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Abstract This paper aims at comparing two coupling approaches as basic
layers for building clustering criteria, suited for modularizing and clustering
very large networks.

We briefly use ”optimal transport theory” as a starting point, and a way as
well, to derive two canonical couplings: ”statistical independence” and ”logi-
cal indetermination”. A symmetric list of properties is provided and notably
the so called ”Monge’s properties”, applied to contingency matrices, and jus-
tifying the ⊗ versus ⊕ notation. A study is proposed, highlighting ”logical
indetermination”, because it is, by far, lesser known.

Eventually we estimate the average difference between both couplings as
the key explanation of their usually close results in network clustering.

Keywords Correlation Clustering · Mathematical Relational Analysis ·
Logical Indetermination · Coupling Functions · Optimal Transport · Graph
Theoretical Approaches

1 Introduction

Network clustering (or clique-partitioning of graphs) is a key topic, concerned
with a very large dedicated literature. One of the reasons of this status is the
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recent use made by the GAFAM companies about very large networks resulting
of modern activities dealing with: big social networks, cellphone communica-
tions networks, high speed financial trading, large IT networks, IOT networks,
etc.. This is simultaneously associated with the IT capacity afforded today
to store the really huge amounts of data, those activities force us to cope
with. The sudden apparition of these big networks gave rise to a renewal of
the so-called graph theoretical domain, used in that context for different pur-
poses, such as: discovering the latent cliques, clustering the whole network,
isolating some key parts of interest within the network, etc. In other words,
this massive and raw information contained inside the networks must be ana-
lyzed per se, and this leads obviously to mandatory techniques, among which
networks clustering plays a prominent role, with a lot of practical contextual
applications.

In the scientific literature, it appears that many different methods have
been dedicated to graph clustering, one can find in [14] or more recently in [13]
a quite interesting overview on this matter. Most of them use a local criterion
based on the number of paths [20], the number of shortest paths [17] or a
proportion of present edges [27] which is then aggregated to define a global
criterion to be optimized. Some methods are based on pure decomposition of
a graph, as for instance in [3] where the authors construct a k-clustering based
on a spanning tree by removing k − 1 edges, while some others are concerned
directly with spectral analysis of graph laplacians, or with mathematical re-
lational analysis (correlation clustering). In addition to this relatively main-
stream list, some methods rely on the application of very specific mathematical
domains as those typically addressed through Mean Field Games theory in [11]
or more promising, such as the approach given in [29] where a method based
on the evolution of a discrete Ricci curvature flow was proposed.

This method deserves to be briefly exposed: given two measures µ and ν
in a space endorsed with a distance d, the Wasserstein’s transportation dis-
tance W (µ, ν) is the minimum total weight to move µ to ν according to d
as presented in [30]. A measure mα,p

x to capture the neighborhood of a node
x is formulated in [29]. With d(x, y) the shortest path between two nodes x
and y in the network, Ricci’s curvature then basically expresses whether x is
closer from y using d or W between mα,p

x and mα,p
y . Eventually, they are inter-

ested in the Ricci Flow (see [18]) which solves a differential equation where the
derivative is (almost) this Ricci curvature; consequently if the neighborhood
associated to x and y and compared by W are closer than x and y compared
by d, the derivative is strictly less than one and conversely. Iteratively updat-
ing a weight to solve the Ricci Flow differential equation, before cutting links
greater than a threshold, they deliver results rather similar or slightly better on
the usual experimental networks. Nevertheless, the lack of a motivated choice
for the underlying parameters (α, p and the threshold) is a limitation similar
to the choice of a criterion in the usual Louvain Algorithm. This drawback
precisely motivates the present paper. Actually, any comparison with compet-
itive approaches would imply a self adaptive procedure to select the technical
parameters.
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At that stage two aspects must be differentiated: on the one hand (i) the
existence of generic algorithms to optimize a clustering criterion as a global
objective function, or, on the other hand (ii), the construction of network
clustering criteria themselves.

As for the first point, (i) concerned with generic algorithms, it is well
known that several methods were introduced to fit this purpose and notably
the famous Louvain algorithm, whose origin is rather recent [6], and which is
recognized as a very good tool by the scientific community. It is originally based
upon the optimization of a global function called modularity initially defined
in [28] and that the community has adopted to compare two clusterings on a
common basis. In the sequel we shall denote M× this objective function and
will show it measures deviation from statistical independence.

To fulfill the (ii) objective, the Louvain algorithm has been naturally gener-
alized in [8] where the authors proposed to choose a candidate criterion among
a list of global criteria, different from the usual modularity. Actually, the mod-
ularity, due to a resolution limit first mentioned in [15], has been modified in
several articles ([32], [21] and [9]) always motivated by experimental results;
we will not detail further the list of available criteria. In her thesis [10], Patri-
cia Conde-Céspedes, proposed some experiments on usual networks, involving
M× plus some others, showing that results may vary from one criterion to
another, while being still consistent and interpretable.

In this paper, we will focus, on two network clustering criteria she applied,
the original M× and a second denoted M+ which is locally based on a devi-
ation to another coupling function, already latent in a paper of Fréchet [16]
and that we shall call indetermination or logical indetermination (a notion
introduced by J.F. Marcotorchino in his seminal papers [22] and [24]).

The innovation of this paper can be stated as follows:

– We rely on a work by Csiszár on divergences [12] which assesses that the
costs in a projection problem is restricted to Least Squares or Entropy.
Leveraging on it we show that the two chosen criteria M× and M+ pre-
cisely result from the optimization of the two corresponding canonical dis-
crete transportation problems.

– We gather known and new properties of the so-called indetermination, an
equilibrium already applied in the graph clustering domain but never stud-
ied per se in a more general context. Furthermore, the expected difference
between the two canonical coupling functions is shown to be of order O( 1

n2 )
where n is the number of nodes.

– We validate some of these findings, by reanalyzing more systematically the
behavior of those criteria on the very simple model of Gilbert’s graphs. This
last item illustrates the small expected difference of the previous item and
explains the close experimental results found in [8]. Besides it motivates
the search of situations where the two criteria range significantly apart as
briefly considered in the paper.

