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Abstract

We solve the leaderless consensus-formation control problem for nonholonomic robots under the influence of time-varying
communication delays and via smooth feedback. The control objective is to ensure that both the Cartesian positions of the
vehicles and their orientations on the plane converge to a given position in a formation pattern, relatively to an a priori unknown
barycenter and a common orientation, respectively. Our controller, being of proportional-plus-damping type and smooth time-
varying, is easy to implement. Furthermore, it relies on δ-persistency of excitation to overcome the well-known obstacle that for
nonholonomic systems a set-point is not stabilizable by smooth time-invariant feedback. We establish asymptotic convergence
of the tracking errors and we provide some simulation results that support our theoretical findings.

Key words: Nonholonomic vehicles; formation control; consensus control; systems with time-delays.

1 Introduction

For multiagent systems the well-studied consensus con-
trol problem consists in making all the systems’ states
converge to a common equilibrium (Ren and Beard, 2005;
Jadbabaie et al., 2003; Olfati-Saber and Murray, 2004).
For mobile robots, because several of these can obviously
not occupy the same position simultaneously, consensus
must be formulated as a problem of formation control,
that is, in which the robots stabilize near an equilibrium
point while forming a geometric pattern (Lin et al., 2005).
We may distinguish two consensus-formation problems:
the leader-follower, in which the agreement equilibrium
point is given as a desired value to a set of follower agents
in the network (Maghenem, 2017), and the leaderless,
in which such common value results from the network’s
topology (Cao and Ren, 2011; Wang, 2014; Hatanaka
et al., 2015; Dong and Farrell, 2008a). Furthermore, it is
important to distinguish works in which both Cartesian
coordinates and orientation are controlled (Dimarogonas
and Kyriakopoulos, 2007; Maghenem, 2017) from those
in which orientation is neglected (Lin et al., 2005; Roza
et al., 2018). In this paper we focus on the leaderless full-
consensus problem, that is, the set-point is not given a
priori and consensus is reached both in Cartesian posi-
tions and orientation angles.

Email address: emmanuel.nuno@cucei.udg.mx
(Emmanuel Nuño).

Another important distinction lies in the model consid-
ered. It can be of first order, in which case either only the
kinematics resulting from the nonholonomic constraints
is considered (Lin et al., 2005; Roza et al., 2018; Peng
et al., 2015; Dong and Farrell, 2008a) or it may be simpli-
fied even further to a point-mass on the plane, in which
case the consensus problem boils down to that of consen-
sus of simple integrators; a problem completely solved
under various scenarios (Ren and Beard, 2005; Ren, 2008;
Olfati-Saber and Murray, 2004). A more realistic model,
however, is force-controlled; this model is of second or-
der and, besides the nonholonomy and underactuation,
it presents the difficulty of controlling a higher relative-
degree system. This is the model that we consider in this
paper; see also (Do et al., 2004; Bautista-Castillo et al.,
2016; Maghenem et al., 2019).
From a control viewpoint, the nonholonomy of the robot
imposes significant difficulty to set-point stabilization;
it is well known that these systems are not stabilizable
via time-invariant smooth feedback (Brockett, 1983); for
multiagent systems, necessary conditions for consensus
are laid in (Lin et al., 2005). Thus, consensus of multia-
gent nonholonomic systems is solvable either via discon-
tinuous time-invariant control (Dimarogonas and Kyri-
akopoulos, 2007) or time-varying smooth feedback (Yang
et al., 2016; Jin and Gans, 2017).
From an implementation viewpoint, there are many
kinds of controllers that may be designed depending
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on the available sensors and their capabilities. In this
article we assume that the robots are equipped with
global-measurement sensors and they transmit and re-
ceive measurements from “neighbor” robots that are
interconnected over a network. It is most sensible to
assume that communication flows in both directions
(hence the network topology is undirected) and delays
are time-varying (Hatanaka et al., 2015; Abdessameud
et al., 2017). Such scenario is common, for instance,
in the case that a group of robots are initially too far
apart for relative-measurement sensors to be of any use.
When within range, however, relative measurements
may result more practical than global ones in missions
of formation-tracking control (after the rendez-vous has
been achieved). Relative-measurement based control is
considered, for instance, in (Roza et al., 2018), but with-
out communication delays and neglecting to control the
orientation. Delays in the communication have been con-
sidered, e.g., in (Dong and Farrell, 2008b; Maghenem,
2017). In the former delays are considered to be constant
and in the latter they are time-varying, but the control
gains, as in (Roza et al., 2018), must satisfy a condition
that requires global connectivity information.
Thus, in this paper we consider the full-consensus prob-
lem for second-order (force-controlled) nonholonomic
systems interconnected over an undirected graph and
with time-varying measurement delays. We propose a
smooth controller of proportional-plus-damping type
that achieves the control goal via a δ−persistently-
exciting (δ−PE) term —cf. (Loŕıa et al., 1999). Our
controller is completely distributed as the control gains
depend only on the actual strength of the interconnec-
tion for each agent. To the best of our knowledge, this
problem, under the conditions considered here, has only
been considered in (Maghenem, 2017). Other important
aspects, such as collision avoidance (Jin and Gans, 2017)
and robustness with respect to external disturbances
(Ajorlou et al., 2015; Maghenem et al., 2018) are out of
scope in this work.
The rest of the paper is organized as follows. In the next
section we present the model and formulate the control
problems that we address. In Section 3 we present our
main theoretical results; these are illustrated via numer-
ical simulations in Section 4. We conclude with some re-
marks in Section 5.

