiently precise to
be considered as deterministic: the effect of going to another zone, or changing flight
altitude, or landing, is always deterministic. However, the problem is still a POMDP,
because observations of cars’ models are probabilistic (Sabbadin et al., 2007). These
observations rely on the result of image processing and on the number of car models
in the database. In this mission, we consider 5 possible observations (|O| = 5): {no
car detected, car detected but not identified, identified as model A, identified as model
B, identified as model C}. We automatically learned from real data the observation
function, whose symbols are produced by an image processing algorithm (Le Saux
and Sanfourche, 2011). This learning method, which assign a prior probability to
each symbol, i.e. p̂(oi|s), can be performed off-line because it is independent from the
zones that will be extracted during the mission. So, in order to be compliant with the
POMDP model, which assumes that observations are available after each executed
action, all actions of our model provide an observation of the zone in front of the
helicopter. The cost associated with actions models the fuel consumption depending
on the distance between zones (resp. difference between height levels) and the cost
represents the time spent by the image processing algorithm. See (Carvalho Chanel
et al., 2013) for the complete POMDP model.

4.3.2 AMPLE instantiation:

Due to the very high complexity of solving POMDPs, which prevents to optimize a
full policy in flight with standard algorithms, AMPLE is used to solve on line the tar-
get detection and recognition problem using the AMPLE-NEXT instantiation (Alg. 6).
Future probabilistic effects are the next possible observations which allow us to con-
struct the future next belief states. The time allocated for each planning request is
proportional to the probability of each observation considered to construct the possi-
ble next belief states (r.∆ ∼ p̂(oi|b, a)). AMPLE’s planning thread handles an AEMS-like
online algorithm (Ross and Chaib-Draa, 2007). Alike the previous MDP-based mis-
sion where the default policy was defined as a parametrized rule, the default policy
considered here is optimized using the QMDP approximation (Littman et al., 1995):
although not optimal, it can be quickly computed at the beginning of the mission,

27



once the zones are extracted from the map and the POMDP model constructed.

4.3.3 Experimental results:

In order to analyze AMPLE-NEXT’s behavior on this domain, we performed several
realistic simulations on different instances of the problem, with 3 searching zones, 2
height levels and 3 target models. The mission’s time limit is 3 minutes. Figure 7
highlights the benefits of AMPLE compared with the classical online approach of AEMS
for different planning times (4, 3 and 2 seconds) for a given mission. The classical
online approach of AEMS consists in interleaving planning and execution, i.e. it plans
for the current belief state during a certain amount of time at every decision epoch,
but not in advance for the future ones as in our AMPLE-NEXT approach. With the
classical use of AEMS (Fig. 7(a), 7(b) and 7(c)), we can easily notice that the mission’s
total time increases with the time allocated to plan from the current execution state.
In Fig. 7 successive red bars show that the POMDP needs to be (re-)optimized in each
new execution state. On the contrary, our approach (Fig. 7(d)) continually optimizes
for future possible execution states (i.e. future observations) while executing the
action in the current execution state. Thus, the mission’s duration is lower with our
approach than with the interleaved approach (at least 30% less). In other words,
in our approach the amount of saved time relies on the sum of time slices of the
classical approach when the planning thread is idle. The more actions get time to
be executed, the more time will be saved.

We performed some additional comparisons by running 50 software-architecture-
in-the-loop (SAIL) simulations of the mission using images taken during real flights.
Our SAIL simulations use the exact functional architecture and algorithms used
on-board our UAV, as well as real outdoor images. We averaged the results and
analyzed the total mission time and planning time, the percentage of timeouts and
successes in terms of landing near the searched car. Action durations are uniformly
drawn from [T a

min, T
a
max], with T a

min = 8s and T a
max = 10s, which is representative of

durations observed during real test flights. As expected (see Fig. 8), AMPLE continu-
ally optimizes the policy in background, contrary to the interleaved approach. As a
result, it is more reactive: it has the minimum mission time, while providing the best
percentage of success and the minimum number of timeouts. Note that, in Fig. 8(a),
AEMS-2s performs better in averaged mission time (avg. over successful missions),
but the percentage of successful missions is lower than in our approach (Fig. 8(b)).
Furthermore, less than 20% of default actions were used, which shows the relevance
of optimizing actions in advance for the future possible belief states that come from
future possible observations.

AMPLE-NEXT was successfully tested during real flights: Fig. 9 and 10 respectively
show the actual observation-action pairs obtained during the flight and the UAV’s
global flight trajectory.

