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Abstract This paper aims at comparing two coupling approaches as basic lay-
ers for building clustering criteria, suited for modularizing very large graphs.
Although the scientific literature is not sparing with clustering criteria ded-
icated to graphs and networks decomposition, we shall nevertheless rework
this subject, in this paper, by proposing a new symmetric and dual approach
based on coupling functions, allowing to compare and calibrate them. To elab-
orate those coupling maps, we will briefly use “optimal transport theory” as
a starting point, then we will derive two main families of criteria: those based
upon “statistical independence” versus those based upon “logical indetermina-
tion”. Among others, we will use the so called “Monge’s properties”, applied to
contingency matrices context, as specific tricks for putting forward some key
features about those criteria. A further and deeper study is proposed, high-
lighting “logical indetermination”, because it is, by far, lesser known. Those
dual and parallel criteria are perfectly suited for graphs clustering, this will
be illustrated and shown on various types of graphs within this paper.
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1 Introduction

As mentioned in the abstract, this paper introduces two coupling approaches
as basic layers for building clustering criteria, suited for modularizing very
large graphs.

Graph clustering (or cliques partitioning of graphs) is a key topic, con-
cerned with a very large dedicated literature. One of the reasons of this sta-
tus is the recent and power use made by the GAFAM companies about very
large graphs resulting of modern activities dealing with: big social networks,
cellphone communications networks, high speed financial trading, large IT net-
works, IOT networks etc.., This is simultaneously associated with the IT ca-
pacity afforded today to store the really huge amounts of data, those activities
force us to cope with. The sudden apparition of these big networks gave rise
to a renewal of the so-called graph theoretical domain, used in that context
for different purposes, such as: discovering the latent cliques, clustering the
whole graph, isolating some key parts of interest within the network, etc. In
other words, this massive and raw information contained inside the networks
must be analyzed per se, and this leads obviously to mandatory techniques,
among which graphs clustering plays a prominent role, with a lot of practical
contextual applications.

At that stage two aspects must be differentiated : on the one hand (i)
the existence of generic algorithms dealing with various clustering criteria as
global objective functions, which can be changed according to the context, we
want to address, or, on the other hand (ii), on the graph clustering criteria
themselves, as soon as we must choose some of them as global objective func-
tions, during the network analysis step. Both those points will be discussed
throughout this article, although we shall theoretically insist essentially on the
second point (ii).

Going back on the first point, (i) concerned with generic algorithms, it
is well known that several methods were introduced to fit this purpose and
notably the famous Louvain’s algorithm, whose origin is quite recent [4], and
which is recognized as a very good tool by the scientific community. It is based
upon the optimization, (through some ad-hoc heuristics), of a global function
called modularity, (we shall discuss this notion later on). In few words let us
say that the global optimization is obtained iteratively by optimizing a local
cost function: where two vertices are said to be similar if they are connected
according to a weight which sufficiently differs from the mean weight of their
neighborhood. The cost function, as we will see later, is built on the depar-
ture from the usual independence coupling function. The method has been
naturally generalized in [6] where the authors proposed to choose a candidate
criterion among a list of global criteria, different from the usual modularity. In
her thesis [7], Patricia Conde-Cespedes, proposed some experiments on usual
graphs, involving our criteria plus some others, showing that results may vary
from one criterion to another, while being still consistent and interpretable.
The process she has performed is exactly the fusion of (i)-(ii) in the same
design. This, as already mentioned beforehand, is obtained by using the same
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algorithmic process (in that case the generic Louvain’s one) applied with dif-
ferent clustering criteria. It is interesting to notice that the resulting numbers
of classes (which is not fixed in advance by the method on the contrary of
the k-means approach) were coherent and comparable from one criterion to
another for most of the studied graphs.

To fulfill our (ii) objective, we will focus, in this paper, on two graph clus-
tering criteria, the first one, quite classic and largely used, is called: modularity
(M×) (a kind of measure of the deviation from statistical independence), while
the second (M+) is locally based on a deviation to another coupling function,
already latent in a paper of Fréchet [9] and that we shall call indetermina-
tion or logical indetermination (notion introduced by J.F. Marcotorchino in
his seminal papers [14] and [17]). Here we propose a theoretical approach to
understand the behavior of both those criteria. The function (M+) has been
already tested by Patricia Conde-Cespedes in her thesis [7] on peculiar graphs.
We shall replicate, here, the experimental results she got, but we want both
reanalyze more systematically the behavior of those criteria on the very simple
model of Erdös-Renyi’s random graphs and bring much more solid bases to
the theoretical interpretation of these chosen criteria (M×) and (M+).

To express similarities between them, we will conduct a deep analysis of
the two underlying coupling functions: the well-known independence (usually
quoted with a ⊗) and the more recent indetermination (quoted with a ⊕) that
we shall introduce later on.

The paper is structured as follows. In section 2 we propose a parallel dis-
covery of two coupling functions (⊗) and (⊕) using discrete optimal transport
theory. In section 3 is mentioned a list of dual properties related to Monge’s
matrices. Section 4 deeply studies indetermination introducing properties that,
to our knowledge, deserve to be put forward with regards to the too poor cov-
erage which is devoted to them in the literature. Finally, Section 5 gathers
a study about the behavior of the criteria based on those coupling functions
on the general Erdös-Renyi’s random graph model, quoting similarities and
differences through specific graphs.

2 Parallel discovery of two dual couplings

When we want to couple two marginal laws, the most common and straight-
forward way to proceed, consists in assuming independence and keep on com-
putations. It is so well integrated in our mindset, that it appears naturally in
real life applications, as soon as we want to build fast models up. In our sci-
entific work, the approach is quite the same: when we use a very classical and
usual criterion like the χ2 index, we are measuring nothing but a deviation to
independence.

Thinking about how we first introduced independence, we immediately sug-
gest empiric experiences: let us say if we play a dice twice, how should we derive
the resulting probabilities from a unique dice? Most of us will naturally apply
independence coupling: it relies on empirical experiments.
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Although being the most natural, it is not, by far, the only existing avail-
able coupling method; actually, as introduced by Sklar in [23], any copula
function will lead to a coupling function behaving on two cumulative distri-
bution functions. In this document, we link a coupling function to a given
optimal transport problem. Hence, to follow a similar approach for indetermi-
nation coupling, we train ourselves first by extracting independence coupling
from the optimization of a transport problem and we generalize the principle
by applying the same approach to the indetermination case, but with a second
and different transport problem.

We already introduced the term ”coupling function” several times but let
us define it formally, since it will be a key notion throughout the document.

Definition 1 (Coupling function)
Given µ = µ1 . . . µp and ν = ν1 . . . νq two discrete probabilities called marginal

distributions (or simply margins), we want to define a probability function
π = πu,v {1 ≤ u ≤ p, 1 ≤ v ≤ q} on the product space. A way for building it
up, consists in making happen a coupling function C such that π = C(µ, ν),
satisfying the following constraints:

– (first margin) C(µ, ν)u,· =
∑q
v=1 C(µ, ν)u,v = µu, ∀1 ≤ u ≤ p

– (second margin) C(µ, ν)·,v =
∑p
u=1 C(µ, ν)u,v = νv, ∀1 ≤ v ≤ q

– (positivity) C(µ, ν)u,v ≥ 0, ∀1 ≤ u ≤ p, ∀1 ≤ v ≤ q

Remark 1
All coupling functions (or maps) we use will satisfy: πu,v = C(µ, ν)u,v =
C(µu, νv); this illustrates that π value on (u, v) only depends upon the value
on the corresponding margins: µu and νv.

2.1 Some few words about Optimal Transport

Looking at Definition 1, we observe that a coupling function behaves as a
copula in the discrete domain: acting on margins it derives a probability dis-
tribution on the product space.

We can imagine a lot of coupling functions, especially if we do not limit
ourselves to Remark 1. The constraints that C has to respect, lead us to cope
with some difficulties. This is the reason why we shall choose a systematic
approach: minimizing a cost function and observe the link to optimal transport
definition.