2 Model and problem formulation

>>>>>>>>>

>>
>>
>>
>>
>

>>>>>>>>>

>>
>>
>>
>>
> θi

2R

2r

xi

yi

Fig. 1. Schematics of a differential wheeled mobile robot.

Consider a group ofN force-controlled nonholonomic ve-
hicles, like the one depicted in Fig. 1, each of which is
modeled by the usual unicycle kinematics equations and
two added integrators, that is, for each i ≤ N , we have

żi = ϕi(θi)vi, ϕi(θi) := [cos(θi) sin(θi)]
> (1a)

v̇i = uvi, uvi :=
1

rimi
[τi1 + τi2] (1b)

θ̇i = ωi (2a)

ω̇i = uωi, uωi :=
2Ri
Iiri

[τi1 − τi2], (2b)

where zi := [xi, yi]
> ∈ R2 are the Cartesian coordinates

of the robot on the plane, θi ∈ R denotes its orientation,
vi and ωi are the linear and angular velocities of the
center of mass, respectively, mi is the mass, Ii is the
moment of inertia, ri the radius of the wheels, Ri is the
distance between pointQi and the wheels, uvi and uωi are
the control inputs, and τij are the torques at the wheels,
that is, for the purpose of control implementation, we
have [

τi1

τi2

]
=
ri
2

[
mi Ii/2Ri

mi −Ii/2Ri

][
uvi

uωi

]
. (3)

The leaderless consensus-formation control problem,
which we solve in this paper, involves making the robots
acquire a desired formation pattern relatively to a
barycenter with coordinates zc := [xc yc]

> and a com-
mon orientation, denoted θc. It is assumed that both,
zc and θc are unknown; they result from the topology
of the interconnection graph and the multiagent sys-
tem’s initial conditions. The formation is determined
by defining, for each robot, a constant vector denoted
δi ∈ R2, δi := [δxi δyi] and the relative position errors
z̄i := zi − δi. Then, the control goal is to steer z̄i → zc
and θi → θc for all i ≤ N .
We assume that each robot possesses position and veloc-
ity sensors and is able to communicate them to a number
of neighbors through a relatively reliable network. More
precisely, we assume that
(A1) the interconnection graph is undirected, static, and
connected.
Hence, the interconnection graph may be modeled by a
constant Laplacian matrix, L := [`ij ] ∈ RN×N , where

`ij =


∑
k∈Ni

aik i = k

−aik i 6= k,
(4)