The paper is structured as follows. In section 2 we propose a parallel dis-
covery of two coupling functions (⊗) and (⊕) using discrete optimal transport
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theory. In section 3 is mentioned a list of dual properties related to Monge’s
matrices and which justify the notation ⊕/⊗ that we propose. Section 4 deeply
studies indetermination introducing properties that, to our knowledge, deserve
to be put forward with regards to the too poor coverage devoted to them in
the literature. Finally, Section 5 gathers a study about the behavior of the
criteria based on those coupling functions on the general Gilbert’s random
network model. We show they are overall quite similar, which illustrates their
symmetric construction.

2 Parallel discovery of two dual couplings

When we want to couple two marginal laws, the most common and straightfor-
ward way to proceed, consists in assuming independence as a handy hypothesis.
For instance when we use a very classical and usual criterion like the χ2 index,
we are measuring nothing but a deviation to independence, a natural coupling
for empirical experiments when one wants to quantify dependence.

Although being the most natural, it is not, by far, the only existing avail-
able coupling method; actually, as introduced by Sklar in [33], any copula
function will lead to a coupling function acting on two cumulative distribu-
tion functions. In this document, we link a coupling function to a given opti-
mal transport problem. Hence, to follow a similar approach for indetermina-
tion coupling, we train ourselves first by extracting the independence coupling
from the optimization of a transport problem and, next generalize the same
approach to the indetermination case, making use of a second and different
transport problem.

We already introduced the term ”coupling function” several times but let
us define it formally, since it will be a key notion throughout the document.

Definition 1 (Coupling function)
Let µ = µ1 . . . µp and ν = ν1 . . . νq be two discrete probabilities called marginal

distributions (or simply margins). A probability measure π = πu,v {1 ≤ u ≤
p, 1 ≤ v ≤ q} on the product space is defined through a coupling function C
such that π = C(µ, ν), satisfying the following constraints:

– (first margin) C(µ, ν)u,· =
∑q
v=1 C(µ, ν)u,v = µu, ∀1 ≤ u ≤ p

– (second margin) C(µ, ν)·,v =
∑p
u=1 C(µ, ν)u,v = νv, ∀1 ≤ v ≤ q

– (positivity) C(µ, ν)u,v ≥ 0, ∀1 ≤ u ≤ p, ∀1 ≤ v ≤ q

Remark 1
All coupling functions (or maps) used in this paper will satisfy: πu,v = C(µ, ν)u,v =
C(µu, νv); this illustrates that for all (u, v), πu,v only depends upon the value
on the corresponding margins: µu and νv.
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2.1 A few words about Optimal Transport

Looking at Definition 1, we observe that a coupling function behaves as a
copula in the discrete domain: acting on margins it derives a probability dis-
tribution on the product space.

We can imagine a lot of coupling functions, especially if we do not limit
ourselves to Remark 1. The constraints that C has to satisfy, lead us to cope
with a huge number of solutions but without any general constructive method.
This is the reason why we shall choose a systematic approach: minimizing a
cost function and observe the link to optimal transport definition.

The ad-hoc discrete optimal transport problem we will be dealing with,
typically looks like Problem 1, given hereafter (where MKP stands for Monge-
Kantorovitch-Problem).

Problem 1 (Discrete Version of MKP)

min
π

p∑
u=1

q∑
v=1

C(π(u, v))

subject to:
q∑
v=1

π(u, v) = µu; ∀u ∈ {1, ..., p}

p∑
u=1

π(u, v) = νv; ∀v ∈ {1, ..., q}

π(u, v) ≥ 0; ∀(u, v) ∈ {1, ..., p} × {1, ..., q}

The choice of a cost function C depends upon the applications we want
to address. Typically, we expect the global assignment to be as smooth as
possible, meaning close to uniform (see both examples in the sequel). A MKP
problem is then essentially given by its cost function, while margins (µ, ν) may
vary. Let us define now an optimal coupling function C associated to a given
MKP problem with fixed margins given as parameters.

Definition 2 (MKP Problem Associated with Coupling function)
For a given MKP problem P , we define a coupling function CP by: CP (µ, ν) =
π∗(P ) provided that π∗ exists as a unique solution of P with margins µ and ν.

Following Definition 2 we propose the solutions of two discrete optimal
transport problems that we apply in section 5: each signals a structured and
well-defined criterion, suitable for network clustering.

2.2 The Alan Wilson’s Entropy Model: role of ”independence”

First introduced by Sir Alan Wilson in 1969 for ”Spatial Interaction Model-
ing” the ”Flow Entropy Model” of Alan Wilson, can be found in his various
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publications: originated in [36] and developed in [37]. A fundamental justifi-
cation of his approach corresponds to the following contextual situation: in a
theoretical system, the elements of which do not maintain affinities, it is ad-
visable to determine the distribution of π(u, v) (normalized frequency flows),
supposing π ≥ 0 which maximizes the entropy of the system under certain con-
straints. The objective function to be minimized is based upon Boltzmann’s
or Shannon’s Entropies so that the problem should be expressed as follows:

Problem 2 (Unbalanced PSIS)

min
π

p∑
u=1

q∑
v=1

π(u, v) ln(π(u, v))

In a situation with no information, the minimization of Problem 2 just
amounts to satisfy the constraint that the cell values distribution is effectively
a probability (i.e.: the sum of positive π(u, v) is equal to 1). The solution of
this very simple ”Program of Spatial Interaction System” (PSIS) is nothing
but the uniform law:

π∗(u, v) =
1

pq
(1)

In other words, when we ignore everything about the way the exchanges
are built up, it is necessary to use Laplace’s principle of ”insufficient reason”
and to consider that the world trade is uniformly distributed inside the system.

By using margins, let us say information about total exports (origins flows)
and total imports (destination flows), the degree of disorder of the system
can be drastically reduced. Indeed, totals on rows and columns are no longer
free, but must satisfy marginal values µu and νv, fixed by the application as
expressed in Problem 3; the solution of which is given by theorem 1.

Problem 3 (Balanced PSIS)

min
π

p∑
u=1

q∑
v=1

π(u, v) ln(π(u, v))

subject to constraints of Problem 1

Theorem 1

The solution of Problem 3 is π×(u, v) = µuνv.
Hence the coupling function associated to Problem 3 is nothing but ”inde-

pendence”:

CProblem 3(µ, ν)u,v = C×(µ, ν)u,v = (µ⊗ ν)u,v = µuνv

We skip the proof of Theorem 1 as it is similar to the one we will develop
for Theorem 2 which is less common.