Until now we have tested our AMPLE framework in uncertain environments whose
probabilistic models of actions dynamics and observations are known. In the next
set of experiments we rather assume that the underlying uncertainty model is un-
known so that we use AMPLE to drive a portfolio of deterministic planners at various
reasoning levels which are called to update the current plan each time the deviation
of the observations with the model is too large or when new information is available
and relevant to reoptimize the current plan.
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4.4 Autonomous navigation in dynamic environments

4.4.1 The mission:

Navigating in dynamic environments is a complex problem for robotics. It needs path
planning algorithms, able to find feasible paths while avoiding obstacles; guidance
algorithms, able to follow as close as possible the computed paths; and localization
and mapping algorithms able to produce an accurate model of the environment.
However, highly dynamic environments, like office environments, require to regularly
update these models, which may result in invalid plans or unreachable goals. The
mission considered in this experiment is to reach a sequence of waypoints, given an
imperfect model of the environment, which is updated on the fly as the robot moves.

4.4.2 AMPLE instanciation:

For our navigation problem we designed a simple path planner based on A* (Hart
et al., 1968). The objective was not to define the best algorithm for this problem, but
to have a representative deterministic planner to integrate into AMPLE. The planner
reasons on an occupancy grid of the environment. A state is a 2D position of the
robot, and an action is a 2D displacement along a straight line segment. The search
graph is built on-the-fly, by using ray-casting to compute the actions that are feasible
from a state regarding straight ahead obstacles. Planning requests then contain a
starting state, the current occupancy grid of the environment and a goal state.

Our path planning algorithm has a specific field-of-view parameter that indicates
which part of the map is taken into account while planning. We then use two variants
of our path planner as two separate algorithms: one with an unlimited field-of-view
(the planner uses the whole known map), and another one with a limited field-of-
view. The rationale for this strategy is that limiting the field-of-view will fasten the
search (more chance to find a local path before the execution thread asks for an
action to execute), while the unlimited field-of-view will compute an optimal global
path but may not have time to converge during the allocated time, or a global path
may even not exist, e.g. because an opening is momentarily closed by a door or a
person.

Figures 11(a) and 11(b) represent an environment with a 3D octomap on top of
the associated projected 2D costmap. The field of view is depicted in black inside
the enclosure. In Fig. 11(a) the field of view is unlimited so the costmap takes into
account all observed obstacles. In Fig. 11(b) the field of view is limited to 1m so the
costmap takes into account only the obstacles in the local neighborhood.

We have instantiated the AMPLE-PORTFOLIO strategy composed of a first algorithm
with unlimited field-of-view, and of a second planner with a limited field-of-view set
to 1.5m. The AMPLE default policy simply makes the robot turn in place, so that it
forces the map to be updated, at least in the limited field-of-view variant, in order
to maximize the chance to find a valid path to the next goal.

4.4.3 Experimental results:

We participated in the Kinect Autonomous Navigation Contest4, held at the Inter-
national Conference on Intelligent Robots and Systems (IROS) in Chicago, Illinois,

4http://www.iros2014.org/program/kinect-robot-navigation-contest
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USA on September 18th, 2014.
The environment was populated with realistic items that are known to challenge

typical navigation sensors and systems, such as narrow chair and table legs and
uneven surfaces. It was also featuring moving people and furniture. To perform
localization and mapping, we have used an architecture made of the EVO algo-
rithm (Sanfourche et al., 2013) and OctoMap (Hornung et al., 2013). Figure 12
represents part of the contest environment built during the contest. On the bottom
left, one can guess a sofa and a table with a plant. Figure 13 represents the corre-
sponding 2D costmap along with the robot trajectory. This costmap is the robot’s
representation of the environment when it arrived at the last validated waypoint
(the farest bottom point of the robot’s trajectory). After reaching this waypoint,
our mapping and localization system failed, making the environment representation
too inaccurate, so no global path could be found anymore. Even if the robot did not
reach the next waypoint, thanks to the PORTFOLIO strategy, the robot still progressed
a lot towards it by using local planning.

Thanks to AMPLE, we came in second place.
In order to analyse further the performance of AMPLE in such a mission, we set

up an experiment inspired from the Robocup@Home league5. Figure 14 gives a
schematic view of the environment with the waypoints of the mission going from 0
to 11. It represents a small apartment composed of a hall, a kitchen, a bedroom,
and a living room. The dashed lines represent doors, that are alternately closed and
opened during the experiment to integrate dynamic changes in the environment.