Ni ⊂ Z is the set of indexes corresponding to robots
transmitting information to the ith robot, aik > 0 if
k ∈ Ni and aik = 0 otherwise. By construction, L1N =
0, where 1N = [1 · · · 1]> and, after Assumption A1, L
is symmetric, it has a unique zero-eigenvalue, and the
rest of its spectrum is strictly positive. Thus, rank(L) =
N − 1.
On the other hand, although the network interconnec-
tions are assumed to be static, the network is logically as-
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sumed to be wireless. This has as a natural consequence
that the communications are affected by time-varying de-
lays (Hatanaka et al., 2015; Abdessameud et al., 2017).
Hence, we also assume that
(A2) the communication from the jth to the ith robot
is subject to a variable time-delay denoted Tji(t) that

is bounded by a known upper-bound T ji ≥ 0 and has
bounded time-derivatives.
Then, the control problem consists in designing uvi and
uωi so that

lim
t→∞

vi(t) = 0, lim
t→∞

ωi(t) = 0, (5)

lim
t→∞

z̄i(t) = zc, lim
t→∞

θi(t) = θc, (6)

for all i ≤ N .
Remark 1 Being inherently a set-point stabilization
problem, leaderless consensus differs greatly from other
formation control problems, notably from moving-leader-
follower consensus, which is intrinsically a tracking
control problem. Firstly, in clear contrast with the case
of holonomic systems, set-point stabilization cannot
be considered as a particular case of tractory tracking
(Lizárraga., 2004). Secondly, from a systems theory
viewpoint, an important distinction lies in that nonholo-
nomic systems are controllable about a trajectory pro-
vided that the leader velocity is nonzero (de Luca et al.,
2016). While this is relevant in tracking-control scenarii,
in the present setting the main difficulty resides in that
a set-point is not asymptotically stabilizable by smooth
feedback, unless the latter is time-varying.

3 Main result

The main contribution in this paper is to provide an orig-
inal solution to the problem previously stated: full lead-
erless consensus control of multiple second-order non-
holonomic systems.
For the purpose of control design and analysis, we start
by reformulating the control goal in (6) as

lim
t→∞

ezi(t) = 0, lim
t→∞

eθi(t) = 0 (7)

for all i ≤ N , where

ezi :=
∑
j∈Ni

aij
[
z̄i − z̄j(t− Tji(t))

]
(8)

denotes the consensus errors in terms of the Cartesian co-
ordinates of the ith robot and the measurements received
from its Ni neighbours, with different time-varying de-
lays, and

eθi :=
∑
j∈Ni

aij
[
θi − θj(t− Tji(t))

]
(9)

denotes the consensus error in terms of the orientation
angles, also affected by time-varying delays.
The control approach is based on designing a controller
for each part of the system’s dynamics separately. One

for the dynamics corresponding to the translational
part, Eq. (1), and another one for the orientation-angles
dynamics. Since the respective systems (1) and (2)
are of second order it is natural to design controllers
of proportional-derivative type —cf. (Ren and Beard,
2005). Nonetheless, the system being subject to non-
holonomic constraints, a set-point is not stabilizable via
time-invariant smooth feedback (Brockett, 1983). Fur-
thermore, because it is also desired to reach consensus
in the orientation angles, controllers tailored for point-
mass models do not apply either. Thus, our controller
is of proportional-derivative type and it is smooth time-
varying.
First, for the translational dynamics of the ith robot we
introduce the nonlinear control law —cf. (Nuño et al.,
2013),

uvi = −pviϕi(θi)>ezi − dvivi, (10)

where the parameters pvi and dvi are, respectively, the
so-called proportional and derivative gains and are pos-
itive constants by design. The derivative term is simply
proportional to the forward velocities vi ∈ R but, in view
of the robot’s kinematics, the proportional-feedback
term, −pviϕi(θi)>ezi, which depends on the consensus
errors ezi ∈ R2, involves the rank-deficient vector ϕi(θi).
Some readers may see here an analogy between the
proportional-feedback term and the Jacobian-transpose
controller used for robot manipulators, in which the
Jacobian is not required to have full rank to achieve
regulation.
Then, the closed-loop equation, corresponding to the
translational dynamics, is

Σv :

{
˙̄zi = ϕi(θi)vi

v̇i = −dvivi − pviϕi(θi)>ezi.
(11)

In contrast to the case of an ordinary double integrator
the system (11) has multiple equilibria, other than points
including ezi = 0. These equilibria correspond to points
in the set Ev := {z̄i, θi, vi, ezi : vi = 0 ∧ ϕi(θi)