As a conclusion, from the direct maximization of entropy, we get the solu-
tion expressed in terms of probability and remark that the associated coupling
function is nothing but ”independence” (expressed with a ⊗ throughout the
paper).
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2.3 The minimal trade model: role of ”indetermination”

In the ”Minimal Trade Model” (see [35], [22] and [24]), the cost function aims
at getting a smooth breakdown of the origins-destinations π(u, v) =

nu,v

n·,·
which

explains the term ”Minimal Trade”. In that case the criterion is a quadratic
function measuring the squared deviation of the cell values from the ”no infor-
mation” situation (the uniform joint distribution law related to Problem 2).
Obviously, in case of free margins, the solution remains the uniform law. How-
ever, adding usual pre-conditioned constraints on margins, the least squared
problem is Problem 4; the solution of which is given by Theorem 2.

Problem 4 (Minimal Trade Model)

min
π

∑
u,v

{
π(u, v)− 1

pq

}2

subject to constraints of Problem 1

Theorem 2

The solution of Problem 4 is π+(u, v) = µu

q + νv
p −

1
pq .

Hence the coupling function associated to Problem 4 is nothing but ”inde-
termination”:

CProblem 4(µ, ν)u,v = C+(µ, ν)u,v = (µ⊕ ν)u,v =
µu
q

+
νv
p
− 1

pq

A supplementary condition, which is exogenous with regard to the previous
model must be added on the margins (which are, by the way, constant values
given a priori), this condition (see [22]) is a simple inequality which guarantees
the positivity of the frequency Matrix π∗(u, v) we are looking for:

pmin
u
µu + qmin

v
νv ≥ 1 (2)

From now on, we shall consider that Condition (2) applies whatever the
breakdown of the µu and νv is. Notice that in the ”Adjustment to Fixed Mar-
gins for a Contingency Table” case, the associated values nuv must be integers,
and therefore making the problem much more complex to solve, relaxation of
this integrity constraint leads formally to Problem 4.

Remark 2 (Vanishing bias)
By developing the cost function, we obtain an interesting equality to be used
later on: ∑

u,v

(
π(u, v)− 1

pq

)2

=

(∑
u,v

π2(u, v)

)
− 1

pq
(3)

so that the influence of the constant shift 1
pq in the squared model disappears.
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Proof
The proof we propose comes directly from [35] and [24]. A generalization of
the canonic additive form when we relax hypothesis (2) can be found in the
thesis to come [4].

Using equality (3), the Lagrangian function associated with the previous
minimization model can be turned into

L(π, λ, ω, θ) =

p∑
u=1

q∑
v=1

π2(u, v) +

p∑
u=1

λu

(
µu −

q∑
v=1

π(u, v)

)

+

q∑
v=1

ωv

(
νv −

p∑
u=1

π(u, v)

)
− θ

(
p∑

u=1

q∑
v=1

π(u, v)− 1

)

Since the function to optimize is convex, the solution is a minimum so that
first order conditions apply and we have the following system of equations.

∂L(π, λ, ω, θ)

∂π(u, v)
= 2π(u, v)− λu − ωv − θ = 0 (4)

∂L(π, λ, ω, θ)

∂λu
= µu −

q∑
v=1

π(u, v) = 0 (5)

∂L(π, λ, ω, θ)

∂ωv
= νv −

p∑
u=1

π(u, v) = 0 (6)

∂L(π, λ, ω, θ)

∂θ
=

p∑
u=1

q∑
v=1

π(u, v)− 1 = 0 (7)

Since the Lagrange multipliers are defined up to a constant we may assume
θ = 0; summing on v in equation (4), we obtain

2µu = qλu +

q∑
v=1

ωv; (8)

which rewrites

λu =
2µu
q
−
∑q
v=1 ωv
q

. (9)

Similarly we have:

ωv =
2νv
p
−
∑p
u=1 λu
p

. (10)

Introducing equation (9) and equation (10) in equation (4) we get:

πu,v =
µu
q

+
νv
p
−
∑p
u=1 λu
2p

−
∑q
v=1 ωv
2q

. (11)
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Eventually, using equation (7) we conclude:

π∗(u, v) =
µu
q

+
νv
p
− 1

pq
,∀(u, v).

Remark that, since Condition (2) applies, the π∗ expressed in the previous
equation are nonnegative. We will go back to this expression, in the next
sections and develop a deeper focus on it, explaining the true meaning of the
term ”indetermination” as well as some other consequences.

2.4 Expected difference between coupling

Both coupling functions are extracted from an optimal transport problem con-
centrating values around the uniform distribution. Hence differences between
them should be small in a certain sense. We provide in this section a measure
of their proximity. We evaluate the expected value of a norm between the two
couplings under uniform laws. More precisely we suppose that the two margins
µ and ν are random and follow the Dirichlet’s law (basically the uniformity
on probability distributions). We remind here the form of that law for our
application.

Definition 3 (Dirichlet’s Law)
The density of a Dirichlet law Dp representing a uniform law among probability
law on p elements is expressed as follows:

f(µ1, ..., µp)

p∏
k=1

dµk =
1

B(p)

p∏
k=1

µ0
k

p∏
k=1

dµk =
1

B(p)

p∏
k=1

dµk

where B is the multinomial Beta function.

Having expressed a density function for µ and ν (replace p by q), we apply
to them two coupling functions C+ and C×. As a distance, we define:

∆p = E(µ,ν)∼Dp⊗Dq

[
p∑

u=1

q∑
v=1

[(µ⊗ ν)u,v − (µ⊕ ν)u,v]
2

]
and compute its value through the sequence:

∆p = E(µ,ν)∼Dp⊗Dq

[
p∑

u=1

q∑
v=1

[
(µu −

1

p
)(νv −

1

q
)

]2]

= Eµ∼Dp

[
p∑

u=1

(µu −
1

p
)2

]
Eν∼Dq

[
q∑
v=1

(νv −
1

q
)2

]

= pqEµ∼Dp

[
(µ1 −

1

p
)2
]
Eν∼Dq

[
(ν1 −

1

q
)2
]

Now, we notice that we need to compute the variance of Dp; it holds:
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Proposition 1 (Variance of Dirichlet law)
VX∼Dp [X] = p−1

p2(p+1)

Proposition 1 in particular, implies that margins will concentrate their
values around 1

p and 1
q respectively as soon as p or q increases respectively. As

we notice that couplings equal each other when any margin is uniform, this
should imply that ∆p converges to 0 if any of the two increases. This is exactly
what happens, as we have:

∆p =
1

pq

(
p− 1

p+ 1
· q − 1

q + 1

)
≤ 1

pq

2.5 Structural Justification based upon an axiomatic result of Imre Csiszár

Although it seems arbitrary, our restriction to these two previous coupling
functions is all but a fortuitous decision: in [12], Csiszár actually shows that,
provided additional intuitive properties, we must restrict ourselves to use either
least square or maximum entropy as canonic ”distances” between probability
distributions.