The ad-hoc discrete optimal transport problem we will be dealing with,
typically looks like Problem 2, given hereafter (where MKP stands for Monge-
Kantorovitch-Problem).

Before to introduce Problem 2 in detail, let us go back to the histori-
cal problem (here quoted Problem 1). It is, in fact, the merit of the French
Mathematician Gaspard Monge to have been the first to address, in 1781, the
problem, known as Problem of ”Remblais et déblais”. This problem can be
simply turned as follows: what is the most efficient way (in terms of work



Title Suppressed Due to Excessive Length 5

or minimization effort) to move a pile of sand to fill up an excavation of the
same volume? This constraint of volume incompressibility makes the problem
difficult.

Problem 1 (Original Monge Problem)

min
T

∫
X

C(x, T (x)) dx

Using modern notations, a ”sand pile” is represented by a probability mea-
sure µ ∈ P(X ) and a ”hole to fill up” by a probability measure ν ∈ P(Y). Those
probability measures correspond to the margins of Definition 1. They are still
in a continuous space, as we follow historical introduction, but we will come
back later on to a discrete space. A priori holes have the same volumes as
sand piles do, this implies:

0 < µ(X ) = ν(Y) = 1

Let us also give a continuous transportation cost function C : X×Y → R+.
A solution to this Problem 1 (if any) is called an optimal transport map

or a Monge’s solution. Let us remark that transport maps from µ to ν may
not exist; for instance, this is the case if µ is a Dirac δa at point a whereas
ν is not. But on a more general standpoint, one should also remark that the
Monge’s formulation is quite rigid in the sense that it requires that the whole
mass of x in X should be assigned to the same target T (x) (no split is permit-
ted). According to the difficulties of the Monge’s problem, as commonly met
in hard problem solving, the solution resides in the extension or relaxation
of the research domain itself. It is exactly what happened to Monge’s prob-
lem: in 1942, Leonid Kantorovich (Nobel Prize of Economy 1975) proposed
a relaxed formulation of the Monge’s problem that allows mass splitting; a
discrete version of Problem 2 is presented below:

Problem 2 (Discrete Version of MKP)

min
π

p∑
u=1

q∑
v=1

C(π(u, v))π(u, v)

subject to:
q∑
v=1

π(u, v) = µu; ∀u ∈ {1, ..., p}

p∑
u=1

π(u, v) = νv; ∀v ∈ {1, ..., q}

π(u, v) ≥ 0; ∀(u, v) ∈ {1, ..., p} × {1, ..., q}

The choice of a cost function C depends upon the applications we want
to address. For instance, we can force the result π to concentrate as little
information as possible, this means, we shall force it to be as close as possible
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to the uniform law, referring to the product space (remember it has to verify
the given margins). Other choice: we can, as well, minimize the entropy of
π. Both those cases are usual approaches, introduced in some articles. They
expect the global assignment to be as smooth as possible.

A MKP problem is essentially given by its cost function, while margins
(µ, ν) may vary. This is the reason why we shall try to solve it with a model
taking the fixed margins as parameters. Let us define now an optimal coupling
function C associated to a given MKP problem with fixed margins given as
parameters.

Definition 2 (MKP Problem Associated with Coupling function)
For a given MKP problem P , we can define a coupling function CP by: CP (µ, ν) =
π∗(P ) provided that π∗ exists as a unique solution of P with margins µ and ν.

Following Definition 2 we propose the solutions of two discrete optimal
transport problems that we shall use in section 5: each implies a structured
and well-defined criterion, suitable for graph clustering.

2.2 The Alan Wilson’s Entropy Model: role of ”independence”

First introduced by Sir Alan Wilson in 1969 for ”Spatial Interaction Model-
ing” the ”Flows Entropy Model” of Alan Wilson, can be found in his various
publications: originated in [26], developed in [27], and refined in his book [28].
A fundamental justification of his approach corresponds to the following con-
textual situation: in a theoretical system, elements of which do not maintain
affinities, it is advisable to determine the distribution of π(u, v) (normalized
frequency flows), supposing π ≥ 0 which maximizes the entropy of the system
under certain constraints. The objective function to be minimized is based
upon the Boltzmann’s or Shannon’s Entropies so that the problem should be
expressed as follows:

Problem 3 (Unbalanced PSIS)

min
π
−

p∑
u=1

q∑
v=1

π(u, v) ln(u, v)

In a situation where we have a total absence of information, the minimiza-
tion of Problem 3 just amounts to satisfy the constraint that the cell values
distribution is effectively a probability (i.e.: the sum of positive π(u, v) is equal
to 1 (summing up a joint probability distribution). The solution of this very
simple ”Program of Spatial Interaction System” (PSIS) can be expressed as
follows.

π∗(u, v) =
1

pq
(1)
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In other words, when we ignore everything about the way the exchanges
are built up, it is necessary to use Laplace’s principle of ”insufficient reason”
and to consider that the world trade is uniformly distributed inside the system.

By using margins, let us say information about total exports (origins flows)
and total imports (destination flows), degree of disorder of the system can be
drastically reduced. Indeed, totals on rows and columns are no longer free, but
must satisfy marginal values µu and νv, fixed by the application as expressed
in Problem 4; solution of which is given by theorem 1.

Problem 4 (Balanced PSIS)

min
π
−

p∑
u=1

q∑
v=1

π(u, v) ln(π(u, v))

subject to:
q∑
v=1

π(u, v) = µu, ∀1 ≤ u ≤ p

p∑
u=1

π(u, v) = νv, ∀1 ≤ v ≤ q

0 ≤ πu,v ≤ 1, ∀1 ≤ u, v ≤ q

Theorem 1

The solution of Problem 4 is π×(u, v) = µuνv.
Hence the coupling function associated to Problem 4 is nothing but ”inde-

pendence”:

CProblem 4(µ, ν)u,v = C×(µ, ν)u,v = (µ⊗ ν)u,v = µuνv

We skip the proof of theorem 1 as it is similar to the one we will develop
for theorem 2 which is less common.

As a conclusion, from the direct maximization of entropy, we get the solu-
tion expressed in terms of probability and remark that the associated coupling
function is nothing but ”independence” (expressed with a ⊗ throughout the
document). We also note that the degree of disorder is not total: flows possess
an intensity which is proportional to the weights of the partners in the world
trade exchanges matrix in case of an economic application.

2.3 The minimal trade model: role of ”indetermination”

In the ”Minimal Trade Model” (see [25], [14] and [17]), we still impose the
objective function to respect the balanced marginal distributions and mass
preserving constraints but we change its structure for getting a smoother
breakdown of the origins-destinations nuv values than in the Alan Wilson’s
entropy model (this explains the term ”Minimal Trade”). We still suppose
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π(u, v) =
nu,v

n·,·
, for any real application. In that case the criterion is a quadratic

function measuring squared deviation of the cells values from the ”no informa-
tion” situation (the uniform joint distribution law related to Problem 3). As ex-
pected, in case of free margins, the solution remains the uniform law. Though,
adding usual pre-conditioned constraints on margins, the least squared prob-
lem is Problem 5; solution of which is given by theorem 2.

Problem 5 (Minimal Trade Model)

min
π

∑
u,v

{
π(u, v)− 1

pq

}2

subject to:
q∑
v=1

π(u, v) = µu, ∀1 ≤ u ≤ p

p∑
u=1

π(u, v) = νv, ∀1 ≤ v ≤ q

0 ≤ πu,v ≤ 1, ∀1 ≤ u, v ≤ q

Theorem 2

The solution of Problem 5 is π+(u, v) = µu

q + νv
p −

1
pq .