>ezi =
0}. This, in addition to the fact that set-points are not
stabilizable for nonholonomic systems, via smooth time-
invariant feedback, considerably increases the difficulty
of the consensus problem, relatively to that for linear
systems or even systems with holonomic constraints.
The so-needed external function of time is introduced
through the second control law, at the orientation-angle
dynamics. Let

uωi = −pωieθi − dωiωi + αi(t, θi, ezi), (12)

where pωi and dωi are positive gains. Clearly, the first
two terms on the right-hand side of (12) are also of the
proportional-derivative type. The function αi, which in-
troduces the needed time-varying terms, is defined as

αi(t, θi, ezi) := kαifi(t)ϕi(θi)
⊥>ezi, (13)

where kαi > 0, ϕi(θi)
⊥ = [− sin(θi) cos(θi)]

> is the anni-
hilator of ϕi, i.e., ϕi(θi)

>ϕi(θi)
⊥ = ϕi(θi)

⊥>ϕi(θi) = 0,
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and fi ∈ C2(R≥0,R) satisfies, by construction, fi, ḟi, f̈i ∈
L∞, lim

t→∞
fi(t) 6= 0, and lim

t→∞
ḟi(t) 6= 0.

The stabilization mechanism of uωi may be explained
by observing the closed-loop equations relative to the
orientation-angle dynamics,

Σω :

{
θ̇i = ωi

ω̇i = −dωiωi − pωieθi + αi(t, θi, ezi).
(14)

With αi ≡ 0, these equations correspond to those of a
stable second-order time-invariant system with equilib-
ria in Eω := {θi, ωi : eθi = 0, ωi = 0}. Hence, with-
out the term αi in the controller, complete system’s tra-
jectories may belong to Eω ∩ Ev which includes, but is
not restricted to, the consensus manifold. On the other
hand, becauseϕi(θi) andϕi(θi)

⊥ are orthogonal, we have
ϕi(θi)

⊥>ezi 6= 0 for all points in Ev\{vi = 0, ezi = 0}.
Now, in view of the assumptions imposed on fi in (13),
the function αi evaluated along complete trajectories be-
longing to Ev cannot vanish. Thus, αi may be seen as
a “controlled perturbation” that persistently impedes
all the trajectories, except the trivial one, to remain in
Eω ∩ Ev.
Remark 2 The excitation property of αi is remi-
niscent of δ−persistency of excitation (Loŕıa et al.,
2005). See also (Loŕıa et al., 1999) where the so-called
δ−persistently-exciting controllers were introduced for
stabilization of nonholonomic systems.
Our main result emerges from the previous rationale.
Proposition 1 Consider the system (1)–(2), under As-
sumptions A1 and A2, in closed loop with (10), (12)–(13)
and with fi as defined above. Then, the leaderless con-
sensus control goal is achieved, that is (5) and (6) hold,
provided that

dvi >
1

2
pvi

∑
j∈Ni

aij

(
βi +

T
2

ij

βj

)
(15)

dωi >
1

2
pωi

∑
j∈Ni

aij

(
εi +

T
2

ij

εj

)
(16)

for some βi, εi > 0, for all i ≤ N . �

Proof of Proposition 1
The proof relies on Barbalat’s lemma and standard
signal-chasing arguments. We start by showing that
vi → 0 and that the solutions of Σv are bounded. To
that end, consider the Lyapunov-Krasovskii functional

V :=
∑
i≤N

 1

2pvi
v2i +

1

4

∑
j∈Ni

aij |z̄i − z̄j |2

+
1

2βi

∑
j∈Ni

aijT ji

∫ 0

T ji

∫ t

t+σ

vj(η)2dηdσ


whose total derivative, along the trajectories of (11),

yields

V̇ = −
∑
i≤N

dvi
pvi

v2i + ˙̄z
>
i

∑
j∈Ni

aij(z̄i − z̄j(t− Tji(t)))

− 1

2

∑
j∈Ni

aij( ˙̄zi − ˙̄zj)
>(z̄i − z̄j)

− 1

2βi

∑
j∈Ni

aij

(
T

2

jiv
2
j − T ji

∫ t

t−T ji
v2j (σ)dσ

) .
Then, we use

z̄j − z̄j(t− Tji(t)) =

∫ t

t−Tji(t)
˙̄zj(σ)dσ,

and Lemma 6.1 from (Cao and Ren, 2011) to obtain,
under Assumption A1,

1

2

∑
i≤N

∑
j∈Ni

aij( ˙̄zi− ˙̄zj)
>(z̄i−z̄j) =

∑
i≤N

∑
j∈Ni

aij ˙̄z
>
i (z̄i−z̄j).

