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We solve the leaderless consensus-formation control problem for nonholonomic robots under the influence of time-varying communication delays and via smooth feedback. The control objective is to ensure that both the Cartesian positions of the vehicles and their orientations on the plane converge to a given position in a formation pattern, relatively to an a priori unknown barycenter and a common orientation, respectively. Our controller, being of proportional-plus-damping type and smooth timevarying, is easy to implement. Furthermore, it relies on δ-persistency of excitation to overcome the well-known obstacle that for nonholonomic systems a set-point is not stabilizable by smooth time-invariant feedback. We establish asymptotic convergence of the tracking errors and we provide some simulation results that support our theoretical findings.

Introduction

For multiagent systems the well-studied consensus control problem consists in making all the systems' states converge to a common equilibrium [START_REF] Ren | Distributed consensus in multivehicle cooperative control[END_REF][START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF][START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and timedelays[END_REF]. For mobile robots, because several of these can obviously not occupy the same position simultaneously, consensus must be formulated as a problem of formation control, that is, in which the robots stabilize near an equilibrium point while forming a geometric pattern [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF]. We may distinguish two consensus-formation problems: the leader-follower, in which the agreement equilibrium point is given as a desired value to a set of follower agents in the network [START_REF] Maghenem | Stability and stabilization of networked varying systems[END_REF], and the leaderless, in which such common value results from the network's topology [START_REF] Cao | Distributed Coordination of Multiagent Networks: Emergent Problems, Models, and Issues[END_REF][START_REF] Wang | Consensus of networked mechanical systems with communication delays: A unified framework[END_REF][START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF]Dong and Farrell, 2008a). Furthermore, it is important to distinguish works in which both Cartesian coordinates and orientation are controlled [START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF][START_REF] Maghenem | Stability and stabilization of networked varying systems[END_REF] from those in which orientation is neglected [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF][START_REF] Roza | A smooth distributed feedback for global rendezvous of unicycles[END_REF]. In this paper we focus on the leaderless fullconsensus problem, that is, the set-point is not given a priori and consensus is reached both in Cartesian positions and orientation angles.
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Another important distinction lies in the model considered. It can be of first order, in which case either only the kinematics resulting from the nonholonomic constraints is considered [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF][START_REF] Roza | A smooth distributed feedback for global rendezvous of unicycles[END_REF][START_REF] Peng | Distributed consensus-based formation control for multiple nonholonomic mobile robots with a specified reference trajectory[END_REF]Dong and Farrell, 2008a) or it may be simplified even further to a point-mass on the plane, in which case the consensus problem boils down to that of consensus of simple integrators; a problem completely solved under various scenarios [START_REF] Ren | Distributed consensus in multivehicle cooperative control[END_REF][START_REF] Ren | On consensus algorithms for double-integrator dynamics[END_REF][START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and timedelays[END_REF]. A more realistic model, however, is force-controlled; this model is of second order and, besides the nonholonomy and underactuation, it presents the difficulty of controlling a higher relativedegree system. This is the model that we consider in this paper; see also [START_REF] Do | A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots[END_REF][START_REF] Bautista-Castillo | Consensus-based formation control for multiple nonholonomic robots[END_REF][START_REF] Maghenem | Consensus of multi-agent systems with nonholonomic restrictions via Lyapunov's direct method[END_REF]. From a control viewpoint, the nonholonomy of the robot imposes significant difficulty to set-point stabilization; it is well known that these systems are not stabilizable via time-invariant smooth feedback [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF]; for multiagent systems, necessary conditions for consensus are laid in [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF]. Thus, consensus of multiagent nonholonomic systems is solvable either via discontinuous time-invariant control [START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF] or time-varying smooth feedback [START_REF] Yang | Smooth time-varying formation control of multiple nonholonomic agents[END_REF][START_REF] Jin | Collision-free formation and heading consensus of nonholonomic robots as a pose regulation problem[END_REF]. From an implementation viewpoint, there are many kinds of controllers that may be designed depending on the available sensors and their capabilities. In this article we assume that the robots are equipped with global-measurement sensors and they transmit and receive measurements from "neighbor" robots that are interconnected over a network. It is most sensible to assume that communication flows in both directions (hence the network topology is undirected) and delays are time-varying [START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF][START_REF] Abdessameud | Leaderfollower synchronization of Euler-Lagrange systems with time-varying leader trajectory and constrained discretetime communication[END_REF]. Such scenario is common, for instance, in the case that a group of robots are initially too far apart for relative-measurement sensors to be of any use. When within range, however, relative measurements may result more practical than global ones in missions of formation-tracking control (after the rendez-vous has been achieved). Relative-measurement based control is considered, for instance, in [START_REF] Roza | A smooth distributed feedback for global rendezvous of unicycles[END_REF], but without communication delays and neglecting to control the orientation. Delays in the communication have been considered, e.g., in (Dong and Farrell, 2008b;[START_REF] Maghenem | Stability and stabilization of networked varying systems[END_REF]. In the former delays are considered to be constant and in the latter they are time-varying, but the control gains, as in [START_REF] Roza | A smooth distributed feedback for global rendezvous of unicycles[END_REF], must satisfy a condition that requires global connectivity information. Thus, in this paper we consider the full-consensus problem for second-order (force-controlled) nonholonomic systems interconnected over an undirected graph and with time-varying measurement delays. We propose a smooth controller of proportional-plus-damping type that achieves the control goal via a δ-persistentlyexciting (δ-PE) term -cf. [START_REF] Loría | A new persistency-ofexcitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF]. Our controller is completely distributed as the control gains depend only on the actual strength of the interconnection for each agent. To the best of our knowledge, this problem, under the conditions considered here, has only been considered in [START_REF] Maghenem | Stability and stabilization of networked varying systems[END_REF]. Other important aspects, such as collision avoidance [START_REF] Jin | Collision-free formation and heading consensus of nonholonomic robots as a pose regulation problem[END_REF] and robustness with respect to external disturbances [START_REF] Ajorlou | Distributed consensus control of unicycle agents in the presence of external disturbances[END_REF][START_REF] Maghenem | A robust δpersistently exciting controller for leader-follower trackingagreement of multiple vehicles[END_REF] are out of scope in this work. The rest of the paper is organized as follows. In the next section we present the model and formulate the control problems that we address. In Section 3 we present our main theoretical results; these are illustrated via numerical simulations in Section 4. We conclude with some remarks in Section 5.

