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Introduction

Digital models allow for accurate performance prediction, design optimisation, control, uncertainty quantification, operation planning, and predictive maintenance of complex systems (such as ships, marine structures, offshore wind farms). Digital representations may use high-fidelity computational models, low-fidelity and/or reduced-order models, machine learning methods, spanning a variety of approaches, accuracy levels, and computational costs. Physics-based and data-driven models may be integrated and assimilated in modern digital twins, where the digital model is continuously updated with sensor data to accurately represent the status of its real-world physical counterpart (therefore realizing the digital twinning). Integration and assimilation can be realized through (supervised) machine learning methods such as surrogate or neural network models, where the underline input/output relationship between significant parameters is inferred from simulation results and/or sensor data. A surrogate model or metamodel is a model of a model, where the input/output relationship of a complex (accurate and computationally expensive) model is inferred by a simpler (generally less accurate and computationally inexpensive) model for fast assessment. One may think of the resistance of a ship varying its speed, evaluated by computational fluid dynamics (CFD) simulations. The simpler surrogate model that one can imagine is an interpolation of available resistance/speed values provided by CFD. For more complex problems and applications, such as uncertainty quantification and simulation-based design optimisation, the training of such models can be expensive, due to the large amount of data/simulations required for an accurate representation of the desired input/output relationship. For models trained by numerical simulations, several approaches can be used to reduce the time and therefore the cost of the training procedure. These approaches include the use of multi-fidelity surrogate models with adaptive sampling procedures.

Multi-fidelity (MF) approximation methods have been developed, with the aim of combining the accuracy of high-fidelity solvers with the computational cost of low-fidelity solvers, [START_REF] Peherstorfer | Survey of multifidelity methods in uncertainty propagation, inference, and optimization[END_REF]. A MF surrogate model uses mainly low-fidelity simulations and only few high-fidelity simulations are used to adjust/correct the model to improve its prediction accuracy. A hierarchy of models is usually required to build the MF approximation. In CFD-trained models, different fidelity levels can be obtained by varying the physical model (e.g. potential flow, PF, or Reynolds averaged Navier-Stokes, RANS, equations) and/or the numerical accuracy of the solution (e.g. grid discretization and/or convergence tolerances), see e.g. Beran et al. (2020). The training efficiency of the MF model and its final accuracy depends on several degrees of freedom (solvers setup, data points, etc.). Adaptive methods that automatically optimise these settings can greatly increase the potential of MF methods. For example, one of the key aspects to consider when building a MF surrogate model is the definition of the design of numerical experiments (DoE) required for the training. The DoE includes both the definition of the desired training points (operating conditions, design parameters, etc.) and fidelity level for the analysis (PF, RANS, grid resolution, etc.). The proper trade-off between model accuracy and computational cost of the training process should be carefully identified. This can be achieved using adaptive sampling methods, which train the model with a DoE that is not defined a priori but dynamically updated, exploiting the information that becomes available during the training process. By adding training points where it is most useful, adaptive sampling approaches increase the model accuracy while reducing the computational cost associated to the training, [START_REF] Liu | A Survey of Adaptive Sampling for Global Metamodeling in Support of Simulation-based Complex Engineering Design[END_REF].

The objective of this paper is to present recent trends in MF surrogate modelling for CFD applications using adaptation. Specifically, the fidelity of CFD solutions is automatically adapted during the model training using an adaptive grid refinement approach, [START_REF] Wackers | Can adaptive grid refinement produce grid-independent solutions for incompressible flows?[END_REF]. Adaptive sampling methods are used to run simulations only where it is most informative, [START_REF] Volpi | Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification[END_REF], and selecting the proper fidelity level, [START_REF] Serani | Adaptive multi-fidelity sampling for CFD-based optimisation via radial basis function metamodels[END_REF]. Finally, the MF model self-adapts using regression to cope with the presence of noise in the CFD output. Results are shown and discussed for stochastic radial basis functions (SRBF) and Gaussian processes (GP) models. Three applications are presented and discussed, namely the shape optimisation of a naval destroyer, a hydrofoil, and a rollon/roll-off passenger (RoPax) ferry. The paper shows: (i) how adaptive grid refinement adds computational grid nodes only where it is most useful, improving the capability of capturing the flow features and allowing to define an arbitrary number of fidelity levels in a MF environment; (ii) how the adaptive sampling procedure can efficiently manages the training process, adding training points to the DoE only where it is most informative and using the fidelity that is most convenient; and (iii) how self-adaptivity of the surrogate model by selecting regression parameters can effectively cope with the possible presence of noise in the training data.

