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Abstract—In multiple real life situations involving several
agents, cooperation can be beneficial for all. For example,
some telecommunication or electricity providers may cooperate
in order to address occasional resources needs by giving to
coopetitors some quantities of their own surplus while expecting
in return a similar service. However, since agents are a priori
egoist, the risk of being exploited is high.

In this work, we propose to model this kind of situations as
a social dilemma (a situation where Nash Equilibrium is non
optimal) in which each agent knows only its own state. We
design an algorithm modelling the agents whose goal is to make
transactions in order to augment their own utility. The algorithm
needs to be robust to defection and encourage cooperation.

Our framework modelling each agent consists in iterations di-
vided in four major steps: the communication of demands/needs,
the detection of opponent cooperation, the cooperation response
policy and finally the allocation of resources.

In this paper, we focus on the cooperation response policy.
We propose a new version of tit-for-tat and we evaluate it
with metrics such as safety and incentive-compatibility. Several
experiments are performed and confirm the relevance of our
improvement.

Index Terms—Multi-Agent System, Game Theory, Social
Dilemma

I. INTRODUCTION

Sharing resources or services between multiple coopetitors
with autonomous agents is very common in industrial use
cases.
For example, in telecommunications, sharing resources be-
tween operators has been suggested, in particular with the ar-
rival of the next generation of telecom (5G) in order to extend
and improve capacity and coverage of operators connectivity.
A well-suited model for exchanging connectivity resources
is the framework called Licensed Shared Access (LSA) [1]
which aims at optimising spectrum utilisation. Several pre-
vious works address the issue of LSA spectrum sharing,
generally with auction mechanisms [2]–[5]. In particular, some
of these works study truthfull mechanisms (such as Vickrey-
Clarke-Groves mechanism) which has the particularity to have
good properties (fairness, incentive-compatibility). This kind
of mechanisms involves financial transactions. We instead
focus on addressing the issue without money and we follow
an utilitarian way, in particular to be able to deal with services
which can’t be shared financially. In this paper, we assume that

network operators can exchange resources to reach an optimal
situation and we consider that their personal interest are driven
only by their personal utility (which can for example be
considered as the quality of experience in telecommunications
area). We introduce three major assumptions in the context.
First, there is no main regulator, it is impossible for a controller
to compute optimal transactions. Secondly, due to strategic
issues, agents don’t share all their personal state (i.e. the
quantities of their under/overused resources), then they have to
communicate only a partial state to other agents. Finally, each
agent is assumed to be selfish, unlike, for example, consensus
optimization problems where each node is encouraged to
cooperate. This last assumption is very important as being
exploited by a defector has an utility cost and reaching a
consensus can be longer than other consensus algorithms due
the risk of exploitation.

Games with partial information are generally solved with
frameworks involving consensus optimisation issues which
has been well studied in literature in optimisation [6]–[10] or
synchronisation [11], [12]. In our work, we tackle the issue of
self-interested agents, which means that agents have to reach a
consensus while taking into account the fact that others agents
are a priori selfish.
We propose to formulate the problem as a non-cooperative
Markov game and show that it can be viewed as a social
dilemma, i.e. a situation where Nash equilibria are non-optimal
: agents have no incentive to cooperate despite the fact that
mutual cooperation is the optimal global strategy. This typical
game theory case has been well studied recently [13]–[17],
involving in particular Reinforcement Learning Multi-Agent
systems.