Model and problem formulation
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Fig. 1. Schematics of a differential wheeled mobile robot.

Consider a group of N force-controlled nonholonomic vehicles, like the one depicted in Fig. 1, each of which is modeled by the usual unicycle kinematics equations and two added integrators, that is, for each i ≤ N , we have

żi = ϕ i (θ i )v i , ϕ i (θ i ) := [cos(θ i ) sin(θ i )] (1a) vi = u vi , u vi := 1 r i m i [τ i1 + τ i2 ] (1b) θi = ω i (2a) ωi = u ωi , u ωi := 2R i I i r i [τ i1 -τ i2 ], (2b) 
where z i := [x i , y i ] ∈ R 2 are the Cartesian coordinates of the robot on the plane, θ i ∈ R denotes its orientation, v i and ω i are the linear and angular velocities of the center of mass, respectively, m i is the mass, I i is the moment of inertia, r i the radius of the wheels, R i is the distance between point Q i and the wheels, u vi and u ωi are the control inputs, and τ ij are the torques at the wheels, that is, for the purpose of control implementation, we have

τ i1 τ i2 = r i 2 m i I i /2R i m i -I i /2R i u vi u ωi . (3) 
The leaderless consensus-formation control problem, which we solve in this paper, involves making the robots acquire a desired formation pattern relatively to a barycenter with coordinates z c := [x c y c ] and a common orientation, denoted θ c . It is assumed that both, z c and θ c are unknown; they result from the topology of the interconnection graph and the multiagent system's initial conditions. The formation is determined by defining, for each robot, a constant vector denoted

δ i ∈ R 2 , δ i := [δ xi δ yi ]
and the relative position errors zi := z i -δ i . Then, the control goal is to steer zi → z c and θ i → θ c for all i ≤ N . We assume that each robot possesses position and velocity sensors and is able to communicate them to a number of neighbors through a relatively reliable network. More precisely, we assume that (A1) the interconnection graph is undirected, static, and connected.