Therefore,

V̇ = −
∑
i≤N

dvi
pvi

v2i +
∑
j∈Ni

aij ˙̄z
>
i

∫ t

t−Tji(t)
˙̄zj(σ)dσ

− 1

2βi

∑
j∈Ni

aij

(
T

2

jiv
2
j − T ji

∫ t

t−T ji
v2j (σ)dσ

) .
Next, we apply Young’s and Cauchy-Schwarz’ inequali-
ties on the second right-hand-term to obtain

− ˙̄z
>
i

∫ t

t−Tji
˙̄zj(σ)dσ ≤ βi

2
| ˙̄zi|2 +

1

2βi

∣∣∣∣∣
∫ t

t−Tji
˙̄zj(σ)dσ

∣∣∣∣∣
2

≤ βi
2
| ˙̄zi|2 +

T ji
2βi

∫ t

t−T ji
| ˙̄zj(σ)|2dσ,

for any βi > 0. Now, since ϕ>i ϕi = 1, we have | ˙̄zi|2 = v2i
and, in turn,

V̇ ≤ −
∑
i≤N

(dvi
pvi
− βi

2
lii

)
v2i −

∑
j∈Ni

aij
T

2

ji

2βi
v2j

 ,
where lii :=

∑
j∈Ni

aij is the ith element in the diagonal of

the Laplacian matrix. Now, following (Nuño et al., 2013)
and defining s(v2i ) := [v21 · · · v2N ]> and

Ψ =


dv1
pv1
− β1

2 l11 −T
2

21

2β1
a12 . . . −T

2

N1

2β1
a1N

−T
2

12

2β2
a21

dv2
pv2
− β2

2 l22 . . . −T
2

N2

2β2
a2N

...
...

. . .
...

−T
2

1N

2βN
aN1 −T

2

2N

2βN
aN2 . . . dvN

pvN
− βN

2 lNN

 ,
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we obtain V̇ ≤ −1>NΨs(v2i ) or, equivalently,

V̇ ≤ −
∑
i≤N

dvi
pvi
−
∑
j∈Ni

aij

(
βi
2

+
T

2

ij

2βj

) v2i .
Thus, after (15), it follows that there exists λi > 0

such that V̇ ≤ −
∑
i≤N

λiv
2
i . This implies that vi ∈ L2

and, since V is positive definite and radially unbounded
with respect to vi and z̄i − z̄j , the latter belong to L∞
and, consequently, ezi ∈ L∞. Now, since ϕi is uniformly
bounded, it follows from (11) that v̇i ∈ L∞ and, there-
fore, lim

t→∞
vi(t) = 0.

So far, we have established the first limit in (5). Now, we
analyze the behavior of the solutions of (14) with the aim
at establishing the second limit. To that end, consider
the system Σω with (for the time-being) αi ≡ 0 and the
Lyapunov-Krasovskii functional

W :=
∑
i≤N

 1

2pωi
ω2
i +

1

4

∑
j∈Ni

aij(θi − θj)2

+
1

2εi

∑
j∈Ni

aijT ji

∫ 0

−T ji

∫ t

t+σ

ω2
j (η)dηdσ

 ,
where εi > 0. Proceeding as we did previously for the
differentiation of V, we obtain

Ẇ ≤ −
∑
i≤N

(dωi
pωi
− εi

2
lii

)
ω2
i −

∑
j∈Ni

aij
T

2

ji

2εi
ω2
j

 ,
so

Ẇ ≤ −
∑
i≤N

dωi
pωi
−
∑
j∈Ni

aij

(
εi
2

+
T

2

ij

2εj

)ω2
i .

Therefore, after (16), it follows that there exists λi > 0

such that Ẇ ≤ −
∑
i≤N

λiω
2
i . Since W is positive definite

and radially unbounded with regards to ωi and θi − θj ,
it follows that ωi ∈ L2 ∩ L∞ and θi − θj ∈ L∞. This, in
turn, implies that ω̇i ∈ L∞ so, after Barbalat’s Lemma,
lim
t→∞

ωi(t) = 0.