Hence the coupling function associated to Problem 5 is nothing but ”inde-
termination”:

CProblem 5(µ, ν)u,v = C+(µ, ν)u,v = (µ⊕ ν)u,v =
µu
q

+
νv
p
− 1

pq

A supplementary condition, which is exogenous with regard to the previous
model, can be added on the margins (which are, by the way, constant values
given a priori), this condition (see [14]) is a simple inequality which guarantees
the positivity of the frequency Matrix π∗(u, v) we are looking for:

pmin
u
µu + qmin

v
νv ≥ 1 (2)

From now on, we shall consider that Condition 2 applies whatever the
breakdown of the µu and νv is. Furthermore since the Matrix π(u, v) rep-
resents ”frequencies”, the last constraint of Problem 5 is playing a role of
supplementary endogenous constraint, ensuring: π(u, v) ≤ 1. Notice that in
the ”Adjustment to Fixed Margins for Contingency Table” case, the associ-
ated values nuv must be integers, and therefore returns the problem much
more complex to solve, relaxation of this integrity constraint leads formally to
the Problem 5.

Remark 2 (Vanishing bias)
By developing the cost function, we obtain an interesting equality we will reuse
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later on: ∑
u,v

(
π(u, v)− 1

pq

)2

=
∑
u,v

π2(u, v)− 1

pq
(3)

so that the influence of the constant shift 1
pq in the squared model is disappear-

ing.

Proof
The proof we propose directly comes from [25] and [17]. A generalization of
the canonic additive form when we relax hypothesis 2 can be found in the
thesis to come [3].

Using equality 3, the Lagrangian function associated to the previous min-
imization model can be turned into

L(π, λ, ω, θ) =

p∑
u=1

q∑
v=1

π2(u, v)

−
p∑

u=1

λu

(
µu −

q∑
v=1

π(u, v)

)

−
q∑
v=1

ωv

(
νv −

p∑
u=1

π(u, v)

)

− θ

(
p∑

u=1

q∑
v=1

π(u, v)− 1

)
Since the function to optimize is a convex one, the solution we are looking

for is a minimum so that first order conditions apply and we have the following
system of equations.

∂L(π, λ, ω, θ)

∂π(u, v)
= 2π(u, v)− λu − ωv − θ = 0 (4)

∂L(π, λ, ω, θ)

∂λu
= µu −

q∑
v=1

π(u, v) = 0 (5)

∂L(π, λ, ω, θ)

∂ωv
= νv −

p∑
u=1

π(u, v) = 0 (6)

When supposing
∑
v ωv = 0 as Lagrange multipliers are defined within a

constant near we sum 4 on v to obtain 2µu =5 2
∑
v π(u, v) = qλu+qθ so that

λu + θ =
2µu
q
,∀u (7)

From 6 we get 2νv =
∑p
u=1 2π(u, v) =4

∑p
u=1 λu + ωv + θ =7

∑p
u=1

2
qµu + ωv =

2
qµu + pωv so that

ωv =
2νv
p
− 2

pq
,∀v (8)
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Replacing into 4 λu + θ and ωv by their value given respectively by 7 and
8 we obtain:

π∗(u, v) =
µu
q

+
νv
p
− 1

pq
,∀(u, v)

Remark, since Condition 2 applies, the π∗ expressed in the previous equa-
tion are nonnegative. We will go back to this expression, in the next sections
and develop a deeper focus on it, explaining the true meaning of the term
”indetermination” and some other consequences.

Remark 3 (Sum of uniform shift)

We notice that πu,v = µu

q +νv
p −

1
pq can be expressed as πu,v− 1

pq = 1
q

(
µu − 1

p

)
+

1
p

(
νv − 1

q

)
so that indetermination basically sums up the distances to unifor-

mity for each margin.

2.4 Expected difference between coupling

Both coupling functions are extracted from an optimal transport problem con-
centrating values around the uniform. Hence differences between them should
be small in a certain sense. We provide in this section a measure of their prox-
imity. We evaluate the expected value of a norm between the two couplings
under uniform laws. More precisely we suppose the two margins µ and ν follow
the Dirichlet’s law (basically the uniformity on probability distributions). We
remind here the form of that law for our application.

Definition 3 (Dirichlet’s Law)
The density of a Dirichlet law Dp representing a uniform law among probability
law on p elements is expressed as follows:

f(µ1, ..., µp)

p∏
k=1

dµk =
1

B(p)

p∏
k=1

µ0
k

p∏
k=1

dµk =
1

B(p)

p∏
k=1

dµk

where B is the multinomial Beta function.

Having expressed a density function for µ and ν (replace p by q), we apply
them two coupling functions C+ and C×. As a distance, we define:

∆p = E(µ,ν)∼Dp⊗Dq

[
p∑

u=1

q∑
v=1

[(µ⊗ ν)u,v − (µ⊕ ν)u,v]
2

]
and compute its value through the sequence:

∆p = E(µ,ν)∼Dp⊗Dq

[
p∑

u=1

q∑
v=1

[
(µu −

1

p
)(νv −

1

q
)

]2]

= Eµ∼Dp

[
p∑

u=1

(µu −
1

p
)2

]
Eν∼Dq

[
q∑
v=1

(νv −
1

q
)2

]

= pqEµ∼Dp

[
(µ1 −

1

p
)2
]
Eν∼Dq

[
(ν1 −

1

q
)2
]



Title Suppressed Due to Excessive Length 11

Now, we notice that we need to compute the variance of Dp; as it is a
known law, we use the following property:

Proposition 1 (Variance of Dirichlet law)
VX∼Dp

[X] = p−1
p2(p+1)

Proposition 1 in particular, implies that margins will concentrate their
values around 1

p and 1
q respectively as soon as p or q increases respectively.

As we notice that couplings equal each other when any margins is uniform,
this should imply that ∆p converges to 0 if any of the two increases. This is
exactly what happens, we have the expression:

∆p =
1

pq

(
p− 1

p+ 1
· q − 1

q + 1

)
≤ 1

pq

This last inequality confirms what was expected: as margins are concen-
trated around their means, the two couplings tend to be equal rapidly if p or
q increases.

2.5 Structural Justification based upon an axiomatic result of Imre Csiszar

Although it seems arbitrary, our restriction to these two previous coupling
functions, is all but a fortuitous decision: in [8], Csiszar actually shows that,
provided we verify additional intuitive properties, we must restrict ourselves
to use either least square or maximum entropy as canonic ”distances” between
probability distributions.

Let us rewrite our transport problems in terms of the notations he uses
in [8]. We notice that problems 4 and 5 aims at reducing a distance from π to
the uniform law (that term actually vanishes in both), where π must satisfy
constraints on its margins leading to an eligible space Lµ,ν inside the simplex
Sn. In the first problem, the distance function is the entropy while in the
second it is the norm L2.

A general question is how to adapt a ”prior guess” u0 to verify a list of
constraints. Let us say u0 lives in Sn while the given constraints define a
subspace L ∈ L (L is the space of subspaces of Sn tuned by a finite list of
affine constraints, see [8] for more details). To formalize it, Csiszar defines a
projection rule Π as a function whose input is a set L ∈ L and which generates
a method ΠL to project any prior guess u0 to a vector in L:

Π : L → (Sn → Sn)

L→ ΠL : (u0 → ΠL(u0) ∈ L)

The article then introduces a collection of ”natural” properties that we
gather hereafter.

– consistency : if L′ ⊂ L and ΠL(Sn) ⊂ L′ then ΠL′ = ΠL; basically, if the
result of a projection to a bigger space is always inside a smaller, then the
projection on the two spaces are equivalent.
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– distinctness: if L and L′ are defined by a unique constraint and they are not
equal, then ΠL 6= ΠL′ (unless they both contains the initial prior guess).
Typically, in R2, minimizing || · || on two lines returns a different result as
soon as they do not both contain 0.

– continuity : Π is continuous with regards to L ∈ L; it has a continuous
relation with constraints.

– scale invariant : ΠλL(λu) = λu for any positive λ and any u ∈ Sn.
– local : for any subset J ⊂ {1, . . . , n}, (ΠL)J = (ΠL′)J as soon as LJ = L′J

where LJ means we only keep constraints dealing with coordinates in J and
(ΠL)J is the restriction of the resulting vector of ΠL to the J coordinates.
This property indicates that the results of Π on a set of coordinates, only
depends on constraints applied to those coordinates.