Let us rewrite our transport problems in terms with the notations of [12].
We notice that Problems 3 and 4 aim at reducing a distance from π to the
uniform law, where π must satisfy constraints on its margins leading to an
eligible space Lµ,ν inside the simplex SD, D > 0. In the first problem, the cost
function is the entropy while in the second it is the L2 norm.

A general question is how to adapt a ”prior guess” u0 to verify a list of
constraints. Let us say that u0 lives in SD while the given constraints define a
subspace L ∈ L (L is the space of subspaces of SD spanned by a finite list of
affine constraints, see [12] for more details). To formalize it, Csiszár defines a
projection rule Π as a function whose input is a set L ∈ L and which generates
a method ΠL to project any prior guess u0 to a vector in L:

Π : L → (SD → SD)

L→ ΠL :
(
u0 → ΠL(u0) ∈ L

)
The article then introduces a collection of ”natural” properties that we

gather hereafter.

– consistency : if L′ ⊂ L and ΠL(SD) ⊂ L′ then ΠL′ = ΠL; basically, if the
result of a projection to a bigger space is always inside a smaller, then the
projection on the two spaces are equivalent.

– distinctness: if L and L′ are defined by a unique constraint and they are not
equal, then ΠL 6= ΠL′ (unless they both contains the initial prior guess).
Typically, in R2, minimizing || · || on two lines returns a different result as
soon as they do not both contain 0.

– continuity : Π is continuous with regard to L ∈ L; it has a continuous
relationship with constraints.

– scale invariant : ΠλL(λu) = λΠL(u) for any positive λ and any u ∈ SD.
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– local : for any subset J ⊂ {1, . . . , D}, (ΠL)J = (ΠL′)J as soon as LJ = L′J
where LJ means we only keep constraints dealing with coordinates in J and
(ΠL)J is the restriction of the resulting vector of ΠL to the J coordinates.
This property indicates that the result of Π on a set of coordinates, only
depends on constraints applied to these coordinates.

– transitive: for any L′ ⊂ L, ΠL′ = Π ′L ◦ΠL. We can first project on a bigger
space without affecting the result.

The main result of [12] states the following:

Theorem 3 (Two canonical projections)
Only two projection rules respect all the conditions listed above:

Π2 : L→ Π2
L :
(
u0 → argminv∈L||v − u0||2

)
ΠKL : L→ ΠKL

L :

(
u0 → argminv∈L

D∑
d=1

vd ln

(
vd
u0d

))

where ΠKL amounts to project using the ”Kullback-Leibler” divergence.

To come back to our transport problem, the ”prior guess” is the uniform law
while the subspace L ⊂ SD is defined using the margin constraints forced by µ
and ν. Then, provided we verify the afore-mentioned properties, the two cost
functions we used cover an exhaustive view. Eventually it justifies that the
two graph clustering criteria comparing the neighborhood to each equilibrium
(Definition 10 and Equation (15)) are canonical.

3 Monge properties: a justification of the ⊕/⊗ notation

We introduce two classes of matrices, the first one is attributed to Gaspard
Monge, from a basic idea appearing in his 1781 paper, (incidentally see[7],
where a reference is given to Alan Hoffman1 who first coined that point
and consequently proposed the name: Monge’s Matrices). For each of those
Monge’s matrices, we point out some remarkable equalities and, moreover, we
link them to a corresponding coupling function of section 2.

3.1 Monge property – ”Indetermination”

To introduce Monge’s properties, we follow the exhaustive work of Rainer
Burkard, Bettina Klinz and Rüdiger Rudolf exposed in the 66-page-long arti-
cle [7] and begin with definition 4.

1 In 1961 Alan Hoffman (IBM Fellow and US Science Academy member) rediscovered
Monges’s observation see [19]. Hoffman showed that the Hitchcock–Kantorovich transporta-
tion problem can be solved by a very simple approach if its underlying cost matrix satisfies
those Monge’s properties
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Definition 4 (Monge and anti-Monge matrix)
A p× q real matrix cu,v is said to be a Monge matrix if it satisfies:

cu,v + cu′,v′ ≤ cu′,v + cu,v′ ∀ 1 ≤ u ≤ u′ ≤ p, 1 ≤ v ≤ v′ ≤ q

and an anti-Monge matrix if:

cu,v + cu′,v′ ≥ cu′,v + cu,v′ ∀ 1 ≤ u ≤ u′ ≤ p, 1 ≤ v ≤ v′ ≤ q

Remark 3 (full-Monge matrix)
The important case for our purpose is the equality case when a matrix is both

Monge and anti-Monge, we will call this situation ”full-Monge” matrix.

cu,v + cu′,v′ = cu′,v + cu,v′ ∀ 1 ≤ u ≤ u′ ≤ p, 1 ≤ v ≤ v′ ≤ q

Although it is poorly studied, the last introduced equality fits perfectly
our purpose. The inequalities on the contrary, are common and can be met in
diverse situations such as cumulative distribution functions, or copula theory.

Remark 4 (Adjacent cells)
A straightforward but important derived property is the local adjacency cells

equality: it is sufficient (hence necessary and sufficient) to satisfy the property
of the Remark 3 on adjacent cells, to ensure the obtainment of a ”full-Monge”
matrix behavior for the global set of cells i.e.

cu,v + cu+1,v+1 = cu+1,v + cu,v+1 ∀ 1 ≤ u ≤ p, 1 ≤ v ≤ q.