In section II, we define the problem as a multi-agent system
with different items to be shared whose marginal utility is
assumed to be decreasing function (i.e. utility function is
concave). The game theory issues naturally raised by the
problem are described in section III. To address this sharing
problem, we propose an algorithm based on Tit-for-Tat (TFT),
known to be robust to iterated dilemmas. We present the
architecture of our model in section IV. Some numerical
simulations are performed in section V to evaluate some key
properties of our algorithm such as efficiency, speed, incentive-
compatibility and safety.978-1-7281-8086-1/20/$31.00 ©2020 IEEE



II. PROBLEM FORMULATION

We consider a game with N agents A1, ..., AN 2 I and
M items B1, ..., BM 2 K. To simplify the notation, we then
consider that I and K are confounded with sets [0, .., N � 1]
and [0, ..,M � 1]. S is the state set which corresponds to
agents resources: at each time t, the state is defined by
s(t) = {si,k(t), 8i 2 I 8k 2 K}, where si,k(t) corresponds
to the quantity of item Bk owned by agent Ai. We assume
that the utility function of each agent Ai is f (i)(s(t)) defined
by:

f (i)(s(t)) =
M�1X

k=0

f (i)
k (si,k(t)) (1)

where each f (i)
k is considered monotonically increasing

and concave due to the assumption of decreasing marginal
utility of resource.

At each time t, each agent Ai executes an action a(i)(t)
which is a set of transactions:

a(i)(t) = (u(1), ..., u(m))

where u(k)
2 K ⇥ I ⇥ R is a transaction (give one quantity

of one item to one agent).
To simplify, we consider that actions are gathered in a joint
action X = (X1, ..., XM ) where each Xk 2 MN (R) sums up
the transactions of item Bk and is then anti-symmetric (giving
� to another agent means receiving �� from him).
The transition function T maps states and actions with next
states by executing transactions:

s(t+ 1) = T (s(t), X = (X1, ..., XM )) (2a)

si,k(t+ 1) = si,k(t) +
N�1X

j=0

(Xk)i,j (2b)

Finally, we assume a game with partial observation: at
each time t, agent Ai observes a part of the total state
O(s(t), i) = {si,k(t), 8k 2 K} [ {(Xk)i,j(t0), 8j, 8t0 < t}.

The objective is to maximise the social welfare which is the
sum of utilities:

max
N�1X

i=0

f (i)(s(t)) (3)

where each agent Ai wants to maximise independently its
own utility function f (i)(s(t)) which leads to a non-optimal
Nash equilibrium issues that will be described in the next
section.

III. GAME THEORY

Our problem deals with game theory due to personal inter-
ests of agents. In this section, we introduce some game theory
concepts and formulate our problem as a multi-agents social
dilemma i.e. a situation where it is more profitable to cooperate
(accept to exchange resources) but in a personal point of view,
cooperating leads to the risk of being exploited.

A. Nash Equilibrium

Let us begin by defining a strategy, it is a function that maps
personal states (s(i)) to actions (quantities allocated to others
agents):

⇡i : s
(i)

7! (Xk)i,j (4)

If G(i)(⇡i) is the payoff of agent Ai, a joint strategy (⇡⇤
i )i2I

is said to be a Nash Equilibrium if [18]:

8i 2 I, 8⇡i, G(i)(⇡⇤
i ,⇡

⇤
�i) � G(i)(⇡i,⇡

⇤
�i)

with ⇡�i = [⇡0, ...,⇡i�1,⇡i+1, ...,⇡N�1]
(5)

B. Social Dilemmas

In the following section, we model our exchange problem
as a sequential social dilemma [13]. Before defining the multi-
agents continuous version, let us consider the case with N = 2
agents and with simply two possible actions: cooperation and
defection. We can establish a payoff matrix of the game as
follows:

Cooperate Defect
Cooperate R , R S , T
Defect T , S P , P

Table I: Payoffs of agent A (left) and B (up) in Social
Dilemma

Such a game is called social dilemma if the following
inequalities are verified:

• R > P (1)
• R > S (2)
• at least one of these two inequalities:

– T > R: greed (3a)
– P > S: fear (3b)

(1) means that mutual cooperation is better than mutual
defection and (2) that mutual cooperation is better than being
exploited. If such a game is iterated, it is called Sequential
Social Dilemma (SSD), then it is relevant to add a condition:

• R > 1
2 (S + T ): mutual cooperation is better than

equiprobable different choice (4)
Social dilemma admit non-optimal Nash equilibria in

particular (Defect, Defect) in Prisoner’s Dilemma (where
greed (3a) and fear (3b) are verified).