We proceed now to establish the limit in (6). To that
end, observe that, since

lim
t→∞

∫ t

0

ω̇i(σ)dσ = lim
t→∞

ωi(t)− ωi(0) = ωi(0),

it follows, from Barbalat’s lemma, that lim
t→∞

ω̇i(t) = 0 if

ω̇i is uniformly continuous. The latter holds since

ω̈i = − 1

Ii

[
pωiėθi + dωiω̇i

]

is bounded; indeed, this follows from Assumption A2 and
the fact that ω̇i, ωi ∈ L∞.
Now, from the second equation in (14), restricted to αi ≡
0, it follows that lim

t→∞
ω̇i(t) = 0 and lim

t→∞
ωi(t) = 0 imply

that lim
t→∞

eθi(t) = 0 or, equivalently, that

lim
t→∞

∑
j∈Ni

aij

(
θi(t)− θj(t) +

∫ t

t−Tji(t)
ωj(σ)dσ

)
= 0.

Then, since ωi → 0 and Tji(t) is globally bounded (see
A2), we have

lim
t→∞

∑
j∈Ni

aij [θi(t)− θj(t)] = 0

which implies that lim
t→∞

Lθ(t) = 0, where θ =col(θi) ∈
RN . Thus,

lim
t→∞

θi(t) = θc. (17)

All the previous arguments hold provided that αi ≡ 0.
If this is not the case, we remark that since, fi, ezi and
ϕ⊥i are bounded along trajectories, so is αi —see Eq.
(13). This and the fact that Σω is a marginally sta-
ble linear time-varying system with uniformly bounded
time-delays ensure that ω̇i, ωi ∈ L∞, by Proposition 3 in
(Wang, 2020) and so is eθi.

The rest of the proof mostly consists in establishing that
ezi → 0 which, since vi → 0, implies that z̄i → z̄c,
thereby completing (6). To see the latter, note that

ezi =
∑
j∈Ni

aij

(
z̄i − z̄j +

∫ t

t−Tji(t)
˙̄zj(σ)dσ

)
,

so, defining ez :=
[
ez1 · · · ezN

]>
and z̄ :=

[
z̄1 · · · z̄N

]
respectively, and using ˙̄zj(t) = ϕj(t)vj(t), we obtain

ez = (L⊗ I2)z̄ + col

∑
j∈Ni

aij

∫ t

t−Tji(t)
ϕj(σ)vj(σ)dσ

 .

Therefore, ezi = 0 and vi = 0 imply that (L ⊗ I2)z̄ = 0
which, in view of the properties ofL, implies the existence
of z̄c ∈ R2 such that z̄ = 1N ⊗ z̄c, or z̄i(t) = z̄c for all
i ≤ n.
We proceed now to show that ezi → 0. To that end, we
stress that, since lim

t→∞
vi(t) = 0,

lim
t→∞

∫ t

0

v̇i(σ)dσ = lim
t→∞

vi(t)− vi(0) = vi(0).

Moreover, in view of Assumption A2 and the fact that
θi, ωi, ω̇i, vi, v̇i, and ezi ∈ L∞, so does

v̈i = −pvi
mi

[
ωiϕ

⊥>
i ezi + ϕ>i ėzi +

dvi
pvi

v̇i

]
. (18)
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After Barbalat’s lemma, it follows that lim
t→∞

v̇i(t) = 0

and, in turn after (11), also lim
t→∞

ϕi(θ(t))
>ezi(t) = 0.

Note, however, that the solutions to ϕi(θ)
>ezi = 0 are

of the form ezi = cϕ⊥i . Notwithstanding, so are the solu-
tions to ϕi(θ)

⊥>ezi = 0 on the right-hand side of (18).
Therefore, the unique solution to both equations is c = 0
or, equivalently, ezi = 0, since ϕ⊥>i ϕ⊥i = 1.

Thus, it is left to establish that ϕi(θ(t))
⊥>ezi(t)→ 0. To

that end, we use once more Barbalat’s lemma to show
that v̈i → 0. First, note that

lim
t→∞

∫ t

0

v̈i(σ)dσ = lim
t→∞

v̇i(t)− v̇i(0) = −v̇i(0).