– transitive: for any L′ ⊂ L, ΠL′ = Π ′L ◦ΠL. We can first project on a bigger
space without affecting the result.

All those properties appear as a must-have for defining a convenient pro-
jection rule. The main result of the paper [8] is that if Π is satisfying their
combination then it is limited to two forms:

– ΠL : u→ argminv∈L
[∑n

i=1 αi(vi − ui)2
]

for a fixed vector α
– ΠL : u→ argminv∈L [

∑n
i=1 αihβ(vi|ui)] for a fixed vector α with hβ being

specific functions defined in the paper and which are equal to the entropy
in the case β = 1

We already basically know that any convenient projection is coined out of
L2 projections or entropy-like hβ functions. Adding a last property, similar to
the Full Monge or Full Log Monge conditions that we introduce in section 3
restrict to α = β = 1, hence to the two problems we treated in this document.
This last property guarantees that the ”no interaction” solution in case we
omit constraints (as the one of problem 3) respects a proportional behavior.
Namely, that if we update the total mass available (for instance in a monetary
application), the resulting effect will be proportional on each component.

To come back to our transport problem, the ”prior guess” is the uniform
law while the subspace L ⊂ Sn is defined using the margin constraints forced
by µ and ν. Then, provided we verify quoted properties, the two cost functions
we used cover an exhaustive view.

2.6 Conclusion deduced from the Optimal Transport overview

Using the generic formalism of ”optimal transport”, we found out two dual
coupling functions. The first one ”independence” is well-known while the sec-
ond introduces the so-called ”indetermination”, which follows a dual sequence
of properties induced by the use of sums rather than products; we shall give
further details on that point. In section 4 we present some highlights on the
specific properties of ”indetermination” and study it per se. Now, let us keep
on the parallel between those twins coupling functions in section 3 by intro-
ducing some properties on their corresponding contingency (or probability)
matrices; leading to the ⊕ notation.
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3 Monge properties: a justification of the ⊕/⊗ notation

We introduce two classes of matrices, the first one is attributed to Gaspard
Monge, from a basic idea appearing in his 1781 paper, (incidentally see[5],
where a reference is given to Alan Hoffman1 who first coined that point
and consequently proposed the name: Monge’s Matrices). For each of those
Monge’s matrices, we point out some remarkable equalities and, moreover,
we link them to a corresponding coupling function. Doing so, we derive new
properties on each of the two coupling functions we introduced in section 2.

3.1 Monge property – ”Indetermination”

To introduce Monge’s properties, we follow the exhaustive work of Rainer
Burkard, Bettina Klinz and Rüdiger Rudolf exposed in the 66-pages-long ar-
ticle [5] and begin with definition 4.

Definition 4 (Monge and Anti-Monge matrix)
A p× q real matrix cu,v is said to be a Monge matrix if it satisfies:

cu,v + cu′,v′ ≤ cu′,v + cu,v′ ∀ 1 ≤ u ≤ u′ ≤ p, 1 ≤ v ≤ v′ ≤ q

and an Anti-Monge matrix if:

cu,v + cu′,v′ ≥ cu′,v + cu,v′ ∀ 1 ≤ u ≤ u′ ≤ p, 1 ≤ v ≤ v′ ≤ q

Remark 4 (Full-Monge matrix)
The important case for our purpose is the equality case when a matrix is both

Monge and Anti-Monge, we will call this situation ”Full-Monge” matrix.

cu,v + cu′,v′ = cu′,v + cu,v′ ∀ 1 ≤ u ≤ u′ ≤ p, 1 ≤ v ≤ v′ ≤ q

Although it is poorly studied, the last introduced equality fits perfectly
our purpose. The inequalities on the contrary, are common and can be met in
diverse situations such as cumulative distribution functions, or copula theory.

Remark 5 (Adjacent cells)
A straightforward but important derived property is the local adjacency cells

equality: it is sufficient to satisfy the property of the remark 4 on adjacent cells,
to ensure the obtainment of a ”Full-Monge” matrix behavior for the global set
of cells i.e.:

cu,v + cu+1,v+1 = cu+1,v + cu,v+1 ∀ 1 ≤ u ≤ p, 1 ≤ v ≤ q
1 In 1961 Alan Hoffman (IBM Fellow and US Science Academy member) rediscovered

Monges’s observation see [13]. Hoffman showed that the Hitchcock–Kantorovich transporta-
tion problem can be solved by a very simple approach if its underlying cost matrix satisfies
those Monge’s properties
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3 4 2 9

2 3 1 6

1 2 0 3

3 4 2 9

9 13 5 27

1/9 4/27 2/27 1/3

2/27 1/9 1/27 2/9

1/27 2/27 0 1/9

1/9 4/27 2/27 1/3

1/3 13/27 5/27 1

Fig. 1 Example of an indetermination coupling (Statistical counting vs Probability forms)

Remark 5 is a key property to study Monge matrices since it gives a direct
O(pq) algorithm to verify if a matrix is Monge.

Besides, a question emerges: which density function verifies the full Monge
property? The following Proposition 2 gives an interesting answer: all full
Monge’s matrices derive from the density of an ”indetermination” structure.

Proposition 2 (Full-Monge matrix is equivalent to ”Indetermination”)

A ”full Monge matrix” necessarily represents an ”indetermination coupling”.

Proof
Summing on u′ and v′ the equality of remark 4 we straightforwardly obtain:∑
u′

∑
v′

cu,v + cu′,v′ − cu′,v − cu,v′ = pqcu,v+c·,·−qc·,v−pcu,· = 0→ cu,v =
cu,·
q

+
c·,v
p
−c·,·
pq

By summarizing properties of Full-Monge Matrices we get the following
Theorem 3.

Theorem 3 (Full-Monge matrices)
The πu,v cell values representing a probability matrix then the following prop-
erties are equivalent.

1. π is a Full-Monge matrix
2. πu,v = π+

u,v = µu

q + νv
p −

1
pq

3. π optimizes problem 5 for some given margins
4. All 2 × 2 sub-tables {u, v, u′, v′} extracted from π have the same sum on

their diagonal and anti-diagonal

Last property of Theorem 3 is illustrated on Figure 1 and justifies the ⊕
notation assigned to ”indetermination”. Indeed, if we take blue and red arrows
we get the same resulting value: 0. Using the contingency form:

blue arrows : 3 + 2− 1− 4 = 0

red arrows : 3 + 2− 4− 1 = 0

Equality remains true for the probability form since we just have to divide the
cell values by the total sum of the matrix (27 here).
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3 13/3 5/3 9

2 26/9 10/9 6

1 13/9 5/9 3

3 13/3 5/3 9

9 13 5 27

1/9 13/81 5/81 1/3

2/27 26/243 10/243 2/9

1/27 13/243 5/243 1/9

1/9 13/81 5/81 1/3

1/3 13/27 5/27 1

Fig. 2 Example of an ”independence coupling” (Contingency vs Probability forms)

3.2 Log-Monge property – Independence

We present hereafter a similar class of Matrices related, now, to independence:
called Log-Monge matrices. They are built on the same principle as before
through definition 5.

Definition 5 (Full-Log-Monge Matrices)
A strictly positive p× q matrix cu,v is ”Full-Log-Monge” when:

ln(cu,v) + ln(cu′,v′) = ln(cu′,v) + ln(cu,v′) ∀ 1 ≤ u ≤ u′ ≤ p, 1 ≤ v ≤ v′ ≤ q

To immediately get the correspondence, we propose a transposition from
a property to another using logarithm in Remark 7. It supposes matrices to
be strictly positive (for our probability application: whole discrete space must
be reached).

Remark 6 (From Log-Monge to Monge)
We easily verify that c satisfies condition proposed in definition 5 if and only if
ln(c) verifies the equivalent condition in definition 4 where logarithm is taken
element-wise.

Using Remark 6, we can check that Full-Log-Monge property leads to inter-
esting results and is linked to ”independence coupling”; without detailing their
obtainment, we gather those results within Theorem 4, dual of Theorem 3.