C. Continuous Multi-Agents Social Dilemmas

Let us introduce the case with N � 2 agents. Each agent
is free to cooperate or not with all other agents. We formalise
this type of action by a cooperation rate ci,j which defines
the degree of cooperation of agent Ai with respect to agent
Aj (0 for total defection and 1 for total cooperation).

Similarly to [16], we propose a definition for a multi-
agent continuous social dilemma. We assume that cooper-
ation is continuous and asymmetric. Let us suppose that
each agent Ai earns a payoff defined by an gain function
G(i)(ci,0, ..., ci,N�1, c0,i, ..., cN�1,i) which depends of all co-
operation degrees from him toward other agents (ci,k8k 6= i)
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Figure 1: A simple discrete dilemma where 3 agents have 3
different kinds of items whose marginal utility is 4�k. Figure
1a shows the optimal sharing where each personal utility goes
from 6 to 9 and Figure 1b shows the corresponding Schelling
diagram (for a better understanding, see [13] or [19]).

and from other agents towards him (ck,i8k 6= i).
Let us extend inequalities of III-B to define social dilemmas
in a multi-agent continuous context. The situation is said to
be a dilemma if:

• 8j, G(i) is decreasing w.r.t ci,j
• It exists ci,j 6= 0 such as G(i)(ci,j , cj,i) > G(i)(0, 0)

The first inequality states that independently, each agent
is not interested in cooperating. This can be considered
either as fear (for sufficiently small value of cj,i) or
greed (for sufficiently large value of cj,i). The second
inequality corresponds to the fact that the Nash Equilibrium
(cj,i = 0 8i, j due to the first inequality) is not optimal hence
the presence of dilemma.

For clarity, let us briefly detail the example with n = 2
agents. A1 and A2 earn respectively G(1)(c1,2, c2,1) and
G(2)(c2,1, c1,2). We can define particular values such as, the
problem becomes the classic social dilemma seen in III-B:

G(1)(0, 0) = G(2)(0, 0) = P (6a)

G(1)(1, 1) = G(2)(1, 1) = R (6b)

G(1)(0, 1) = G(2)(0, 1) = S (6c)

G(1)(1, 0) = G(2)(1, 0) = T (6d)

Note that for n > 2, it is difficult to show payoffs with a
table. However, it is possible to represent the payoffs thanks to
Schelling diagram representing payoffs in function of choice
of cooperation and number of other cooperators. An example
is shown in Fig 1b.

D. Dilemmas due to concavity of utility functions

In our problem formulation, we can assume that
f (i)(si,k(t) +

PN�1
j=0 (Xk)i,j) ⇠ G(i)(ci,j , cj,i) where ci,j

can be estimated as an increasing function with respect to
�(Xk)i,j . Moreover, we can show that for well-balanced
initial resources, due the concavity of utility functions, it exists

2.	COOPERATION DEGREE
ESTIMATOR

3.	COOPERATION
RESPONSE POLICY 4.	ALLOCATION

Demands	:
! "

#(%)

Cooperation	
degrees

#(') #(()

)→%
)→'
)→(

#(%)

#(')

#(()

1.	OFFER POLICY

1.	OFFER POLICY

)←% )←' )←(

Offers	:	 ! ,

Figure 2: Architecture of our agent model

optimal sum of utility functions which doesn’t correspond to
null transactions. The two latter statements correspond to the
two inequalities in III-C which define continuous multi-agent
dilemmas.

IV. MODEL

The goal is to model an agent able to choose transactions
to reach the optimum situation, while taking into account of
the selfishness of others agents.