Then, to show that v̈i is uniformly continuous we use
(18) and ϕ̇⊥ = −ωiϕi to obtain

...
v i = −pvi

mi

[
ω̇iϕ

⊥>
i ezi + 2ωiϕ

⊥>
i ėzi − ω2

i ϕ
>
i ezi

+ ϕ>i ëzi +
dvi
pvi

v̈i

] (19)

which is bounded, in view of Assumption A2 and the
boundedness of all functions on the right-hand side. This
implies that lim

t→∞
v̈i(t) = 0. Similar arguments apply to

establish that lim
t→∞

...
v i(t) = 0 and lim

t→∞
v
(4)
i (t) = 0, where

v
(4)
i = −pvi

mi

[
ω̈iϕ

⊥>
i ezi + 3ω̇iϕ

⊥>
i ėzi − ω3

i ϕ
⊥>
i ezi + ϕ>i

...
e zi

+ 3ωi
(
ϕ⊥>i ëzi + ω̇iϕ

>
i ezi + ωiϕ

>
i ėzi

)
+
dvi
pvi

...
v i

]
(20)

Hence, since vi, v̇i, v̈i,
...
v i, v

(4)
i andϕ>i ezi converge to zero,

so do ėzi, ëzi and
...
e zi. It follows that all the terms in (18),

(19), and (20) converge to zero. Thus, from (18) it follows
that ωiϕ

⊥>
i ezi → 0, from (19) we have ω̇iϕ

⊥>
i ezi → 0,

and (20) implies that ω̈iϕ
⊥>
i ezi → 0.

Next, we use

ω̈i = −kαi
Ii

[
pωi
kαi

ėθi +
dωi
kαi

ω̇i + fiωiϕ
>
i ezi − fiϕ⊥>i ėi

− ḟiϕ⊥>i ezi

]
in the first right hand side term of (20) to conclude

that the term pωi
kαi

ėθiϕ
⊥>
i ezi − ḟi

(
ϕ⊥>i ezi

)2
converges

to zero. Since, on one hand ωiϕ
⊥>
i ezi converges to zero

and, on the other hand, ezi = cϕ⊥i and ϕ⊥>i ϕ⊥i = 1,
it follows that ωi also converges to zero. In turn, we
also have ėθiϕ

⊥>
i ezi → 0. Finally, the design of fi guar-

antees that ḟi does not vanish, so we conclude that
lim
t→∞

ϕ⊥>i (θi(t))ezi(t) = 0. Therefore αi vanishes and

the limits in (5), as well as (17), follow. �

4 Simulations

We present now some numerical simulation results to il-
lustrate our theoretical findings. The simulations are per-
formed using a network of six differential-drive robots
interconnected as illustrated in Fig. 2, below. For sim-
plicity, the physical parameters of all robots are taken
to be equal: 10Kg for the mass; 3Kgm2 for the moment
of inertia; 0.3m of the distance between point Q and the
wheels, and 0.05m for the radius of the wheels cf. (Sho-
jaei et al., 2011).

robot 1 2 3 4 5 6

δxi 2 1 -1 -2 -1 1

δyi 0 2 2 0 -2 -2

Fig. 2. Communication topology and hexagonal desired for-
mation pattern (left). The latter is defined as an hexagon,
determined by the distances δxi and δyi as per in the table
on the right.

The interconnection time-delays are defined as a normal
Gaussian distribution with a mean of 0.2s and a variance
of 0.001s hence, they are bounded by T ji = 0.33s. The
functions t 7→ fi are designed using a truncated Fourier
series of a square wave, that is,

fi (t) =
5

2
+

5∑
k=1

4

(2k − 1)π
sin

(
2k − 1

2
t

)
∀ i ≤ N.

The robots are assumed to be initially standing still at
the coordinates

xi(0) :=
[
5 7 7 3 1 1

]>
yi(0) :=

[
2 5.5 3.5 2 3.5 5.5

]>
and with the following orientations (in rad)

θ(0) =
[
π
2 0 −π8

π
8 −

π
8 −

π
8

]>
.