Multi-fidelity surrogate modelling

In this section some definitions and concepts of MF surrogate modelling are briefly recalled. Details of the mathematical formulation with examples may be found in [START_REF] Volpi | Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification[END_REF], [START_REF] Serani | Adaptive multi-fidelity sampling for CFD-based optimisation via radial basis function metamodels[END_REF]Wackers et al. (2020a). Consider an input/output relationship of the type f (x), where f is a desired performance metric and x ∈ R D is a vector of dimension D collecting design and/or operational parameters. Let the true function f (x) be assessed by numerical simulations with fidelity levels denoted by l as in f l ( x) where, in general. an arbitrary number N of fidelity levels can be used. Here, the following hierarchy is used: l=1 indicates the highest fidelity and l=N indicates the lowest fidelity. The MF surrogate model f is built as a low-fidelity surrogate model f N "corrected" with the surrogate models ε l of the inter-level errors (or discrepancies) between consecutive fidelities, i.e.

f 1 = f N + ε N-1 + …+ ε 1 .
Note that each fidelity level has its own training set, which is used for modelling the Fig. 1: MF surrogate model with two fidelities (N = 2), [START_REF] Serani | Adaptive multi-fidelity sampling for CFD-based optimisation via radial basis function metamodels[END_REF] functions and/or discrepancies. In this work SRBF and GP surrogate models are used, which provide the prediction along with the associated uncertainty U~f l (x) of each level. The resulting uncertainty U f 1 (x) associated to the MF surrogate model prediction is a combination of the prediction uncertainties of each level. Fig. 1 shows an example for one design/operational variable (D = 1) and two fidelity levels (N = 2).

Adaptivity of the computational-domain discretization: adaptive grid refinement

A first step towards adaptivity comes from the adoption of adaptive grid refinement methods for the definition of the CFD mesh, [START_REF] Wackers | Can adaptive grid refinement produce grid-independent solutions for incompressible flows?[END_REF]. With this method an initial coarse grid is built and then its cells are divided based on the water surface position and on second derivatives of pressure and velocity. Thus, cells are added only where it is most useful to improve the capture of the flow features. The refinement level is expressed by a real value parameter that is user controlled, allowing to define arbitrary levels of fidelity. Fig. 2 shows the refined mesh for the 5415 DTMB hull, it is worth noting that the grid is finer close to the hull and at the air-water interface. Fig. 3 shows another advantage of using an adaptive grid refinement method, when a shape optimisation is demanded it is possible to modify the shape within a coarse grid, see Figs. 3a-b, reducing the problems connected to negative volumes and excessively skewed cells. Then, during the simulation, the grid will be refined up to the desired level, Fig. 3c. Further details can be found in Wackers et al. (2020b). and4f. MCAS can be seen as a multi-objective extension of ACAS and allows to perform the parallel infill of new training points, thus taking advantage of high performance computing systems that allow to run more simulations at once. All these sampling methods can be used either with SRBF or GP, since both models provide the function prediction with the associated uncertainty.