Hence, the interconnection graph may be modeled by a constant Laplacian matrix,

L := [ ij ] ∈ R N ×N , where ij =    k∈Ni a ik i = k -a ik i = k, (4) 
N i ⊂ Z is the set of indexes corresponding to robots transmitting information to the ith robot, a ik > 0 if k ∈ N i and a ik = 0 otherwise. By construction, L1 N = 0, where

1 N = [1 • • • 1]
and, after Assumption A1, L is symmetric, it has a unique zero-eigenvalue, and the rest of its spectrum is strictly positive. Thus, rank(L) = N -1.

On the other hand, although the network interconnections are assumed to be static, the network is logically as-sumed to be wireless. This has as a natural consequence that the communications are affected by time-varying delays [START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF][START_REF] Abdessameud | Leaderfollower synchronization of Euler-Lagrange systems with time-varying leader trajectory and constrained discretetime communication[END_REF]. Hence, we also assume that (A2) the communication from the jth to the ith robot is subject to a variable time-delay denoted T ji (t) that is bounded by a known upper-bound T ji ≥ 0 and has bounded time-derivatives.

Then, the control problem consists in designing u vi and u ωi so that lim

t→∞ v i (t) = 0, lim t→∞ ω i (t) = 0, (5) 
lim t→∞ zi (t) = z c , lim t→∞ θ i (t) = θ c , (6) 
for all i ≤ N .

Remark 1 Being inherently a set-point stabilization problem, leaderless consensus differs greatly from other formation control problems, notably from moving-leaderfollower consensus, which is intrinsically a tracking control problem. Firstly, in clear contrast with the case of holonomic systems, set-point stabilization cannot be considered as a particular case of tractory tracking [START_REF] Lizárraga | Obstructions to the existence of universal stabilizers for smooth control systems[END_REF]. Secondly, from a systems theory viewpoint, an important distinction lies in that nonholonomic systems are controllable about a trajectory provided that the leader velocity is nonzero [START_REF] De Luca | Control of Wheeled Mobile Robots: An Experimental Overview, volume 270 of Lecture Notes in Control and Information Sciences, chapter in "Ramsete[END_REF]. While this is relevant in tracking-control scenarii, in the present setting the main difficulty resides in that a set-point is not asymptotically stabilizable by smooth feedback, unless the latter is time-varying.

Main result

The main contribution in this paper is to provide an original solution to the problem previously stated: full leaderless consensus control of multiple second-order nonholonomic systems.

For the purpose of control design and analysis, we start by reformulating the control goal in (6) as lim t→∞ e zi (t) = 0, lim t→∞ e θi (t) = 0 (7) for all i ≤ N , where

e zi := j∈Ni a ij zi -zj (t -T ji (t)) (8)
denotes the consensus errors in terms of the Cartesian coordinates of the ith robot and the measurements received from its N i neighbours, with different time-varying delays, and

e θi := j∈Ni a ij θ i -θ j (t -T ji (t)) (9)
denotes the consensus error in terms of the orientation angles, also affected by time-varying delays.

The control approach is based on designing a controller for each part of the system's dynamics separately. One for the dynamics corresponding to the translational part, Eq. ( 1), and another one for the orientation-angles dynamics. Since the respective systems (1) and ( 2) are of second order it is natural to design controllers of proportional-derivative type -cf. [START_REF] Ren | Distributed consensus in multivehicle cooperative control[END_REF]. Nonetheless, the system being subject to nonholonomic constraints, a set-point is not stabilizable via time-invariant smooth feedback [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF]. Furthermore, because it is also desired to reach consensus in the orientation angles, controllers tailored for pointmass models do not apply either. Thus, our controller is of proportional-derivative type and it is smooth timevarying.

First, for the translational dynamics of the ith robot we introduce the nonlinear control law -cf. [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF],

u vi = -p vi ϕ i (θ i ) e zi -d vi v i , (10 
) where the parameters p vi and d vi are, respectively, the so-called proportional and derivative gains and are positive constants by design. The derivative term is simply proportional to the forward velocities v i ∈ R but, in view of the robot's kinematics, the proportional-feedback term, -p vi ϕ i (θ i ) e zi , which depends on the consensus errors e zi ∈ R 2 , involves the rank-deficient vector ϕ i (θ i ). Some readers may see here an analogy between the proportional-feedback term and the Jacobian-transpose controller used for robot manipulators, in which the Jacobian is not required to have full rank to achieve regulation. Then, the closed-loop equation, corresponding to the translational dynamics, is