The controller gains are set to pωi = 30, dωi = 60, kαi =
150, pvi = 300 and dvi = 600, for all i ≤ N .
As it may be appreciated from Fig. 4, the robots con-
verge to the desired formation pattern with a barycenter
at zc = [3.35, 3.96]>; their orientations converge to a
common angle θc =5.77 rad, —see Fig. 3 below.

0 10 20 30 40
-3

-2

-

0

2

3

Fig. 3. Orientations of the six robots against time
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Fig. 4. Position trajectories in the Cartesian xy-plane

5 Conclusions

A solution to the leaderless consensus problem for
force-controlled nonholonomic robots, in the presence
of time-varying measurement delays, was presented.
To cope with the difficulty imposed by the nonholo-
nomic constraints to achieve set-point stabilization via
smooth feedback, our controller is time-varying. It re-
lies on a condition of persistency of excitation imposed
on the term αi(t, θi, ezi) —see Eq. (13). Such condition
is reminiscent of δ-persistency of excitation, which for
nonlinear time-varying systems is necessary for uniform
asymptotic stability (Loŕıa et al., 2005). Even though
this property is not established here (it is subject of cur-
rent research), the previous rationale justifies the little
conservativism of our assumptions.
From an implementation viewpoint, it is important to
stress that the controllers have a simple proportional-
plus-damping structure. Hence, the stability conditions
(15) and (16) reflect the obvious fact that if the propor-
tional gains are increased, to obtain a faster response,
the dissipation gain must also be increased. Surprisingly,
even though the system exhibits nonholonomic restric-
tions, the resulting conditions are the same as that re-
ported in (Nuño et al., 2013) for the unrestricted case.
On the other hand, the choice of fi also impacts the per-
formance of the controller.
Current research focusses on moving-leader-follower con-
sensus, on establishing stronger stability properties, and
on determining a performance-driven tunning approach
of the controller parameters.
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of nonidentical Euler-Lagrange systems using P+d con-
trollers. IEEE Trans. on Robotics, 26(6):1503–1508, 2013.

R. Olfati-Saber and R.M. Murray. Consensus problems in
networks of agents with switching topology and time-
delays. IEEE Trans. on Automatic Control, 49(9):1520–
1533, 2004.

Z. Peng, G. Wen, A. Rahmani, and Y. Yu. Distributed
consensus-based formation control for multiple nonholo-
nomic mobile robots with a specified reference trajec-
tory. International Journal of Systems Science, 46(8):
1447–1457, 2015.

W. Ren. On consensus algorithms for double-integrator dy-
namics. IEEE Trans. on Automatic Control, 53(6):1503–
1509, 2008.

W. Ren and R. W. Beard. Distributed consensus in multive-
hicle cooperative control. Springer Verlag, 2005.

A. Roza, M. Maggiore, and L. Scardovi. A smooth distributed
feedback for global rendezvous of unicycles. IEEE Trans.
on Control of Network Systems, 5(1):640–652, March 2018.

K. Shojaei, A.M. Shahri, A. Tarakameh, and B. Tabibian.
Adaptive trajectory tracking control of a differential drive
wheeled mobile robot. Robotica, 29(3):391–402, 2011.

H. Wang. Consensus of networked mechanical systems with
communication delays: A unified framework. IEEE Trans.
on Automatic Control, 59(6):1571–1576, 2014.

H. Wang. Differential-cascade framework for consensus of
networked Lagrangian systems. Automatica, 112:108620,
2020.

C. Yang, W. Xie, C. Lei, and B. Ma. Smooth time-varying
formation control of multiple nonholonomic agents. In
Proceedings of the 2015 Chinese Intelligent Systems Con-
ference, pages 283–291. Springer, 2016.

Emmanuel Nuño was born in Guadalajara,
Mexico, in 1980. He received the B.Sc. de-
gree in communications and electronics en-
gineering from the University of Guadala-
jara, Guadalajara, in 2002, and the Ph.D.
degree in advanced automation and robotics
from the Technical University of Catalonia,
Barcelona, Spain, in 2008. Since 2009, he has

been a Titular Professor with the Department of Computer
Science, University of Guadalajara. He is currently an Edi-
tor of the International Journal of Adaptive Control and Sig-
nal Processing. His research interests include the control of
robots, of bilateral teleoperators and of networks of robots.
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