Remark 4 is a key property to study Monge matrices since it gives a direct
O(pq) algorithm to verify if a matrix is Monge.

Besides, a question emerges: which density function verifies the full Monge
property? The following Proposition 2 solves this question.

Proposition 2 (full-Monge matrix is equivalent to ”Indetermination”)

A ”full Monge matrix” exactly corresponds to an ”indetermination coupling”.

Proof
Summing on u′ and v′ the equality of Remark 3 we straightforwardly obtain:∑

u′

∑
v′

(cu,v + cu′,v′ − cu′,v − cu,v′) = pqcu,v + c·,· − qc·,v − pcu,· = 0

which rewrites

cu,v =
cu,·
q

+
c·,v
p
− c·,·
pq

By summarizing properties we get the following Theorem 4.

Theorem 4 (full-Monge matrices)
π representing a probability matrix, the following properties are equivalent.
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3 4 2 9

2 3 1 6

1 2 0 3

3 4 2 9

9 13 5 27

1/9 4/27 2/27 1/3

2/27 1/9 1/27 2/9

1/27 2/27 0 1/9

1/9 4/27 2/27 1/3

1/3 13/27 5/27 1

Fig. 1 Example of an indetermination coupling (Statistical counting vs Probability forms)

1. π is a full-Monge matrix or equivalently all 2 × 2 sub-tables {u, v, u′, v′}
extracted from π have the same sum on their diagonal and anti-diagonal

2. πu,v = π+
u,v = µu

q + νv
p −

1
pq

3. π optimizes Problem 4 for some given margins

The first property of Theorem 4 is illustrated on Figure 1 and justifies
the ⊕ notation assigned to ”indetermination”. Indeed, if we take blue and red
arrows we get the same resulting value: 0. Using the contingency form:

blue arrows : 3 + 2− 1− 4 = 0

red arrows : 3 + 2− 4− 1 = 0

Equality obviously remains true for the probability form.

3.2 Log-Monge property – Independence

We present hereafter a similar class of Matrices related, now, to independence:
called Log-Monge matrices. They are built on the same principle as before
through Definition 5.

Definition 5 (full-log-Monge Matrices)
A strictly positive p× q matrix cu,v is ”full-log-Monge” when:

ln(cu,v) + ln(cu′,v′) = ln(cu′,v) + ln(cu,v′) ∀ 1 ≤ u ≤ u′ ≤ p, 1 ≤ v ≤ v′ ≤ q

To immediately get the correspondence between full-Monge and full-log-
Monge, we propose a transposition from a property to another using logarithm
in Remark 7. It supposes matrices to be strictly positive (i.e., for our proba-
bility application, the whole discrete space must be reached).

Remark 5 (From Log-Monge to Monge)
We easily verify that c satisfies condition proposed in Definition 5 if and only if
ln(c) verifies the equivalent condition in Definition 4 where logarithm is taken
element-wise.

Using Remark 5, we can check that full-log-Monge property is linked to
”independence coupling”; without detailing their obtainment, we gather those
results within Theorem 5, dual of Theorem 4.



14 Pierre Bertrand et al.

3 13/3 5/3 9

2 26/9 10/9 6

1 13/9 5/9 3

3 13/3 5/3 9

9 13 5 27

1/9 13/81 5/81 1/3

2/27 26/243 10/243 2/9

1/27 13/243 5/243 1/9

1/9 13/81 5/81 1/3

1/3 13/27 5/27 1

Fig. 2 Example of an ”independence coupling” (Contingency vs Probability forms)

Theorem 5 (full-log-Monge Matrices)
π being a strictly positive probability matrix all those properties are equivalent:

1. πu,v is full-log-Monge or equivalently all 2 × 2 sub-tables {u, v, u′, v′} ex-
tracted from π have the same product on their diagonal and anti-diagonal

2. πu,v = π×u,v = µuνv
3. π optimizes problem 2
4.

Figure 2 illustrates ”full-log-Monge” matrices and their properties related
to ”independence”; it justifies the usual ⊗ notation. Note that both those
matrices (in Figure 1 and Figure 2) optimize a problem where the unique
difference is the cost functions (since the margins are strictly identical).

4 Logical ”indetermination” and ”Condorcet’s voting equilibrium”

In section 4, our latent goal is to better understand the ”indetermination
coupling”, that we have until now essentially introduced from a theoretical
point of view. Although obtained through a similar process, the ”independence
coupling” is straightforwardly linked to classical empirical experiences. The
coupling defined by π+ does not share this latent simplicity and interpreting it,
per se, is clearly a domain which deserves investigating. We present an attempt
for helping the reader to make an accurate picture about the ”indetermination”
concept.

Interest for the coupling will be reinforced as we show it corresponds to
the Condorcet’s majority equilibrium. Defining a ”for” vs ”against” notion
will lead us to a formal equality translating ”indetermination” in another
space. In fact we are faced with the famous ”Condorcet’s voting equilibrium”,
which amounts to exhibiting the situation where the number of opinions ”for”
balances exactly the number of opinions ”against”. The demonstration of this
property requires the use of ”Mathematical Relational Analysis” notations,
which will be formally defined hereafter. In the context of this article we will
not develop an exhaustive overview of this theory and its applications but
merely pick up some results in connection with the goals we want to achieve;
most of them are extracted from the following list of papers which gathers
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some of the most important key features about the subject: [25], [22], [26],
[31], [23], [1], [2].

We also interpret the equilibrium between the ”yes/for” (agreements) and
the ”no/against” (disagreements) as a voting ”indetermination situation”.
This implies: since the number of votes ”for” equals the number of votes
”against” we are in a situation, where it is impossible to take a decision.
The term: ”indetermination” (”indeterminacy” or ”uncertainty” should have
been used as well) is a formal translation of this surprising situation. First of
all, let us introduce properly the Relational Analysis notations which we shall
use later on.

Definition 6 (Relational Analysis notations)
Let (u1, . . . , un) and (v1, . . . , vn) be two n probabilistic draws of two discrete

laws U ∼ µ and V ∼ ν. We define two associated symmetric n × n matrices
X and Y by

Xi,j = 1ui=uj
and Yi,j = 1vi=vj , ∀1 ≤ i, j ≤ n

Basically, the two binary matrices X and Y (which correspond in fact to
two binary equivalence relations based on the drawn values) represent agree-
ments and disagreements of the two variables on a same draw of size n; they
are symmetric with 1 values on their diagonal. This relational coding has a
lot of powerful properties, which can be found in the articles we mentioned
beforehand.