All doors (A, B, C, D) are initially open. The robot is moved from 0 to 6 in
order to build a first knowledge of its environment. Then the mission is made of 5
steps, asking the robot to go:

1. from 6 to 7, meanwhile we close door D;

2. from 7 to 8, meanwhile we reopen D;

3. from 8 to 9, meanwhile we close C, then B when the robot has passed door D;

4. from 9 to 10, meanwhile we open B;

5. from 10 to 11, meanwhile we close A.

We have compared our AMPLE-PORTFOLIO implementation with a classical plan-
replan (PR) architecture using the same A∗ implementation with the global map. In
this PR architecture, a replanning is triggered when the current action is not feasible.
The mission has been performed 5 times with each architecture.

In these experiments, the mission duration using the AMPLE-PORTFOLIO architec-
ture is 5% lower (i.e. better) than the PR architecture.

Table 1 presents the number of replannings according to the several steps of the
mission. Replannings for the PR architecture are triggered when the next action is
no more feasible. Replannings for AMPLE correspond to situation where the returned
action is a default action. The number of replannings is almost similar, except
for step 3 (i.e. when going from 8 to 9). In this step, the two architectures have
computed an initial path going trough door C, which is now closed. PR needs to
replan once it realizes that its plan is not feasible anymore. AMPLE is able to find the
new plan while executing the previous action, and then just follows its execution.
The same behavior occurs when closing door B. It results in a clearly lower number
of necessary replannings when using AMPLE, leading to a shorter mission time.

5information available on http://www.robocupathome.org/
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Table 1: Number of replannings per mission step for each architecture.
mission step 1 2 3 4 5 Total

PR 8 5 16 0 0 29

AMPLE 5 5 1 0 0 11

5 Conclusion

We proposed a flexible algorithmic framework to allow for continuous real-time plan-
ning of complex tasks in parallel of their executions. Our framework, named AMPLE,
is oriented towards robotic modular architectures in the sense that it turns planning
algorithms into services that must be generic, reactive, and valuable. Services are
optimized actions that are delivered at precise time points following requests from
other modules that include states and dates at which actions are needed. To this
end, our framework is divided in two concurrent processes: an execution thread
which receives planning requests from other modules and accordingly orchestrates
internal planning requests, and a planning thread which delegates deliberative action
selections to embedded planning softwares in compliance with the queue of internal
planning requests. Importantly, default actions specific to the given application must
be provided to guarantee the reactivity of the service in cases where no optimized
action could be found within a request’s deadline. The behavior of the execution
thread can be parametrized to achieve various optimization strategies: we especially
proposed three variants, namely AMPLE-NEXT, AMPLE-PATH and AMPLE-PORTFOLIO,
which differ depending on the distribution of internal planning requests over possi-
ble future execution states in anticipation of the uncertain evolution of the system,
or over different underlying planners to account for several planning levels. This
ability to customize the execution thread makes our framework a meta-planning ser-
vice which can drive in background any existing specialized planner through internal
planning requests.

We note two important features for which our framework particularly stands out
from existing planning paradigms. First, it is truly real-time in the sense that it al-
ways reactively returns an action (possibly optimized, otherwise a default one) when
requested by other modules. This is different from so-called “anytime” or “real-
time” planners from the Artificial Intelligence community, which try to maximize
the chance of providing optimized actions on request by optimizing the plan while
executing it but without any guaranty to actually deliver actions at precise time
points. Our framework can in fact use some planners in the planning thread, which
help it deliver optimized actions instead of default ones, as highlighted by our exper-
iments with the AEMS underlying anytime planner. But, perhaps more interestingly,
planners like A∗ that are not natively real-time can be made so via embedding in
AMPLE and its planning request proxy. Second, our framework is flexible and generic
enough to tackle different natures of planning problems, from fully deterministic
ones to partially observable ones with probabilistic action effects. We demonstrated
its capabilities on three kinds of planning problems: path planning with unknown
and moving obstacles, task planning with probabilistic action effects, information
planning with partially observable states. It is worth mentioning that uncertain
problems like the aforementioned class of problems can be tackled by AMPLE even
with deterministic planners as we demonstrated in our experiments: the uncertainty
about the environment is dealt with by the strategy implemented in the execution
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thread which generates many deterministic planning requests for various possible
future execution states.