Theorem 4 (Full-Log-Monge Matrices)
Let πu,v be a strictly positive probability matrix then all the following state-
ments are equivalent.

1. πu,v is Full-Log-Monge
2. πu,v = π×u,v = µuνv
3. π optimizes problem 3
4. All 2×2 sub-tables {u, v, u′, v′} extracted from π have the same product on

their diagonal and anti-diagonal.

Figure 2 illustrates ”Full Log-Monge” matrices and their properties related
to ”independence”; it justifies the usual ⊗ notation.

In these matrices cell values are fractions; we want them to fulfil the same
marginal values as those given in Figure 1. It is important to remark that both
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those matrices (in Figure 1 and Figure 2) optimize a problem where the unique
difference is the cost functions (since the margins are strictly identical). We
immediately verify the last property of Theorem 4:

blue arrows : 3 ∗ 13/9− 1 ∗ 13/3 = 0

red arrows : 26/9 ∗ 5/3− 13/3 ∗ 10/9 = 0

3.3 Conclusion on the parallel coupling approaches

Monge transport problem

Spatial Interaction Model
Based upon Alan
Wilson Entropy

min
π

∑
uv

−πu,v ln(πu,v)

Minimal Trade Model
Squared deviation from

Laplace Insufficient Rea-
son principle solution

min
π

∑
u,v

(
π2
u,v −

1

pq

)

Margin Constraints
Maurice Fréchet

q∑
v=1

π(u, v) = µu, ∀1 ≤ u ≤ p

p∑
u=1

π(u, v) = νv , ∀1 ≤ v ≤ q

0 ≤ πu,v ≤ 1, ∀1 ≤ u, v ≤ q

Independance

π×
u,v = µuνv

Indetermination

π+
u,v =

µu

q
+
νv

p
−

1

pq

Full Log Monge Matrix

πu,vπu′,v′ = πu,v′πu,v′

Full Monge Matrix

πu,v + πu′,v′ = πu,v′ + πu,v′

Fig. 3 View of the symmetry independence / indetermination

We propose here some concluding remarks about the parallel definitions
and properties our coupling functions, ”independence” and ”indetermination”,
are fulfilling : this is illustrated by Figure 3.
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Both appear as the result of a discrete optimization problem with fixed
marginal constraints; only the choice of their cost function allows the user
to discriminate among the two possible approaches. A priori one cannot re-
ally justify the reason of the choice of one cost function versus the other one.
However in practice, there is no doubt for anybody, most of the statisticians
will choose the ”independence coupling” as a more classical and more comfort-
able, solution, but it should have been interesting, at least, on a fair intellectual
standpoint, to answer the question of the interest of the other solution .

Along the same lines, introducing two ”Full Monge Matrix” forms, we have
shown that a property suitable for one situation generates by transposition a
similar property for the other one: once again, this does not induce a priori
any justification for the preponderance of ”independence”.

Choice of ”independence” comes from its easy interpretative power as men-
tioned beforehand. Realizing an experience leading to ”independence” is natu-
ral: we can explain and understand it. On the contrary, few articles propose to
realize a coupling according to ”indetermination” (whose formula is given by
Theorem 2). In section 4, we shall essentially work on describing correctly this
lesser known coupling, hoping this will help the reader to better understand
its latent structure, before applying it within the graph clustering context.

4 Logical ”indetermination” and ”Condorcet’s voting equilibrium”

In section 4, our latent goal is to better understand the ”indetermination
coupling”, that we have until now essentially introduced on a theoretical point
of view. Although obtained through a similar process, ”independence coupling”
is straightforwardly linked to classical empirical experiences. π+ does not share
this latent simplicity and interpreting it, per se, is clearly a domain which
deserves to be investigated. We present an attempt for helping the reader to
make an accurate picture about the ”indetermination” concepts.

Interest for the coupling will be reinforced by its link with Condorcet’s
majority equilibrium and its presence in several statistical criteria as shown in
section 5 devoted to graph clustering. Defining a ”for” vs ”against” notion will
lead us to a formal equality interpreting ”indetermination” in an other space.
In fact we are faced with the famous ”Condorcet’s voting equilibrium”, which
amounts to exhibit the situation where the number of opinions ”for” balances
exactly the number of opinions ”against”.

In that case, we describe an equilibrium situation, verified on a probabilistic
or statistical standpoint, characterizing any measure coupling two margins
through ”indetermination”. The demonstration of this property requires the
use of ”Mathematical Relational Analysis” notations, which will be formally
defined hereafter. We do not want in the context of this article to develop
an exhaustive overview of this theory and its applications but pick up some
results in connection with the goals we want to achieve; most of them being
extracted from the following list of papers which gathers some of the most
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important key features about the subject: [18], [14], [19], [22], [15], [16], [1],
[2].

We also interpret the equilibrium between the ”yes” (agreements) and the
”no” (disagreements) (or ”for” and ”against” as well) as in an election as a
voting ”indetermination situation”. This implies: since the number of votes
”for” equals the number of votes ”against” we are in a situation, where it is
impossible to take a decision. The term: ”indetermination” (”indeterminacy”
or ”uncertainty” should have been used as well) is a formal translation of this
surprising situation (fortunately occurring rarely). First of all, let us introduce
properly Relational Analysis notations that we shall use later on.

Definition 6 (Relational Analysis notations)
Let (u1, . . . , un) and (v1, . . . , vn) be two n probabilistic draws of U ∼ µ and
V ∼ ν respectively. We define two associated symmetric n×n matrices X and
Y by

Xi,j = 1ui=uj
, ∀1 ≤ i, j ≤ n

Yi,j = 1vi=vj , ∀1 ≤ i, j ≤ n

To understand the notation, let us begin with some remarks about defini-
tion 6. Basically, the two binary matrices X and Y (which correspond in fact
to two binary equivalence relations based on the drawn modalities) represent
agreements and disagreements of the two variables on a same draw of size n;
they are symmetric with 1 values on their diagonal. This relational coding
has a lot of powerful properties, which will not be presented in this paper but
which can be found in the articles we mentioned beforehand.

Definition 6 immediately provides us with an algorithm to transfer con-
tingency representations to relational ones. The way back consists in noticing
that:

Xi,j = 1 if and only if i and j share the same modality of U ∼ µ.
Hence we assign a modality to each class defined by the equivalence relation

embedded in X: the only loss of information during this process resides in the
names of modalities.

Now, we are ready to present the Theorem justifying the name ”indeter-
mination”:

Theorem 5 (π+ and Condorcet equilibrium)

π being a cross probability law on a set of p × q categorical variables, we
shall say that π is an ”indetermination coupling” on its margins, if and only
if the expected number of ”agreements” equals the number of ”disagreements”
on a 2 independent drawings of π.

Proof
Let π be a probability law on p× q categorical variables; it’s defined through
its values πu,v, 1 ≤ u ≤ p and 1 ≤ v ≤ q. U and V are random variables rep-
resenting its margins. By n drawings through π, hence n samplings of (U, V ),
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U and V generates two partitions (equivalence relations) of the n individuals
based on their modalities.

We will say that an agreement occurs when both partitions simultaneously
gather or separate the individuals i and j. A disagreement occurs on the
contrary when a classification regroups i and j while the other one separates
them. Formally, if X,Y encodes the n samplings as defined in Definition 6:

– Xi,jYi,j = 1, agreement of type 11, there are pq couples of classes possible
for two individuals i and j to realize this type of agreement

– Xi,jY i,j = 1, agreement of type 00, there are p(p − 1)q(q − 1) couples of
classes of this type

– Xi,jY i,j = 1, disagreement of type 10, there are pq(q−1) couples of classes
of this type

– Xi,jYi,j = 1, disagreement of type 01, there are p(p−1)q couples of classes
of this type

As quantities vary according to their types of agreement or disagreement,
we propose the following equality which establishes that the weighted number
of agreements equals the weighted number of disagreements:

XY

pq
+

XY

p(p− 1)q(q − 1)
=

XY

pq(q − 1)
+

XY

p(p− 1)q
(9)

Equality 9 is intrinsically important and appears notably in some articles
among those we cited beforehand. It is defined on a draw of size n and linked
to a contingency indetermination. We take two draws at random independently
under π: (ui, vi) and (uj , vj) and introduce a probabilistic equality based on
our 2 draws (ui, vi) and (uj , vj):

Eπ⊗π (Xi,jYi,j)

pq
+

Eπ⊗π
(
Xi,jY i,j

)
p(p− 1)q(q − 1)

=
Eπ⊗π

(
Xi,jY i,j

)
pq(q − 1)

+
Eπ⊗π

(
Xi,jYi,j

)
p(p− 1)q

(10)

We shall notice now that equality 10 precisely occurs when π equals the
indetermination coupling of its margins with the formula introduced in Theo-
rem 2. Let us compute the result of two-sized independent draws under π.