Σ v : żi = ϕ i (θ i )v i vi = -d vi v i -p vi ϕ i (θ i ) e zi . (11) 
In contrast to the case of an ordinary double integrator the system (11) has multiple equilibria, other than points including e zi = 0. These equilibria correspond to points in the set

E v := {z i , θ i , v i , e zi : v i = 0 ∧ ϕ i (θ i ) e zi = 0}
. This, in addition to the fact that set-points are not stabilizable for nonholonomic systems, via smooth timeinvariant feedback, considerably increases the difficulty of the consensus problem, relatively to that for linear systems or even systems with holonomic constraints. The so-needed external function of time is introduced through the second control law, at the orientation-angle dynamics. Let

u ωi = -p ωi e θi -d ωi ω i + α i (t, θ i , e zi ), (12) 
where p ωi and d ωi are positive gains. Clearly, the first two terms on the right-hand side of ( 12) are also of the proportional-derivative type. The function α i , which introduces the needed time-varying terms, is defined as

α i (t, θ i , e zi ) := k αi f i (t)ϕ i (θ i ) ⊥ e zi , (13) 
where

k αi > 0, ϕ i (θ i ) ⊥ = [-sin(θ i ) cos(θ i )] is the anni- hilator of ϕ i , i.e., ϕ i (θ i ) ϕ i (θ i ) ⊥ = ϕ i (θ i ) ⊥ ϕ i (θ i ) = 0,
and

f i ∈ C 2 (R ≥0 , R) satisfies, by construction, f i , ḟi , fi ∈ L ∞ , lim
t→∞ f i (t) = 0, and lim t→∞ ḟi (t) = 0. The stabilization mechanism of u ωi may be explained by observing the closed-loop equations relative to the orientation-angle dynamics,

Σ ω : θi = ω i ωi = -d ωi ω i -p ωi e θi + α i (t, θ i , e zi ). (14) 
With α i ≡ 0, these equations correspond to those of a stable second-order time-invariant system with equilibria in E ω := {θ i , ω i : e θi = 0, ω i = 0}. Hence, without the term α i in the controller, complete system's trajectories may belong to E ω ∩ E v which includes, but is not restricted to, the consensus manifold. On the other hand, because ϕ i (θ i ) and ϕ i (θ i ) ⊥ are orthogonal, we have ϕ i (θ i ) ⊥ e zi = 0 for all points in E v \{v i = 0, e zi = 0}. Now, in view of the assumptions imposed on f i in (13), the function α i evaluated along complete trajectories belonging to E v cannot vanish. Thus, α i may be seen as a "controlled perturbation" that persistently impedes all the trajectories, except the trivial one, to remain in

E ω ∩ E v .
Remark 2 The excitation property of α i is reminiscent of δ-persistency of excitation [START_REF] Loría | A nested Matrosov theorem and persistency of excitation for uniform convergence in stable non-autonomous systems[END_REF]. See also [START_REF] Loría | A new persistency-ofexcitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF] where the so-called δ-persistently-exciting controllers were introduced for stabilization of nonholonomic systems.

Our main result emerges from the previous rationale.

Proposition 1 Consider the system (1)-( 2), under Assumptions A1 and A2, in closed loop with (10), ( 12)-( 13) and with f i as defined above. Then, the leaderless consensus control goal is achieved, that is (5) and (6) hold, provided that

d vi > 1 2 p vi j∈Ni a ij β i + T 2 ij β j (15) d ωi > 1 2 p ωi j∈Ni a ij ε i + T 2 ij ε j (16)
for some β i , ε i > 0, for all i ≤ N .