A. Architecture

As mentioned in the introduction, our agent model consists
in four-step iterations:

1) Offer Policy: compute optimal demands and offers. Only
the demands are communicated to other agents (section
IV-B)

2) Cooperation Degree Estimator: according to the previous
allocations from others agents, each agent estimates a
cooperation degree from every agent (section IV-C)

3) Cooperation Response Policy: According to the esti-
mated cooperation degrees, the policy computes re-
sponse cooperation degrees (section IV-D).

4) Allocation: According to the cooperation degrees, de-
mands from other agents and personal offers, an alloca-
tion of resources for each agent and item is computed.

B. Offers/Demands

At each iteration of the algorithm, agents have to commu-
nicate their needs to the other agents and know their offers
(what they are willing to give). Though it is an important
part, we don’t focus on that in this paper. Nevertheless,
one legitimate approach for an agent could be to demand a
cumulative quantity equal to what he could give (with the
idea to cooperation). Therefore, we simply propose that each
agent optimise an expected ”virtual” gain of utility:

max
Y (i)

MX

k=1

f (i)
k (si,k + Y (i)

k ) (7)

Y (i) is the vector of demands/offers for agent Ai, where a
positive (resp. negative) component corresponds to a demand
(resp. offer).



C. Cooperation degree detection

When collaborating, a major problem in sharing resources
is to detect whether the opponents are cooperative.
There is no distinction between capacity and willingness
to cooperate since collaboration between agents means
exchanging equivalent quantities of resources. Then, if an
agent can’t cooperate with another agent anymore, there is
no point to continue to cooperate with him anymore.

At each round, each agent Ai computes a cooperation
degree ci,j(t) toward every other agent Aj according to his
interest, just by comparing what Aj gave with what he (Ai)
was willing to give at previous round t � 1. We introduce
the notation of maximal offer �(i)

k = �[Y (i)
k ]� that Ai can

propose for item Bk (computed by Ai in step 2 IV-B). We
can then define ci,j(t) with :

ci,j(t) =
(N � 1)

PM�1
k=0 (Xk)j,i

PM�1
k=0 �(i)

k

(8)

D. Cooperation response policy

To reach a safe negotiation among agents with personal
interests, we introduce a cooperation policy. It maps incoming
cooperation degrees to outgoing degrees.
In [20], a robust algorithm called tit-for-tat (TFT) is introduced
to solve the iterated prisoner dilemma. The principle is simple:
begin by cooperating and then copy the previous opponent
action. In continuous version of iterated Prisoner Dilemma,
[21] propose several adaptations of continuous TFT.
We propose a new version of TFT with an inertia component
and an adaptive incentive rate. At step t, agent A (facing agent
B of degree bt�1) chooses a cooperation rate at as follows:

a0 = 0 (9a)
at = �at�1 + (1� �)(rt�1 + (1� rt�1)bt�1) (9b)
r0 = r (9c)
rt = [rt�1 + ↵�t�1]

+ (9d)
with �t�1 = bt�1 � at�1

where � is an inertia coefficient and rt is a coefficient to
incentivise cooperation which is considered constant in [21].
However, to reinforce the robustness to defectors, we improve
it as an adaptive incentive coefficient with a rate ↵. The benefit
of this last modification is to adapt the incentive to cooperate
according to the last response of opponent: decrease it if the
opponent doesn’t answer positively and keep it constant (even
increase it) if the answer is positive. Then, the pure defectors
won’t exploit much long this incentive behaviour.
To conclude, we can notate the generic algorithm as
TFT(�,r,↵). Let us note that a pure defector and pure co-
operator correspond respectively to TFT(� = 1, r, ↵) and
TFT(� = 0, r = 1, ↵ = 0).