– Eπ⊗π(Xi,jYi,j) =
∑
ui,vi

∑
uj ,vj

πui,viπuj ,vj1ui=uj&vj=vj =
∑
u,v π

2
u,v

– Eπ⊗π(Xi,jYi,j) =
∑
ui,vi

∑
uj ,vj

πui,viπuj ,vj1ui 6=uj&vi 6=vj =
∑
u,v πu,v(1 −

πu,· − π·,v + πu,v)
– Eπ⊗π(Xi,jYi,j) =

∑
ui,vi

∑
uj ,vj

πui,viπuj ,vj1ui=quj&vi 6=vj =
∑
u,v πu,v(πu,·−

πu,v)
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Inserting into equation 10, we get:∑
u,v π

2
u,v

pq
+

∑
u,v πu,v(1− πu,· − π·,v + πu,v)

p(p− 1)q(q − 1)

=

∑
u,v πu,v(πu,· − πu,v)

pq(q − 1)
+

∑
u,v πu,v(π·,v − πu,v)

p(p− 1)q

Reducing to same denominator, we get:

(p− 1)(q − 1)
∑
u,v

π2
u,v +

∑
u,v

πu,v(1− πu,· − π·,v + πu,v)

= (p− 1)
∑
u,v

πu,v(πu,· − πu,v) + (q − 1)
∑
u,v

πu,v(π·,v − πu,v)

regrouping the similar terms yields:

pq
∑
u,v

π2
u,v − p

∑
u

π2
u,· − q

∑
v

π2
·,v + 1 = 0

Making use of a classical equality similar to equation 3, we obtain:

pq
∑
u,v

(πu,v − πu,·/q − π·,v/p+ 1/pq)
2

= 0

Finally it holds:

πu,v =
πu,·
q

+
π·,v
p
− 1

pq

We have proved that π equals π+ if and only if the expected number of nor-
malized agreements equals the expected number of disagreements on a 2-sized
drawing.

In order to give a concrete example of the notion of ”balanced voting” (also
called Condorcet’s Majority Voting Equilibrium), let us illustrate the concept
of ”indetermination” in a specific and interpretable case: criminal judgements
in a judicial court.

Suppose we have two variables U, V . The first one U represents the result
of the judgement (with 2 possible modalities: condemnation (modality 1) or
release (modality 0)), while the second V represents the court case status (with
2 modalities as well: guilty (modality 1), innocent (modality 0)). Also, we have
a distribution µ on the first variable and ν on the second. Associating a ”moral
index marker” on each case is pretty easy:

– 00: corresponds to release an innocent, counted as an agreement (good
decision)

– 01: release a guilty, counted as a disagreement (bad decision)
– 10: condemnation of an innocent, counted as a disagreement (bad decision)
– 11: condemnation of a guilty case counted as an agreement (good decision)

Optimizing a type of against votes always occurs to the expense of the
other type; a tolerance level between 01 and 10 is set depending on the society
rules. Whatever the preferred ”against type” (01 or 10), any society will try
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to decrease as much as possible the total number of ”controversial decisions”.
Hence the worst court situation would be to have exactly the same number
of votes ”against” and ”for”; indeed, once that equality passed, reversing all
judgements would improve efficiency. This particular criminal judgement ”in-
determination” situation occurs when agreements equal disagreements and
corresponds to have the following equilibrium:

cases 00 + cases 11 = cases 10 + cases 01

i.e. expressed in probability:

π0,0 + π1,1 = π0,1 + π1,0

Using the previously introduced equivalence of Theorem 3 (but here in
a 2 × 2 context), we immediately recognize our ”indetermination coupling
situation”.

5 Application to Graph clustering

5.1 Introduction

Conde Cespedes, in her thesis [7], gathered a large amount of graph clustering
criteria, coming from the scientific literature; she took advantage of this task
to give them a category label, depending upon their relationship with both
”independence” or ”indetermination”. She compared them according to their
ability to perform on various graphs, and collected and stored the obtained
results. Although we are in the quite same line with Patricia Conde Cespedes,
we restrict ourselves to investigate a focused study of both the canonic ones:
”deviation to independence” and ”deviation to indetermination” that we will
reintroduce hereafter within the graph theoretical context.

First let us start with some usual definitions for a graph:

Definition 7 (Weighted graph)
A weighted graph G, is a graph which contains n vertices 1 ≤ i ≤ n, which are
connected each other through edges (i, j) linked with weights ai,j (representing a
weighted incidence matrix). We also introduce the total weight 2M =

∑
i,j ai,j.

A basic way to randomly generate a graph is to use the Erdös-Rényi dis-
tribution:

Definition 8 (Erdös-Rényi)
Fixing a number n of vertices and ε ∈ [0, 1], we link any set of two vertices
by independently drawing though a Bernoulli law with parameter ε leading to
a 0− 1 weight. The obtained graph is non directed and each weight is 0 or 1.

Remark 7
Adding a parameter p representing maximum weight, we can easily create a
weighted graph by drawing a Binomial law with parameter (ε, p) while linking
couples (instead of sets) generates oriented graphs.
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As mentioned in section 1, our work will be devoted to the research of
classes, groupings, clusters or cliques (whatever we call them) within a graph.
They are defined through an equivalence relation as specified in definition 9:

Definition 9 (Graph clustering)
Let us call x, a matrix representation of a binary equivalence relation, the

result of the clustering of a graph G. Then xi,j equals 0 or 1 and equals 1 if
and only if the two vertices i and j are in the same class for x, and 0 if not.

Clustering algorithms aim at providing classes maximizing internal simi-
larities as well as minimizing external ones. A first option is to take as input
the number K of classes we are looking for, together with an associated dis-
tance (or dissimilarity index) and come up with a list of best representatives
or ”means” for each class. The output ”means” tend to optimize the sum of
distances from all vertices to their nearest mean. K-means algorithm whose
idea goes back to the fifties (see2 [24]) typically illustrates this option. Having
fixed a distance and a number of classes, finding optimal means minimizing
the sum of the distances remains a NP-hard problem. A second option, is to
construct a local criterion c which assigns a weight ci,j to each (i, j) couple
of vertices based on their similarity; the more similar they are, the higher the
criterion is. We then build up a global criterion by summing up the local values
ci,j if and only if i and j are in the same class as proposed in problem 6.

Problem 6 (Generic clustering problem)

max
x

M(c, x) =

n∑
i=1

n∑
j=1

ci,jxi,j

subject to:

x is an equivalence relation

First let us remark that, as notably spotted in [15], [18], [22] an equivalence
relation constraint can be written as :

• xi,i = 1, ∀1 ≤ i ≤ n (reflexivity)
• xi,j = xj,i, ∀1 ≤ i, j ≤ n (symmetry)
• xi,j + xj,k − xj,k ≤ 1, ∀1 ≤ i, j, k ≤ n (transitivity)

Thanks to the linearity of these constraints, in addition to the linear expres-
sion of the criterion itself (in terms of the unknown xi,j values), the problem 6
although a priori NP-hard can be exactly solved (according to some condi-
tions) through the integer relaxation of a good existing 0-1 linear programming
code (see [18]), for problems sizes n lower than say 300. But in the context
of networks and graphs clustering, the size n of the problem (here the num-
ber of vertices or nodes) can be really huge (millions for social networks) and
the direct solving by linear programming, even specially tuned, is no longer
possible; therefore, the use of robust heuristics becomes mandatory.