To demonstrate the effects of the adaptive sampling method on a design optimisation procedure, the shape optimisation of the DTMB 5415 (bare hull) is shown and discussed for total resistance in calm water at Fr = 0.30 and Re = 1.18 •10 7 . The DTMB 5415 model, see Fig. 5a, is an open-to-public early concept of a USS Arleigh Burke-class destroyer, widely used for towing tank experiments, CFD studies, and as hull-form optimisation benchmark. CFD simulations are performed by RANS with the ISIS-CFD code, [START_REF] Queutey | An Interface Capturing Method for Free-Surface Hydrodynamic Flows[END_REF]. Computational grids are created through adaptive grid refinement and mesh deformation to take into account the need for high-and low-fidelity, as well as the different geometries needed for shape optimisation. Fig. 5b shows the final iteration of the sampling strategies, MUAS explores the design space and provides an almost uniform sampling of the domain without any consideration of the objective function minimum; MFEI clusters the samples in the region close to the minimum and provides some samples in the left side of the design space, identified as promising at the beginning of the sampling; ACAS strictly focuses on the region around the minimum with a quite limited exploration of the design space; finally, MCAS provide a reasonable trade-off between exploration and exploitation, focusing on the region around the minimum but also exploring more broadly the design space. Solutions are close; MFEI identifies the best shape with a total resistance reduction of 4% compared to the original hull. The resulting reduction of the bow wave can be seen in Fig. 6. The adaptive sampling procedure allows for finding an approximate optimal solution with a quite small computational cost, enabling shape optimisation also in the case of limited computational budgets. Further details can be found in [START_REF] Serani | Adaptive multi-fidelity sampling for CFD-based optimisation via radial basis function metamodels[END_REF]. 

Adaptivity of the fidelity used for training: the N-fidelity approach

In the MF context, the use of more than one fidelity level adds an additional degree of freedom in the adaptive sampling process. Once the design/operational space regions that need additional training points are identified, it is also necessary to define the fidelity level able to produce the greatest benefit in terms of accuracy versus computational cost. This selection can be made automatically and adaptively as the surrogate model training progresses, e.g. based on the ratio between the prediction uncertainty and the computational cost associated to each fidelity level.

As an example, results with N = 3 fidelity levels are shown for an analytical test (extended from [START_REF] Clark | Engineering Design Exploration Utilizing Locally-Optimized Covariance Kriging[END_REF]) and a NACA hydrofoil shape optimisation for reduced drag coefficient with the MUAS method (the interest reader can be referred to Wackers et al. 2020a). The NACA is optimized at constant lift coefficient C L =0.6 and Re = 8.41 •10 6 . Fig. 7 shows the analytical test problem with the high-(f 1 ), medium-(f 2 ¿, and low-fidelity (f 3 ) levels along with an artificial noise band for each fidelity (representative of CFD output noise). Increasing the number of fidelity levels improves the capability of the MF surrogate model to represent the desired function (see Fig. 8). Similar consideration can be made looking at the NACA hydrofoil optimisation problem. Fig. 9 shows the hydrofoil grids (see Figs. 9a-c), along with the noise associated to the CFD computations for one design variable (see Figs. 9d-f). Fig. 10 shows that the introduction of an additional fidelity level (thus moving from N=2 to N=3) produces a smoother response surface. Finally, Fig. 11 shows that the higher the number of fidelity levels the greater the reduction of the high-fidelity evaluations and therefore the cost. For this example, a multi-grid approach is used (see Fig. 12) instead of adaptive grid refinement. CFD simulations are performed with the  navis RANS code, [START_REF] Broglia | Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method[END_REF]. Fig. 13 shows the surrogate model prediction and the associated uncertainty at the final iteration using the ACAS sampling method. The sampling is strictly focused on the global minimum region and the overall surrogate prediction uncertainty is low. The MF surrogate model provides a prediction error at the minimum close to 10% and an objective function improvement equal to 12.7%. Fig. 14 shows the comparison between (a) the original and (b) the optimised hull. The optimised hull is characterized by a reduction of the submergence of the stern region and a less pronounced bulbous bow.

Overall, adding fidelity levels and managing adaptively their contribution to the model training increase significantly the optimisation procedure efficiency. 

Adaptivity of the model to noise: auto-tuning using regression

Generally, the presence of numerical noise in CFD outputs is somehow unavoidable and cannot be neglected a priori (see e.g. Figs. 9d-f). The use of a surrogate model that performs an exact interpolation of the training points may lead to overfitting and loss of accuracy, since the surrogate model reproduces all the numerical (non-physical) fluctuations in the data, see e.g. Figs. 8b-c. To overcome this problem and filter out the noise, regressive surrogates may be used. Regressive models generally require the definition of several tuning parameters. Model auto-tuning involves the automatic selection of these parameters. Furthermore, when dealing with noisy data it is also useful to have a surrogate capable to assess the "amount" of noise (e.g. as standard deviation of the data).