There are still open questions that are not answered by our current framework.
While we think that the need for default actions is mandatory whatever the imple-
mented framework is, for any kind of critical applications where reactivity is at stake,
we should provide means to check their validity in terms of quality and safety. This
could be partially achieved by model checking the properties of the default action
policy along with the available model of the environment. Further checks would be
necessary on-line to guarantee that a default action will bring the system to only
desired situations given the current assessed context. Optimized actions could be
also compared with default ones since the latter do not need to be optimized up to
provide the allowed optimization times in operation. Moreover, the class of plan-
ning models compatible with AMPLE is currently restricted to simple action execution
schemes: more complex models involving concurrent (parallel) actions – scheduling
problems for instance – or action hierarchies – like hierarchical task networks – arise
in many robotic applications and thus should be considered in future extensions of
AMPLE.
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entropy. In: International Conference on Robotics and Automation (ICRA), Seat-
tle, WA, USA

Carvalho Chanel CP, Teichteil-Königsbuch F (2013) Properly acting under partial
observability with action feasibility constraints. In: European Conference on Ma-
chine Learning and Knowledge Discovery in Databases (ECML), Prague, Czech
Republic

Carvalho Chanel CP, Teichteil-Königsbuch F, Lesire C (2013) Multi-target detec-
tion and recognition by UAVs using online POMDPs. In: AAAI Conference on
Artificial Intelligence (AAAI), Bellevue, WA, USA

33



Carvalho Chanel CP, Teichteil-Königsbuch F, Lesire C (2014) A robotic execution
framework for online probabilistic (re) planning. In: International Conference on
Automated Planning and Scheduling (ICAPS), Portsmouth, NH, USA

De Giacomo G, Gerevini AE, Patrizio F, Saetti A, Sardina S (2016) Agent planning
programs. Artificial Intelligence 231:64–106

Domshlak C, Hoffmann J, Katz M (2015) Red–black planning: A new systematic
approach to partial delete relaxation. Artificial Intelligence 221:73–114

Echeverria G, Lemaignan S, Degroote A, Lacroix S, Karg M, Koch P, Lesire C,
Stinckwich S (2012) Simulating complex robotic scenarios with morse. In: In-
ternational Conference on Simulation, Modeling, and Programming Autonomous
Robots (SIMPAR), Tsukuba, Japan

Ghallab M, Nau DS, Traverso P (2014) The actor’s view of automated planning and
acting: A position paper. Artificial Intelligence 208:1–17

Hansen E, Zilberstein S (2001) LAO*: A heuristic search algorithm that finds solu-
tions with loops. Artificial Intelligence Journal (AIJ) 129(1-2):35–62

Harland J, Morley DN, Thangarajah J, Yorke-Smith N (2014) An operational se-
mantics for the goal life-cycle in BDI agents. Autonomous Agents and Multi-Agent
Systems (JAAMAS) 28(4):682–719

Hart PE, Nilsson NJ, Raphael B (1968) A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths. IEEE Transactions on Systems, Science and
Cybernetics 4(2):100–107

Haslum P, Jonsson P (1999) Some results on the complexity of planning with incom-
plete information. In: European Conference on Planning (ECP), Durham, UK
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Figure 3: Execution and planning timelines for different execution strategies.
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Figure 4: Map built during experiment. Map size is approximately 200 meters wide.
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Figure 5: Mission time results for the autonomous emergency landing experiment.
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Figure 6: Default actions for the autonomous emergency landing experiment.
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(c) AEMS (interleaved), ∆ = 2s
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(d) AEMS in AMPLE-NEXT.

Figure 7: Timelines for classical AEMS (interleaved approach) with 4s, 3s, 2s for
planning versus AEMS in AMPLE-NEXT.
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Figure 8: Target detection and recognition mission.
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t = 0
a = go to(h2)

o = not ident.

t = 1
a = change view

o = no car

t = 2
a = goto zone(z2)

o = as A

t = 3
a = change view

o = as A

t = 4
a = change view

o = as A

t = 5
a = go to(z3)

o = as C

t = 6
a = change view

o = as C

t = 7
a = land

o = no car

Figure 9: Sequence of decisions for successive time steps t. Each image represents
the input of the image processing algorithm after the current action a is executed
during a real flight. Observations o represent the successive outputs of the image
processing algorithm’s classifier. In this mission, the searched car model was C.
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Figure 10: UAV’s trajectory performed during the real flight.

(a) with unlimited field-of-view (b) with limited field-of-view of 1m

Figure 11: Octomap and costmap on a 3D environment
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Figure 12: 3D octomap built during the contest.

Figure 13: Costmap and robot trajectory during the contest.
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