2 factually this is the method of S. Lloyd(1957) rewritten by E.W. Forgy (1965) which
corresponds to the oldest version of the K-means really used
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”Louvain” Algorithm (see [10] or [21]) is adequately considered as one of
these good and available heuristics, allowing to cope with this clustering task.
This algorithm relies on two steps for globally maximizing the criterion M(c, x)
based on the local costs ci,j values.

0. Initially, each node in the network is assigned to its own community: there
are as many as vertices.

1. In the first step, for each node i, the change from removing it from its com-
munity and adding it to all its neighbors’ is computed. If M(c, x) increases
for some, i is put in the locally optimal connected community. This process
is applied repeatedly and sequentially to all nodes until no improvement
of M(c, x) occurs. Once this local maximum of modularity is reached, the
first phase has ended.

2. In the second phase, the algorithm groups all the nodes in the same com-
munity and builds a new network where nodes are the communities from
the previous phase. Links between nodes of the same community are now
represented by self-loops on the new community node and links from mul-
tiple nodes in the same community or nodes in different communities are
represented by weighted edges between communities.

3. Once the new network is created, the second phase is completed and the
first phase can be re-applied to the new network.

4. It eventually ends when the improvement on M(c, x) brought by the first
step is less than a chosen threshold.

As mentioned beforehand, Louvain Algorithm is a good heuristic; it does
not provide us with an exact optimal result systematically but just a quite
good approximate one. Just for a rough comparison, K-means algorithm as
well is getting an approximate solution but with a supplementary drawback:
it imposes to fix a priori the number K of classes we want (which is completely
out of context when dealing with social networks or huge graphs clustering; to
guess the reasonable K clusters value is then impossible or extremely greedy
in computer time). In addition to that, K-means as well as Louvain algorithm
depends on vertices naming as they lexicographically and sequentially browses
them.

Whatever the costs ci,j are, an optimal solution of the global criterion
M(c, x) exists, even if we are unable to find the optimum out, the generic
Louvain algorithm gets approximate solutions which are quite satisfactory and
often sufficient for practical purposes and for most of them, close to optimality.
However, this aspect concerned with the optimality and the unicity of those
solutions xi,j has been studied in a lot of articles and books and it is not our
intention to discuss this point deeper in this paper. We will concentrate on
some other characteristics: the choice between two canonic costs at the light
of the previous sections.



24 P. Bertrand et al.

5.1.1 Original Modularity – ”Independence”

The original, famous, and well known Newman-Girvan’s presentation of a
global criterion for graphs clustering, see [10] or [21], has been introduced in
the Louvain algorithm together with a global cost called ”Modularity” defined
by:

Definition 10 (Modularity)
Given a partition xi,j and a graph G with weighted function a on its edges, the
global modularity returns to:

M×(G, x) =
1

2M

∑
i,j

[
ai,j −

ai,·a·,j
2M

]
xi,j (11)

Let us first remark that the original modularity M× is nothing but our
generic global cost function defined though Problem 6 with:

ci,j = m×(G)i,j =
ai,j
2M
− ai,·a·,j

(2M)2

and that the local gain m×(G)i,j to put two vertices in the same class is
the local deviation to independence. Indeed, using definition 7, we know that
πi,j =

ai,j
2M can be seen as a probability measure on {1 . . . n}2 with margins

µi =
ai,·
2M so that m× rewrites:

m×(G)i,j = 2M (πi,j − µiµj)

and does express itself as a canonic deviation to independence criterion.
A second remark is that as m×(G)i,j expression does not contain absolute

value or square elevation then non connected vertices will lead to negative
weights preventing them from being allocated to the same class. If they are
connected the importance of m×(G)i,j evolves positively as i and j have less
connections (ai,· and a·,j small); here again this implies an appropriate be-
havior. More precisely, since independence ensures a coupling as uniform as
possible with fixed margins (this is a solution of problem 3), m× appears as
a fair construction. The criterion basically measures a distance between the
observed linkage weight and an expected flat weight given by the average
neighborhood.

5.1.2 Extended Modularity – ”Indetermination”

Problem 6 basically represents an extension of the already introduced ”Mod-
ularity criterion” towards a generic criterion based on a local input one.

We suggest an expression m+(G)i,j which represents a deviation to inde-
termination. It will be used as a local cost function in 6 leading to a slightly
different global formula M+(G, x) to optimize locally:

m+(G)i,j = ai,j −
ai,·
n
− a·,j

n
+

2M

n2
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Symmetrically as m×, it ends up being a canonic deviation to indetermi-
nation criterion. Indeed, with πi,j =

ai,j
2M , m+ rewrites:

m+(G)i,j = 2M ∗
(
πi,j −

µi
n
− µj

n
+

1

n2

)
The global criterion being:

M+(G, x) =
∑
i,j

[
ai,j −

ai,·
n
− a·,j

n
+

2M

n2

]
xi,j (12)

We have seen in section 2.4, that the square difference between both cou-
plings tends to be small. Moreover they share a lot of properties as shown in
section 3 and section 4. In the same way, Patricia Conde noticed that a lot
of statistical criteria (at least the most frequently used) measuring variables
correlation are based either on a ”distance to independence”, or are straight-
forwardly related to a ”distance to indetermination” (Patricia Conde gave an
interesting list in [7]). According to these remarks, our canonic deviation to
indetermination criterion M+ deserves to have the same types of use as those
dedicated to the Newman Girvan’s M×.

5.2 Erdös-Renyi Experimental Tests

As already mentioned, solving problem 6 is NP-hard so that we cannot expect
precise results, neither about the number of classes for a given criterion, nor
about the prediction of the running time of Louvain algorithm on a given
graph. Nevertheless, as it is based on optimizing a local criterion, we can
compare directly their local values to extrapolate a common or a distinct
global run.

We propose a comparative try based on Erdös-Renyi graphs to spot dif-
ferences or similarity between m×(G)i,j and m+(G)i,j values. The aim is to
observe the distribution of both criteria on a typical graph. First, to simplify
observations and as only the reference cost varies between m+ and m×, we only
keep it by subtracting ai,j ; it is formally defined in definition 11. Then, we gen-
erate graphs randomly, compute each criterion on random pairs of vertices and
store the reference cost. The experiment is formally specified in algorithm 1
while the results are gathered within figure 4.

Definition 11 (Bias or reference cost)
The two bias derived from m× and m+ are respectively:

– b×i,j =
ai,·a·,j
2M

– b+i,j =
ai,·
n +

a·,j
n −

2M
n2

On figure 4 we observe that both distributions are similar for any values of
ε. Indeed, the curves are identical on their core values (those with a number of
realizations upon 200). It is not really surprising because they both come from
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Algorithm 1 Provides the distribution of two reference costs
Input n
Input ε

L+ ← []
L× ← []
for R = 1 . . . 10000 do
G← Erdös-Rényi(n, ε)
(i, j)← (RandomUnif(n), RandomUnif(n))
L+ ← L+ + (b+i,j(G))

L× ← L+ + (b×i,j(G))
end for
return (L+, L×)

Fig. 4 Empirical distribution of the two reference costs b+i,j and b×i,j for ε in [0.3, 0.6, 0.9];
X-axis gives the values of the bias, Y-axis gives the corresponding number of realizations

an optimization of a transport problem aiming at flattening the distribution
(section 2) and they tend to be equal (section 2.4). We also notice on figure 4
that their common mean is equal to the value of ε, as it can be easily derived
from the formulas.

A difference nevertheless remains: the bias b+ has smaller extreme left-
side values while the bias b× has higher extreme right-side values, which is
particularly visible for ε = 0.3 and ε = 0.6 while not represented for ε = 0.9.