Proof of Proposition 1

The proof relies on Barbalat's lemma and standard signal-chasing arguments. We start by showing that v i → 0 and that the solutions of Σ v are bounded. To that end, consider the Lyapunov-Krasovskii functional

V := i≤N   1 2p vi v 2 i + 1 4 j∈Ni a ij |z i -zj | 2 + 1 2β i j∈Ni a ij T ji 0 T ji t t+σ v j (η) 2 dηdσ  
whose total derivative, along the trajectories of (11),

yields V = - i≤N   d vi p vi v 2 i + ż i j∈Ni a ij (z i -zj (t -T ji (t))) - 1 2 j∈Ni a ij ( żi -żj ) (z i -zj ) - 1 2β i j∈Ni a ij T 2 ji v 2 j -T ji t t-T ji v 2 j (σ)dσ   .
Then, we use

zj -zj (t -T ji (t)) = t t-Tji(t) żj (σ)dσ,
and Lemma 6.1 from [START_REF] Cao | Distributed Coordination of Multiagent Networks: Emergent Problems, Models, and Issues[END_REF] to obtain, under Assumption A1,

1 2 i≤N j∈Ni a ij ( żi -żj ) (z i -z j ) = i≤N j∈Ni a ij ż i (z i -z j ). Therefore, V = - i≤N   d vi p vi v 2 i + j∈Ni a ij ż i t t-Tji(t) żj (σ)dσ - 1 2β i j∈Ni a ij T 2 ji v 2 j -T ji t t-T ji v 2 j (σ)dσ   .
Next, we apply Young's and Cauchy-Schwarz' inequalities on the second right-hand-term to obtain

-ż i t t-Tji żj (σ)dσ ≤ β i 2 | żi | 2 + 1 2β i t t-Tji żj (σ)dσ 2 ≤ β i 2 | żi | 2 + T ji 2β i t t-T ji | żj (σ)| 2 dσ, for any β i > 0. Now, since ϕ i ϕ i = 1, we have | żi | 2 = v 2 i and, in turn, V ≤ - i≤N   d vi p vi - β i 2 l ii v 2 i - j∈Ni a ij T 2 ji 2β i v 2 j   ,
where l ii := j∈Ni a ij is the ith element in the diagonal of the Laplacian matrix. Now, following [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF] and defining s(

v 2 i ) := [v 2 1 • • • v 2 N ] and Ψ =         dv1 pv1 -β1 2 l 11 - T 2 21 2β1 a 12 . . . - T 2 N 1 2β1 a 1N - T 2 12 2β2 a 21 dv2 pv2 -β2 2 l 22 . . . - T 2 N 2 2β2 a 2N . . . . . . . . . . . . - T 2 1N 2β N a N 1 - T 2 2N 2β N a N 2 . . . d vN p vN -β N 2 l N N         , we obtain V ≤ -1 N Ψs(v 2 i ) or, equivalently, V ≤ - i≤N   d vi p vi - j∈Ni a ij β i 2 + T 2 ij 2β j   v 2 i .
Thus, after (15), it follows that there exists λ i > 0 such that V ≤ -

i≤N λ i v 2 i .
This implies that v i ∈ L 2 and, since V is positive definite and radially unbounded with respect to v i and zi -zj , the latter belong to L ∞ and, consequently, e zi ∈ L ∞ . Now, since ϕ i is uniformly bounded, it follows from (11) that vi ∈ L ∞ and, therefore, lim

t→∞ v i (t) = 0.
So far, we have established the first limit in ( 5). Now, we analyze the behavior of the solutions of ( 14) with the aim at establishing the second limit. To that end, consider the system Σ ω with (for the time-being) α i ≡ 0 and the Lyapunov-Krasovskii functional

W := i≤N   1 2p ωi ω 2 i + 1 4 j∈Ni a ij (θ i -θ j ) 2 + 1 2ε i j∈Ni a ij T ji 0 -T ji t t+σ ω 2 j (η)dηdσ   ,
where ε i > 0. Proceeding as we did previously for the differentiation of V, we obtain

Ẇ ≤ - i≤N   d ωi p ωi - ε i 2 l ii ω 2 i - j∈Ni a ij T 2 ji 2ε i ω 2 j   , so Ẇ ≤ - i≤N   d ωi p ωi - j∈Ni a ij ε i 2 + T 2 ij 2ε j   ω 2 i .
Therefore, after (16), it follows that there exists λ i > 0 such that Ẇ ≤ -

i≤N λ i ω 2 i .
Since W is positive definite and radially unbounded with regards to ω i and θ

i -θ j , it that ω i ∈ L 2 ∩ L ∞ and θ i -θ j ∈ L ∞ . This, in turn, implies that ωi ∈ L ∞ so, after Barbalat's Lemma, lim t→∞ ω i (t) = 0.
We proceed now to establish the limit in (6). To that end, observe that, since

lim t→∞ t 0 ωi (σ)dσ = lim t→∞ ω i (t) -ω i (0) = ω i (0),
it follows, from Barbalat's lemma, that lim t→∞ ωi (t) = 0 if ωi is uniformly continuous. The latter holds since ωi = -1