E. Allocation

The main idea of allocation is that agent Ai computes
for each item k the maximal part of spectrum he can offer

�(i)
k = �[Y (i)

k ]� and allocates to each agent Aj a part
of this offer proportional to the clipped demand of agent
Aj : D̃(j)

k = min(Y (j)
k ,�(i)

k ) and ci,j the cooperation degree
between Ai and Aj :

(Xk)(i,j) =
ci,jD̃

(j)
kPN�1

j=0,j 6=i D̃
(j)
k

�(i)
k (10)

With this allocation, we ensure that (Xk)(i,j)  �(i)
k and

that it is increasing w.r.t ci,j and D̃(j)
k .

V. EXPERIMENTS

Different algorithms for sharing resources are evaluated1.
We introduce several metrics to study the safety, the
incentive-compatibility and the speed of convergence. We test
the parameters of our algorithm on a fixed test presented in
Fig 3. For the simulation, we use a simple and unique concave
function for every utility: 8k, 8i, f (i)

k : x 7! ln(x+ 2).

In Figures 4, 5 and 6, we show a simulation of our model.
In Fig 4, all agents use TFT and we observe that social welfare
and cooperation converge. After convergence, the cooperation
detection, linked to previous transactions which are then very
low causes an unstable cooperation response. In Fig 5, we
introduce an selfish agent (defector) and we observe that other
agents TFT(� = 0.1,r = 0.1,↵ = 0) are exploited since the
defector earns more. At last, in Fig 6, we evaluate the relevance
of the adaptive incentive rate ↵ on the previous situation and
we observe that this rate is relevant since the agents TFT are
not exploited anymore.

In what follows, we evaluate the risk of being exploited and
the incentive one agent has to cooperate. in this purpose, we
define some metrics (in V-A), and we use them to evaluate
the parameters (�, r,↵) of our TFT model.

A. Metrics

1) Efficiency: First, let us define the global social welfare
which corresponds to the sum of all agents utilities:

SW (t) =
N�1X

i=0

f (i)(s(t)) =
N�1X

i=0

M�1X

k=0

f (i)
k (si,k(t)) (11)

Secondly, we compute optimal social welfare SWopt with
a PSO algorithm [22]. Finally, we define efficiency E as the
ratio:

E(t) =
SW (t)� SW0

SWopt � SW0
(12)

2) Speed: We define a metric measuring the speed of
convergence to maximal efficiency:

Sp =
1

TEmax

Z T

0
E(t)dt (13)

Then, we have Sp 2 [0, 1] (Sp = 1 corresponding to the
case where all optimal transactions are made at the first step).

1The source code of our framework is available on GitHub: https://github.
com/tlgleo/sharing resources
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Figure 3: Simple example of sharing resources between three agents with three items of concave utilities. Fig 3a shows the
initial state and figures 3b, 3c and 3d show three possible outcomes. Three simple TFT agents are able to reach the optimal
situation (3b and Fig 4), but two TFT agents can be exploited by a pure defector (3c and Fig 5) due to the constant incentive
coefficient. At last, with our adaptive incentive rate, our TFT agents are not so exploited anymore (3d and Fig 6).

(a) Evolution of social welfare
and individual utilities

(b) Evolution of incoming and out-
going cooperation degrees

Figure 4: Simulation with the example in Fig 3 with three
agents TFT(� = 0.5, r = 0.02, ↵ = 0)

(a) Evolution of social welfare
and individual utilities

(b) Evolution of incoming and out-
going cooperation degrees

Figure 5: Simulation with example in Figure 3 with two
TFT(� = 0.5, r = 0.2, ↵ = 0) and one pure defector

(a) Evolution of social welfare
and individual utilities

(b) Evolution of incoming and out-
going cooperation degrees

Figure 6: Same simulation as in Fig 5 but with incentive
adaptive rate ↵ = 0.3 to prevent exploitation from selfish
agent: TFT(↵ = 0.5, r = 0.2, ↵ = 0.3 )

3) Incentive-Compatibility: We adopt a metric proposed in
[14] to measure incentive-compatibility, which measures how

agents are encouraged to cooperate. Then, we define IC(⇡i)
as the difference:

IC(⇡i) = G(i)(⇡i,⇡j)�G(i)(D,⇡j) (14)

where D is the pure defection policy. In other words,
IC(⇡i) computes the preference of an agent between
defecting and following the policy ⇡i when he faces agents
following the same policy ⇡j .