Definition 6 immediately provides us with an algorithm to transfer contin-
gency representations to relational ones. We would loop on i and j and fill the
matrices X and Y with a 1 or a 0 according to the formula. The way back
consists in noticing that:

Xi,j = 1 if and only if i and j share the same modality of U ∼ µ.
Hence we assign a modality to each class defined by the equivalence relation

embedded in X: the only loss of information during this process resides in the
values themselves.

Now, we are ready to present the Theorem justifying the name ”indeter-
mination”:

Theorem 6 (π+ and Condorcet’s equilibrium)
Let π be the joint probability distribution of an ordered pair of random vari-

ables (U, V ) having p and q values respectively. Then π is an ”indetermination
coupling” on its margins, if and only if the expected number of ”agreements”
equals the number of ”disagreements” on a 2 independent drawings of π.

Proof
The measure π is defined through its values πu,v, 1 ≤ u ≤ p and 1 ≤ v ≤ q. U
and V are random variables representing its margins. Through n drawings of π,
hence n samplings of (U, V ), two partitions of the n individuals are generated,
one based on their values of U , the other on their values of V .

We will say that an agreement occurs when both partitions simultaneously
gather or separate the individuals i and j. A disagreement occurs on the
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contrary when a partition gathers i and j while the other one separates them.
Formally, with X,Y given by Definition 6:

– Xi,jYi,j = 1, agreement of type 11: there are pq couples of classes possible
for two individuals i and j to realize this type of agreement

– Xi,jY i,j = 1, agreement of type 00: there are p(p − 1)q(q − 1) couples of
classes of this type

– Xi,jY i,j = 1, disagreement of type 10: there are pq(q−1) couples of classes
of this type

– Xi,jYi,j = 1, disagreement of type 01: there are p(p−1)q couples of classes
of this type

Since the number of possible couples vary we propose the following equality
which establishes that the weighted number of agreements equals the weighted
number of disagreements:

XY

pq
+

(X)(Y )

p(p− 1)q(q − 1)
=

XY

pq(q − 1)
+

XY

p(p− 1)q
(12)

with the scalar product notation

XY =

n∑
i=1

n∑
j=1

(Xi,jYi,j)

The weights appearing in Equality (12) are intrinsically important. Indeed,
the just-defined equality is based on a draw of size n and precisely corresponds
to a contingency indetermination. We consider two independent random draws
under π: (ui, vi) and (uj , vj) and introduce a probabilistic equality based on
our 2 draws.

Eπ⊗π (Xi,jYi,j)

pq
+

Eπ⊗π
(
Xi,jY i,j

)
p(p− 1)q(q − 1)

=
Eπ⊗π

(
Xi,jY i,j

)
pq(q − 1)

+
Eπ⊗π

(
Xi,jYi,j

)
p(p− 1)q

(13)

Let us prove now that equality (13) precisely occurs when π equals the
indetermination coupling of its margins with the formula introduced in Theo-
rem 2.

– Eπ⊗π(Xi,jYi,j) =
∑
ui,vi

∑
uj ,vj

πui,viπuj ,vj1ui=uj&vj=vj =
∑
u,v π

2
u,v

– Eπ⊗π((Xi,j)(Yi,j)) =
∑
ui,vi

∑
uj ,vj

πui,viπuj ,vj1ui 6=uj&vi 6=vj =
∑
u,v πu,v(1−

πu,· − π·,v + πu,v)
– Eπ⊗π(Xi,jYi,j) =

∑
ui,vi

∑
uj ,vj

πui,viπuj ,vj1ui=quj&vi 6=vj =
∑
u,v πu,v(πu,·−

πu,v) (and similarly for Eπ⊗π(Xi,jYi,j))
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Inserting this into equation (13), we get:∑
u,v π

2
u,v

pq
+

∑
u,v πu,v(1− πu,· − π·,v + πu,v)

p(p− 1)q(q − 1)

=

∑
u,v πu,v(πu,· − πu,v)

pq(q − 1)
+

∑
u,v πu,v(π·,v − πu,v)

p(p− 1)q

equivalently:

(p− 1)(q − 1)
∑
u,v

π2
u,v +

∑
u,v

πu,v(1− πu,· − π·,v + πu,v)

= (p− 1)
∑
u,v

πu,v(πu,· − πu,v) + (q − 1)
∑
u,v

πu,v(π·,v − πu,v)

regrouping the similar terms yields:

pq
∑
u,v

π2
u,v − p

∑
u

π2
u,· − q

∑
v

π2
·,v + 1 = 0

by developing, we verify that it corresponds to:

pq
∑
u,v

(πu,v − πu,·/q − π·,v/p+ 1/pq)
2

= 0

Finally it holds:

πu,v =
πu,·
q

+
π·,v
p
− 1

pq

We have proved that π = π+ if and only if the expected number of normalized
agreements equals the expected number of disagreements on a 2-sized draw.

In another article [5] we interpret the cost function linked with indetermina-
tion as a way to reduce couple matchings and show the Condorcet’s equilibrium
conveys useful applications as it ”hides” the underlying distribution.

5 Application to network clustering

5.1 Introduction

We limit ourselves to the Louvain Algorithm, applied as a heuristic to optimize
a global objective function. In a few words let us say that the global optimiza-
tion is obtained iteratively by maximizing a local criterion which expresses
how much two nodes are similar.

Conde-Céspedes, in her thesis [10], gathered a large amount of network
clustering criteria, coming from the scientific literature; she took advantage
of this task to give them a category label, depending on their relationship
with both independence and indetermination. She compared them according
to their ability to perform on various networks, and collected and stored the
obtained results. Although we adopt quite the same perspective than Patricia
Conde-Céspedes, we restrict ourselves to focus our study on the two canonic
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deviations: ”deviation to independence” and ”deviation to indetermination”
which we reintroduce hereafter within the network theoretical context.