I i p ωi ėθi + d ωi ωi
is bounded; indeed, this follows from Assumption A2 and the fact that ωi , ω i ∈ L ∞ . Now, from the second equation in ( 14), restricted to α i ≡ 0, it follows that lim t→∞ ωi (t) = 0 and lim t→∞ ω i (t) = 0 imply that lim t→∞ e θi (t) = 0 or, equivalently, that lim t→∞ j∈Ni

a ij θ i (t) -θ j (t) + t t-Tji(t) ω j (σ)dσ = 0.
Then, since ω i → 0 and T ji (t) is globally bounded (see A2), we have lim

t→∞ j∈Ni a ij [θ i (t) -θ j (t)] = 0 which implies that lim t→∞ Lθ(t) = 0, where θ =col(θ i ) ∈ R N . Thus, lim t→∞ θ i (t) = θ c . (17) 
All the previous arguments hold provided that α i ≡ 0. If this is not the case, we remark that since, f i , e zi and ϕ ⊥ i are bounded along trajectories, so is α i -see Eq. ( 13). This and the fact that Σ ω is a marginally stable linear time-varying system with uniformly bounded time-delays ensure that ωi , ω i ∈ L ∞ , by Proposition 3 in [START_REF] Wang | Differential-cascade framework for consensus of networked Lagrangian systems[END_REF] and so is e θi .

The rest of the proof mostly consists in establishing that e zi → 0 which, since v i → 0, implies that zi → zc , thereby completing (6). To see the latter, note that e zi = j∈Ni a ij zi -zj + and z := z1 • • • zN respectively, and using żj (t) = ϕ j (t)v j (t), we obtain

e z = (L ⊗ I 2 )z + col   j∈Ni a ij t t-Tji(t) ϕ j (σ)v j (σ)dσ   .
Therefore, e zi = 0 and v i = 0 imply that (L ⊗ I 2 )z = 0 which, in view of the properties of L, implies the existence of zc ∈ R 2 such that z = 1 N ⊗ zc , or zi (t) = zc for all i ≤ n. We proceed now to show that e zi → 0. To that end, we stress that, since lim

t→∞ v i (t) = 0, lim t→∞ t 0 vi (σ)dσ = lim t→∞ v i (t) -v i (0) = v i (0).
Moreover, in view of Assumption A2 and the fact that θ i , ω i , ωi , v i , vi , and e zi ∈ L ∞ , so does vi = -

p vi m i ω i ϕ ⊥ i e zi + ϕ i ėzi + d vi p vi vi . ( 18 
)
After Barbalat's lemma, it follows that lim t→∞ vi (t) = 0 and, in turn after (11), also lim t→∞ ϕ i (θ(t)) e zi (t) = 0. Note, however, that the solutions to ϕ i (θ) e zi = 0 are of the form e zi = cϕ ⊥ i . Notwithstanding, so are the solutions to ϕ i (θ) ⊥ e zi = 0 on the right-hand side of (18). Therefore, the unique solution to both equations is c = 0 or, equivalently, e zi = 0, since ϕ ⊥ i ϕ ⊥ i = 1. Thus, it is left to establish that ϕ i (θ(t)) ⊥ e zi (t) → 0. To that end, we use once more Barbalat's lemma to show that vi → 0. First, note that lim Then, to show that vi is uniformly continuous we use ( 18) and φ⊥ = -ω i ϕ i to obtain ...

v i = - p vi m i ωi ϕ ⊥ i e zi + 2ω i ϕ ⊥ i ėzi -ω 2 i ϕ i e zi + ϕ i ëzi + vi p vi vi ( 19 
)
which is bounded, in view of Assumption A2 and the boundedness of all functions on the right-hand side. This implies that lim t→∞ vi (t) = 0. Similar arguments apply to establish that lim t→∞ ... v i (t) = 0 and lim