4) Safety: In the same vein, we measure the risk an agent
takes by cooperating. We define the safety Sf(⇡i) as the
difference:

Sf(⇡i) = G(i)(⇡i, D)�G(i)(D,D) (15)

Simply put, Sf(⇡i) computes the lost difference if an agent
is exploited.

B. Evaluation

We evaluate several parameters of our proposed algorithm
TFT(�, r, ↵) thanks to the metrics described in V-A.

� r ↵ Speed IC Safety
0.1 0.2 0 0.77 -0.73 -1.21
0.1 0.1 0 0.69 -0.5 -0.64
0.1 0.05 0 0.597 -0.21 -0.33
0.1 0.02 0 0.41 0.12 -0.13
0.3 0.1 0 0.66 -0.49 -0.63
0.5 0.1 0 0.6 -0.47 -0.6
0.1 0.1 0.1 0.7 -0.26 -0.36
0.1 0.1 0.3 0.69 0.06 -0.16
0.1 0.1 0.5 0.69 0.21 -0.09
0.1 0.1 0.7 0.7 0.28 -0.07

Table II: Results of experience showing the influence of
parameters �, r, ↵

C. Discussion

The principle of the classic discrete TFT is to copy the
previous action of an opponent after beginning with pure
cooperation. However, when cooperation is continuous, dis-
crete actions (cooperate/defect) are replaced by a cooperation
degree. Then, the algorithm must numerically compute a
cooperation degree in response. The stakes are to incentivise
cooperation which corresponds to coefficient r and to be robust



(a) Influence of r (b) Influence of ↵

Figure 7: Influence of parameters r and ↵ evaluated by the
speed of convergence, safety and incentive-compatibility. The
two latter metrics are normalised.

to defection i.e. the algorithm does not need to be too fast. In
figure 7a, we notice that increasing r allows to gain speed of
convergence but safety and incentive-compatibility fall, mean-
ing the risk of being exploited is very high. In our test (Table
II), the inertia coefficient � is not enhanced. It is probably
due to stability of agents behaviours. But we are convinced
that it would be suited to dynamic behaviours (which could
be studied in further works). In contrast, our modification
over r incentive coefficient is rather relevant (Figure 7b)
since increasing ↵ allows to reach very satisfying safety and
incentive-compatibility without altering convergence speed.

VI. CONCLUSION AND PERSPECTIVES

We presented a formalisation of a non-cooperative game to
exchange resources of decreasing marginal utilities. We view
the problem as a social dilemma: nobody is incentivised to
cooperate (exchanging resources) since utilities functions are
monotonically increasing but doing nothing is non optimal due
to the concavity of utilities functions of agents. We solved
this problem with tit-for-tat algorithms mixed with designed
algorithms for allocation of resources. We first formulated
the problem of exchanging resources with concave utility
functions in sequential social dilemmas. We then proposed ex-
tensions to definitions for social dilemmas in a Markov Game
with more than two agents and with continuous cooperation.
We proposed an adaptation of a continuous version of tit-for-
tat with adaptive incentive coefficient. We designed a simple
algorithm for allocating resources to other agents without
pricing, only with negotiation through tit-for-tat algorithms.
We finally adopted some metrics to study key properties such
as efficiency, speed, safety and incentive-compatibility. The
results show that our algorithm is efficient: the transactions
reach the optimal consensus and the TFT agent is robust to
defection and incentivised to cooperate. Our model solves
iterated tit-for-tat between multiple agents in homogeneous
well-balanced initial states. Future work should strengthen it
with a finer control of the offers and demands and a better
cooperation response policy, possibly with techniques like self-
play reinforcement learning.
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