Let us first give some usual definitions for a graph:

Definition 7 (Weighted graph (network))
A weighted graph G, is a graph which contains n nodes 1 ≤ i ≤ n, connected
to each other through edges (i, j) endowed with weights ai,j (representing a
weighted incidence matrix). We also introduce the total weight 2M =

∑
i,j ai,j.

A basic way to randomly generate a network is through the Gilbert’s dis-
tribution:

Definition 8 (Gilbert)
Fixing a number n of nodes and ε ∈ [0, 1], we link any set of two nodes by
independently drawing though a Bernoulli law with parameter ε leading to a
0− 1 weight. The obtained network is non-directed and each weight is either 0
or 1.

Remark 6
Adding a parameter p representing maximum weight, we can easily create a
weighted graph by drawing a Binomial law with parameter (ε, p) while linking
ordered pairs (instead of sets) generates directed networks.

As mentioned in Section 1, our work will be devoted to the research of
clusters or cliques within a given graph G. Theses are defined through an
equivalence relation as specified in Definition 9:

Definition 9 (Graph clustering)
Let x be a matrix representation of a binary equivalence relation, the result

of the clustering of a graph G. Then xi,j equals 1 if and only if the two nodes
i and j are in the same class for x, else equals 0.

Clustering algorithms aim at providing clusters maximizing internal simi-
larities as well as minimizing external ones. A first option is to take as input
the number K of classes we are looking for, together with an associated dis-
tance (or dissimilarity index) and come up with a list of best representatives
or ”centroids” for each class. The K-means algorithm whose idea goes back
to the fifties (see2 [34]) typically illustrates this option. A second option, is
to construct a local criterion c which assigns a weight ci,j to each ordered
pair (i, j) of nodes based on their similarity; the more similar they are, the
higher the criterion. We then build up a global criterion by summing up the
local values ci,j if and only if i and j are in the same cluster as proposed in
Problem 5.

2 factually this is the method of S. Lloyd(1957) rewritten by E.W. Forgy (1965) which
corresponds to the oldest version of the K-means really used
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Problem 5 (Generic clustering problem)

max
x

M(c, x) =

n∑
i=1

n∑
j=1

ci,jxi,j

subject to:

x is an equivalence relation (see Definition 6)

Let us first note that, as stated in [23], [25] and [31] an equivalence relation
constraint can be written as :

• xi,i = 1, ∀1 ≤ i ≤ n (reflexivity)
• xi,j = xj,i, ∀1 ≤ i, j ≤ n (symmetry)
• xi,j + xj,k − xj,k ≤ 1, ∀1 ≤ i, j, k ≤ n (transitivity)

Thanks to the linearity of these constraints, in addition to the linear ex-
pression of the criterion itself, the problem 5 although a priori NP-hard can
be exactly solved (under unimodular matrix conditions) through the integer
relaxation of a good existing 0-1 linear programming code (see [25]). But in the
context of network clustering, the size n of the problem (here the number of
nodes) can be really huge (millions for social networks) and the direct solving
by linear programming, even specially tuned, is no longer possible; therefore,
the use of robust heuristics becomes mandatory. As mentioned beforehand,
the Louvain Algorithm (see [17] or [28]) belongs to this set of methods: it does
not systematically provide us with an exact optimal result merely a good ap-
proximate one. We concentrate on the analysis of two canonic costs for which
historical experiments are reported and explained in the light of the previous
sections.

5.1.1 Original Modularity – ”Independence”

The original and famous Newman-Girvan’s presentation of a global criterion
for networks clustering, see [17] or [28], has been introduced in the Louvain
algorithm together with a global cost called ”Modularity” defined by:

Definition 10 (Modularity)
Given a partition xi,j and a graph G with weighting function a on its edges,
the global modularity is:

M×(G, x) =
1

2M

∑
i,j

[
ai,j −

ai,·a·,j
2M

]
xi,j . (14)

Let us first remark that the original modularity M× is nothing but the
generic global cost function defined though Problem 5 with

ci,j = m×(G)i,j =
ai,j
2M
− ai,·a·,j

(2M)2

and that the local gain m×(G)i,j of putting two nodes in the same class
measures a local deviation to independence. Indeed, using Definition 7, with
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πi,j =
ai,j
2M as a probability measure on {1 . . . n}2 and margins µi =

ai,·
2M , m×

rewrites:
m×(G)i,j = 2M (πi,j − µiµj)

thus being a canonic deviation to independence criterion.
A second remark is that as m×(G)i,j expression does not contain any ab-

solute value or square elevation. Then unconnected nodes will lead to negative
weights preventing them from being assigned to the same class. If they are
connected, the importance of m×(G)i,j evolves positively as i and j have less
edges (ai,· and a·,j small); here again this implies an appropriate behavior.
More precisely, since independence ensures as uniform a coupling as possi-
ble with fixed margins (this is a solution of Problem 2), m× appears as a fair
construction. The criterion basically measures a distance between the observed
linkage weight and an expected flat weight given by the average neighborhood.

5.1.2 Extended Modularity – ”Indetermination”

We suggest an expression m+(G)i,j which represents a deviation to indeter-
mination. It will be used as a local cost function in Problem 5 leading to a
slightly different global formula M+(G, x) to optimize locally

m+(G)i,j = ai,j −
ai,·
n
− a·,j

n
+

2M

n2

Just as m×, it rewrites as a canonic deviation to indetermination

m+(G)i,j = 2M ∗
(
πi,j −

µi
n
− µj

n
+

1

n2

)
The global criterion follows:

M+(G, x) =
∑
i,j

[
ai,j −

ai,·
n
− a·,j

n
+

2M

n2

]
xi,j (15)

We have seen that both couplings share a lot of properties shown in Sec-
tion 3 and Section 4. In the same way, Patricia Conde-Céspedes noticed that a
lot of statistical criteria measuring variables correlation are based either on a
”distance to independence”, or on a ”distance to indetermination” (see [10]).
According to these remarks, our canonical deviation to indetermination crite-
rion M+ deserves the same types of use as those dedicated to the Newman
Girvan’s M×.