t→∞ v (4) i (t) = 0, where v (4) i = - p vi m i ωi ϕ ⊥ i e zi + 3 ωi ϕ ⊥ i ėzi -ω 3 i ϕ ⊥ i e zi + ϕ i ... e zi + 3ω i ϕ ⊥ i ëzi + ωi ϕ i e zi + ω i ϕ i ėzi + d vi p vi ... v i (20) Hence, since v i , vi , vi , ... v i , v (4) 
i and ϕ i e zi converge to zero, so do ėzi , ëzi and ... e zi . It follows that all the terms in ( 18), (19), and (20) converge to zero. Thus, from (18) it follows that ω i ϕ ⊥ i e zi → 0, from (19) we have ωi ϕ ⊥ i e zi → 0, and (20) implies that ωi ϕ ⊥ i e zi → 0. Next, we use ωi = -

k αi I i p ωi k αi ėθi + d ωi k αi ωi + f i ω i ϕ i e zi -f i ϕ ⊥ i ėi -ḟi ϕ ⊥ i e zi
in the first right hand side term of (20) to conclude that the term pωi kαi ėθi ϕ ⊥ i e zi -ḟi ϕ ⊥ i e zi 2 converges to zero. Since, on one hand ω i ϕ ⊥ i e zi converges to zero and, on the other hand, e zi = cϕ ⊥ i and ϕ ⊥ i ϕ ⊥ i = 1, it follows that ω i also converges to zero. In turn, we also have ėθi ϕ ⊥ i e zi → 0. Finally, the design of f i guarantees that ḟi does not vanish, so we conclude that lim t→∞ ϕ ⊥ i (θ i (t))e zi (t) = 0. Therefore α i vanishes and the limits in (5), as well as (17), follow.

Simulations

We present now some numerical simulation results to illustrate our theoretical findings. The simulations are performed using a network of six differential-drive robots interconnected as illustrated in Fig. 2, below. For simplicity, the physical parameters of all robots are taken to be equal: 10Kg for the mass; 3Kgm 2 for the moment of inertia; 0.3m of the distance between point Q and the wheels, and 0.05m for the radius of the wheels cf. [START_REF] Shojaei | Adaptive trajectory tracking control of a differential drive wheeled mobile robot[END_REF].

robot 1 2 3 4 5 6 xi 2 1 -1 -2 -1 1 δ yi 0 2 2 0 -2 -2
Fig. 2. Communication topology and hexagonal desired formation pattern (left). The latter is defined as an hexagon, determined by the distances δxi and δyi as per in the table on the right.

The interconnection time-delays are defined as a normal Gaussian distribution with a mean of 0.2s and a variance of 0.001s hence, they are bounded by T ji = 0.33s. The functions t → f i are designed using a truncated Fourier series of a square wave, that is,

f i (t) = 5 2 + 5 k=1 4 (2k -1) π sin 2k -1 2 t ∀ i ≤ N.
The robots are assumed to be initially standing still at the coordinates 

x i ( 

Conclusions

A solution to the leaderless consensus problem for force-controlled nonholonomic robots, in the presence of time-varying measurement delays, was presented.

To cope with the difficulty imposed by the nonholonomic constraints to achieve set-point stabilization via smooth feedback, our controller is time-varying. It relies on a condition of persistency of excitation imposed on the term α i (t, θ i , e zi ) -see Eq. ( 13). Such condition is reminiscent of δ-persistency of excitation, which for nonlinear time-varying systems is necessary for uniform asymptotic stability [START_REF] Loría | A nested Matrosov theorem and persistency of excitation for uniform convergence in stable non-autonomous systems[END_REF]. Even though this property is not established here (it is subject of current research), the previous rationale justifies the little conservativism of our assumptions.

From an implementation viewpoint, it is important to stress that the controllers have a simple proportionalplus-damping structure. Hence, the stability conditions (15) and ( 16) the obvious fact that if the proportional gains are increased, to obtain a faster response, the dissipation gain must also be increased. Surprisingly, even though the system exhibits nonholonomic restrictions, the resulting conditions are the same as that reported in [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF] for the unrestricted case.

On the other hand, the choice of f i also impacts the performance of the controller. Current research focusses on moving-leader-follower consensus, on establishing stronger stability properties, and on determining a performance-driven tunning approach of the controller parameters.

  e z := e z1 • • • e zN

  dσ = lim t→∞ vi (t) -vi (0) = -vi (0).

.Fig. 3 .Fig. 4 .

 34 Fig. 3. Orientations of the six robots against time
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