Let us now compute theoretically both distributions under Erdös-Renyi
graphs to confirm their symmetry. Value of m×(G)i,j as well as m×(G)i,j only
depends on the subsequent values of ai,j , ai,· and a·,j . Plus it’s easy to get the
corresponding probability of each event as expressed in proposition 3.

Proposition 3 (Probability values)
Let b be a binary value, b ≤ ni ≤ n and b ≤ nj ≤ n; let us compute the

following probability:

P(ai,j = b, ai,· = ni, a·,i = nj)

= εb(1− ε)1−b
(
n− 1

ni − b

)
εni−b(1− ε)n−1−ni+b

(
n− 1

nj − b

)
εnj−b(1− ε)n−1−nj+b
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The corresponding value m+
i,j and m×i,j associated to a group (b, ni, nj) of the

parameters being evident, we propose figure 5 which represents the difference
between theoretical distributions of both criteria with ε = 0.3.

Fig. 5 Theoretical distribution of the difference m×(G)i,j −m+(G)i,j (same as b+i,j − b
×
i,j)

on generated graphs

b× and b+ have distinct forms but their proximity on highly probable
values, given on Figure 5, illustrates section 2.4: if we couple two variables
with n margins, expected difference is less than 1

n2 .

Extreme values, on the contrary may differ drastically. Though it seems the
opposite to Figure 4 as m+ comes with higher values than m×, it’s consistent
because of the minus sign in the formula linking m with b.

Having noticed that b+ and b× differ on their extreme values, we compute
them on a general Erdös-Renyi graph (respecting the common value of 2M =
n2ε), and obtain the bounds:

−ε ≤ b+ ≤ n

n
+
n

n
− ε = 2− ε

0 ≤ b× ≤ n× n
n2ε

=
1

ε

As already expected with figure 5 the difference between extreme values is
arbitrarily high.

5.3 Summary of an application to various graphs

The similar distributions found in section 5.2 must be confirmed through real
life applications. We gather in table 1 the number of classes found by Patricia
Conde-Cespedes, who applied both criteria on the same empirical graphs. She
got similar results, as those we expected beforehand. We present here the list
of graphs she used:
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– Social network named ”Zachary karate club” is frequently used in social
network analysis and composed of 34 members from a Karate club of an
American university (see [30]).

– Social network named ”American College Football” gathers American foot-
ball matches during year 2000. Each vertice is a team and connections
represent a match (see [10]).

– ”Jazz” social network represents collaborations between jazz musicians
during years 1912 to 1940. Each vertice is a group and they are connected
if they share a musician. Data were extracted from The Red Hot Jazz
Archive (see [11]).

– ”Internet” is a sub-graph of the Internet (see [12]).
– ”Amazon” found on Amazon.com contains vertices representing products

which are connected if they are frequently bought together (see [29]).
– ”YouTube” where each vertice is a user. On YouTube, users can create

groups, two users are connected in the graph if they joined the same group
(see [20]).

Table 1 Number of classes found by each criteria on various graphs

Karate Football Jazz Internet Amazon YouTube
N (nb vertices) 34 115 198 69 949 334 863 1 134 890
M (sum of weights) 78 613 2 742 351 280 925 872 2 987 624

Number of classes for criteria M× 4 10 4 46 250 5 567
Number of classes for criteria M+ 4 10 6 39 246 13 985

Table 1 can be read as follows: for example, the ”Internet” graph contains
69, 949 vertices (nodes) with 351, 280 edges (links); if we apply Louvain algo-
rithm on, with the global criteria M× we usually find 46 communities, while
M+ leads to 39.

As anticipated in section 2.4 criteria are (in average) very close; conse-
quently their resulting effect on various graphs is similar. Section 5.2 of the
present paper provides the reader with an explanation of that assertion Patri-
cia experimented in [7].

5.4 A general remark to differentiate the two criteria

While section 5.2 concludes on a global symmetric behavior of both criteria,
reinforced by Patricia Condé’s experimental results, summarized in section 5.3,
it doesn’t prevent them from being quite different on specific graphs.

Scanning up the local bias introduced in definition 11 we notice that the
product form b×, will be small except if the mass ai,· = a·,i of vertice i AND
the mass of vertice j are high; the additive form of b+ on the contrary will be
small unless one of the two mass ai,· OR a·,j is big. Remembering m has to
be high to lead to a merging:
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– m× is penalized (by b×) if ai,· AND a·,j are big.
– m+ is penalized (by b+) as soon as ai,· OR a·,j is big.

To summary: to maximize additive form we cannot allow any of the two neigh-
borhoods to wear large mass while the product form may accept one. Lever-
aging that remark we can build up specific graphs to differentiate the two
criteria. Eventually, it enables us to exhibit very specific graphs kept as they
are by a criterion while merged in one class by the other, we even propose un-
connected vertices regrouped in the same class because of the overall weight
distribution. The interested reader can refer to [3] for further details.

5.5 A common threshold on a particular form of graph

In this section 5.5, we present a curiosity: a form of graph on which criteria
share a same merging threshold. Out of this curiosity, it presents several in-
terests: first we are able to fix a threshold and secondly it is a training for a
more general analyze.

We propose to work on a loop of n classes like the one in figure 6 (for which
n = 10) and look for a threshold on ani,i (unique parameter) for the graph to
be left intact by M×. As any vertice has the same environment, we may select
any bi,j : they are all equal. Counting edges, requiring b×i,j = b× ≥ 1 so that no
merge can occur:

2M = n× ai,·
ai,· = 2 + ani,i

a2i,·
2M
≥ 2M

and, solving a square equation (u = ani,i, u
2 + (4 − n)u + 2(2 − n) ≥ 0), we

obtain ani,i ≥ n − 2. For instance, in our example, n = 10 so that 8 is the
threshold explaining figure 6 is a convenient final graph for M×.

If we look at the behavior of M+ on that very graph, we observe that our
merging threshold equation is:

b+i,j ≥ 1

2 ∗ ai,·
n
− 2M

n2
≥ 1

2 ∗
ani,i + 2

n
−
n(ani,i + 2)

n2
≥ 1

ani,i ≥ n− 2

Hence, while the graph form was coined for M× to have a threshold, we
notice that not onlyM+ also has one threshold but both are equal. The parallel
properties of the two coupling functions appear here with a graph application.
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Fig. 6 Example of a convenient final graph clustering for M×

Remark 8 (Curiosity?) As mentioned in remark 2.4, the two coupling func-
tions are equal when one of the margin is uniform. Given the form of graph
in figure 6, all vertices are symmetric one to another so that any distribution
based on the neighborhood is uniform: it explains the result.

6 Conclusions

First, we followed the historical line and introduced two basic notions extracted
from Discrete Optimal Transport Theory: independence and indetermination.
As recalled, the first one is the most intuitive and frequently used in mathemat-
ical articles as well as experimented in real life. The second notion appeared
more surprising, poorly studied in the statistical literature but more commonly
used by people working on Mathematical Relational Analysis Voting Theory
and Analysis of Variance. Together, they cover the only two canonic projection
costs as quoted in section 2.5.

To illustrate the usefulness of the parallel construction, we turned to appli-
cations and completed the track introduced by Patricia Conde in her thesis [7].
She gathered a list of graphs clustering criteria and classified them according
to their deviation to one of the two previously mentioned coupling functions.



Title Suppressed Due to Excessive Length 31

Section 5 reports a further analyze of the two canonical criteria. It gathers
results about the general similarity of their application on various graphs as
well as their extreme values to set one another apart. Subsection 2.4, notably,
shows that they slightly differ and it explains the experimental results.

In each section, from optimal transport to graph theory, we insisted on
the parallel between both notions together with their differences. As quoted
beforehand, they appear as the two unique canonic structural solutions. A par-
ticularly curious situation is their duality when we pass from contingency to
relational notations. It was first spotted in [17] and needs to be further under-
stood. Generally, the differences between them needs to be scanned up, either
to coin a macro criteria, or to chose wisely between one or another depending
on the structure of the graph. In any case, the traditional use of indepen-
dence at the expense of indetermination needs to be be further motivated and
explained.
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