5.2 Summary of an application to various networks

Now that the two criteria have been theoretically grounded on their canonical
structure, we gather in Table 1 the number of clusters found by Patricia Conde-
Céspedes, who applied both on the same empirical networks. She got similar
results, as expected beforehand on a bench of experimental graphs she properly
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defines in [10] and for which we gather her results in Table 1 which can be read
as follows: for example, the ”Internet” network contains 69, 949 nodes with
351, 280 edges; if we apply the Louvain algorithm to it, with the global criteria
M× we usually find 46 communities, while M+ leads to 39. As anticipated in
Section 2.4 the criteria are (in average) very close (see for instance the Amazon
case); consequently their resulting effect on various networks is quite similar.
Section 5.3 of the present paper provides the reader with an explanation of the
assertion Patricia Conde-Céspedes experimented. However, graphs in the real
world may greatly differ from the simplified Gilbert’s model presented below
(see for instance the YouTube example of the table).

Table 1 Number of classes found by each criteria on various networks

Karate Football Jazz Internet Amazon YouTube
N (nb nodes) 34 115 198 69 949 334 863 1 134 890
M (sum of weights) 78 613 2 742 351 280 925 872 2 987 624

Number of classes for criteria M× 4 10 4 46 250 5 567
Number of classes for criteria M+ 4 10 6 39 246 13 985

5.3 Gilbert Experimental Tests

As already mentioned, Solving problem 5 is NP-hard so that we cannot expect
precise results, neither about the number of classes for a given criterion, nor
about their composition. Nevertheless, we can compare directly local values of
the criterion to extrapolate a common or a distinct global run when iteratively
optimized.

We propose a comparative trial based on Gilbert’s networks to spot dif-
ferences or similarities between m×(G)i,j and m+(G)i,j values. The aim is
to observe the distribution of both criteria on a typical network. First, to
simplify observations and as only the reference cost (i.e. an equilibrium of
Section 2) varies between m+ and m×. It corresponds to the criteria minus
ai,j ; it is formally defined in Definition 11. Then, we generate 1, 000, 000 net-
works randomly, compute each criterion on a random pair of nodes and store
the reference cost; the results are displayed on Figure 3.

Definition 11 (Bias or reference cost)
The two bias derived from m× and m+ are respectively:

b×i,j =
ai,·a·,j

2M
and b+i,j =

ai,·
n

+
a·,j
n
− 2M

n2

On Figure 3 we observe that the distributions of both biases are similar
for any values of ε. Indeed, the curves are identical on their core values (those
with a number of realizations over 20, 000). It illustrates their common origin
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Fig. 3 Empirical distribution of the two reference costs b+i,j and b×i,j for ε in [0.3, 0.6, 0.9];
X-axis gives the values of the bias, Y-axis gives the corresponding number of realizations

which amounts to flatten a distribution (Section 2) and leads to a small ex-
pected difference (Section 2.4). Their common mean is equal to ε as can be
easily derived from the formulas. A difference nevertheless remains on extreme
values particularly visible for ε = 0.3. Let us now theoretically compute both
distributions under Gilbert’s networks to confirm their symmetry.

Proposition 3 (Probability values)
Let b be a binary value, b ≤ ni ≤ n and b ≤ nj ≤ n, then:

P(ai,j = b, ai,· = ni, a·,i = nj)

= P(ai,j = b)× P(ai,· = ni|ai,j = b)× P(a·,i = nj |ai,j = b)

= εb(1− ε)1−b
(
n− 1

ni − b

)
εni−b(1− ε)n−1−ni+b

(
n− 1

nj − b

)
εnj−b(1− ε)n−1−nj+b

The corresponding value m+
i,j and m×i,j associated with a group (b, ni, nj) of the

parameters being evident, we propose Figure 4 which represents the difference
between the theoretical distributions of the two criteria with ε = 0.3. b× and
b+ have distinct forms but their proximity on highly probable values, given
on Figure 4, illustrates Section 2.4: if we couple two variables with n margins,
the expected difference is less than 1

n2 .
Extreme values, on the contrary may differ drastically. Though it seems the

opposite on Figure 3 as m+ comes with higher values than m×, it is consistent
because of the minus sign in the formula linking m with b. Having noticed
that b+ and b× differ on their extreme values, we compute them on a general
Gilbert network (respecting the common value of 2M = n2ε), and obtain the
bounds:

−ε ≤ b+ ≤ n

n
+
n

n
− ε = 2− ε and 0 ≤ b× ≤ n× n

n2ε
=

1

ε
(16)

As expected from Figure 4 the difference between extreme values is arbi-
trarily high. It eventually shows that on average, both canonical criteria will
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Fig. 4 Theoretical distribution of the difference m×(G)i,j −m+(G)i,j (same as b+i,j − b×i,j)
on generated graphs

share a similar behavior hence shall be applied indifferently when the network’s
neighborhood weighting a is close to uniform. Precisely, in any real application
the chosen criterion detects, on each iteration, a link among the neighborhood,
which is unexpected with respect to the equilibrium (either independance or
indetermination). The difference between the two equilibria is so small that if
one detects a link, the other will too, so that we expect the resulting classes
to be comparable if not identical. Indeed, we know we can build, networks on
which M+ and M× deliver completely different results as an application of
Equation (16).

6 Conclusions

First, we followed the historical line and introduced two bases from Discrete
Optimal Transport Theory: independence and indetermination. As recalled,
the first one is the most intuitive and frequently used in mathematical articles
as well as experimented in real life. The second notion appeared more sur-
prising, poorly studied in the statistical literature but more commonly used
by people working on Mathematical Relational Analysis, Voting Theory, and
Analysis of Variance. Together, they cover the only two canonic projection
costs as quoted in [12].

To illustrate the usefulness of the parallel construction, we turned to ap-
plications and completed the track followed by Patricia Conde-Céspedes in
her thesis [10]. She gathered a list of network clustering criteria and classified
them according to their deviation to one of the mentioned coupling functions.
Section 5 reports a further analyzis of the two canonical criteria. It gathers
results about the general similarity of their applications to various networks
as well as their extreme values to highlight their differences.

In each section, from optimal transport to networks, we insisted on the
parallel between the two notions together with their differences. As quoted
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beforehand, they appear as the two unique canonic structural solutions. Gen-
erally, the differences between them need scanning up, either to coin a macro
criteria, or to chose wisely between one and the other depending on the struc-
ture of the network. In any case, the traditional use of independence at the
expense of indetermination needs to be further investigated and explained.

Acknowledgements We thank the editor and two anonymous referees for their valuable
comments.
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