Here, SRBF uses least-squares regression (LS-SRBF) to filter the noise out. The auto-tuning capability is based on a leave-one-out cross-validation procedure with the automatic selection of the number of SRBF centres based on an error metric. The assessment of the amount of noise in the data is based on the root mean squared error between the training set and the surrogate model prediction. GP auto-tuning is based on the identification of an optimal set of internal parameters as the result of a log marginal likelihood maximization. GP uses an internal parameter to explicitly model the standard deviation associated to the noise in the training set. Further details can be found in Wackers et al. (2020a). Results with three fidelity levels are shown for the analytical test problem (see Figs. Figs.17 shows (top) the surrogate model predictions and (bottom) the associated uncertainties at the final iteration of the adaptive sampling procedure using I-SRBF, LS-SRBF, and GP for the NACA problem. LS-SRBF provides a smoother response surface and a more uniform distribution of samples than I-SRBF. GP shows a significant clusterization of samples at the corners of the domain, but also produces a very smooth response surface. GP shows the smoothest trend for the uncertainty, but also quite large uncertainty values. Finally, Fig. 18 shows the optimised NACA hydrofoil shapes. These are similar; small differences are present in the leading edge of the hydrofoil that are deemed to be the origin of the numerical noise. Using adaptivity to noise represents a further improvement for the model training efficiency. Model overfitting is avoided, and the overall accuracy is increased. Optimisation solutions are achieved with a reduced number of high-fidelity calls and therefore reduced computational cost.

Conclusions and future directions

Some recent trends in multi-fidelity surrogate modelling for CFD applications have been presented. The thread that connects these trends is the adaptivity. Adaptivity allows to efficiently manage the available resources (e.g. computational cost and time for CFD simulations) in the training of fast digital models for design optimisation and uncertainty quantification. The following conclusions may be drawn:

1. The use of an adaptive grid refinement method allows the realizations of meshes able to capture the flow features up a user-desired accuracy, while keeping the simulation computational cost lower than using uniformly refined mesh. Adaptive grid refinement also provides an arbitrary number of fidelity levels for use in the MF context.

2. The use of adaptive sampling methods allows to train the models adding new samples only where it is most informative. This increase the model accuracy and reduce the computational cost associated to training the model.

3. The adaptive sampling can be extended to the use of more than one fidelity (physical model, grid, etc.). This allows the selection of the most convenient fidelity level, balancing the model accuracy with the computational cost. As overall results, the training procedure is further optimised, achieving more accurate models with reduced computational cost.

4. Auto-tuning capabilities of surrogate models allow to cope with numerical noise in the training data, which is generally unavoidable when CFD outputs are use. Auto-tuning avoids model overfitting and the risk of oversampling. It produces smoother models and represents a further improvement for model accuracy and training efficiency.

Future research will address the extension of adaptive methods discussed here to the more general context of multi-information source applications, where defining hierarchy of training sets is not straightforward (e.g. when RANS computations with pretty coarse grids are used together with nonlinear PF computations with well resolved panel meshes). The possibility of integrating sources with heterogenous or missing data is also of interest, as well as the extension to time-varying outputs (e.g. time series).
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 23 Fig.2: Shape optimisation with adaptive grid refinement example: 5415 DTMB hull optimisation

  Fig.5: DTMB 5415 optimisation (Fr = 0.30 and Re = 1.18 •10 7 ) with SRBF based MF metamodel,[START_REF] Serani | Adaptive multi-fidelity sampling for CFD-based optimisation via radial basis function metamodels[END_REF] 
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 78 Fig.7: Analytical test problem with different number of fidelities and noise bands, f 1 and f 2 functions without noise are taken from Clark et al. (2016). Example taken fromWackers et al. (2020a) 
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 1214 Fig.12: Shape optimisation with multi-grid: example with four levels of refinement, bulb region,Wackers et al. (2020b) 

  Fig.15: Analytical test problem: final iteration of the adaptive sampling procedure with different metamodels, Wackers et al. (2020a)

  Fig.17: NACA hydrofoil shape optimisation (C L =0.6 and Re = 8.41 •10 6 ): final iteration of the adaptive sampling procedure, metamodel prediction (top) and prediction uncertainty (bottom),Wackers et al. (2020a) 
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