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COMMUTATION OF SHINTANI DESCENT AND JORDAN DECOMPOSITION

Let G F be a finite group of Lie type, where G is a reductive group defined over Fq and F is a Frobenius root. Lusztig's Jordan decomposition parametrises the irreducible characters in a rational series E(G F , (s)

Deshpande's approach to Shintani descent

We follow [START_REF] Deshpande | Shintani descent for algebraic groups and almost characters of unipotent groups[END_REF]. Let H be an algebraic group over an algebraically closed field k; we identify H to its points H(k) over k. Let γ 1 , γ 2 be two commuting bijective isogenies on H. We define the following subset of (H γ 1 ) × (H γ 2 ):

R γ1,γ2 = {(xγ 1 , yγ 2 ) | x, y ∈ H, [xγ 1 , yγ 2 ] = 1}
where [u, v] is the commutator uvu

-1 v -1 . A matrix a b c d ∈ GL 2 (Z) defines a map R γ1,γ2   a b c d   ------→ R γ a 1 γ c 2 ,γ b 1 γ d 2 : (xγ 1 , yγ 2 ) → ((xγ 1 ) a (yγ 2 ) c , (xγ 1 ) b (yγ 2 ) d )
There is an action of H on R γ1,γ2 by simultaneous conjugation: (xγ 1 , yγ 2 ) ad g

--→

(gxγ 1 g -1 , gyγ 2 g -1 ), which commutes with the maps a b c d , and we denote by R γ1,γ2 / ∼ H the space of orbits under this action. Assume now that H is connected and γ 1 is a Frobenius root (an isogeny such that some finite power is a Frobenius morphism). Then, by the Lang-Steinberg theorem any xγ 1 ∈ Hγ 1 is H-conjugate to γ 1 , and we can take as representatives of the H-orbits pairs of the form (γ 1 , yγ 2 ); on these pairs there is only an action of the fixator of γ 1 , that is H γ1 . Further, the condition [γ 1 , yγ 2 ] = 1 is equivalent to y ∈ H γ1 (since γ 1 and γ 2 commute). We can thus interpret R γ1,γ2 as the H γ1conjugacy classes on the coset H γ1 γ 2 , which we denote by H γ1 γ 2 / ∼ H γ1 . If a, c and γ 2 are such that γ a 1 γ c 2 is still a Frobenius root, we can thus interpret the map given by a b c d as a map

H γ1 γ 2 / ∼ H γ1 → H γ a 1 γ c 2 γ b 1 γ d 2 / ∼ H γ a 1 γ c
2 , a "generalised Shintani descent". We are interested here in the case of R F,Id where F is a Frobenius root. The matrix 1 0 1 1 defines a map, that we call the Shintani twisting and will just denote by Sh : R F,Id → R F,Id : (xF, y) → (xF y, y). With the identification above of R F,Id / ∼ H with the pairs (F, y) which identifies it with H F / ∼ H F , if we write y = λ. F λ -1 using the Lang-Steinberg theorem, Sh maps (F, y) to (F y, y) = (F λ. F λ -1 , λ. F λ -1 ) which is conjugate by F λ -1 to (F, F λ -1 λ), thus we recover the usual definition of the Shintani twisting Sh as being induced by the correspondence

λ F λ -1 → F λ -1 λ.
The advantage of Deshpande's approach is that the map Sh : R F,Id → R F,Id still makes sense when H is disconnected; this time the interpretation of R F,Id / ∼ H is different: the H-orbits on HF are parametrised by H 1 (F, H/H 0 ). If σ ∈ H is a representative of such an H-orbit, the H-orbits of pairs (σF, y) are in bijection with H σF / ∼ H σF , so we see that we must consider all rational forms of H corresponding to the various representatives σF ∈ H 1 (F, H/H 0 ) together, and Sh will act on the disjoint union of the conjugacy classes of each of these forms. Let σF be such a representative, let H 1 be a σF -stable coset of H 0 in H, let σ ∈ H σF 1 and let us compute the image by Sh of a commuting pair (σF, σ y) where y ∈ H 0 (thus y ∈ (H 0 ) σF ). Let us write using the Lang-Steinberg theorem y = λ. σ σF λ -1 . Then Sh maps (σF, σ y) to (σF σ y, σ y) = (σ σF λ. σ σF λ -1 , σ λ. σ σF λ -1 ) (using [σF, σ ] = 1) which is conjugate by σ σF λ -1 to (σ σF, σ . σF λ -1 λ). Thus Proposition 1. Sh is induced on σ (H 0 ) σF , where σ and σ are two representatives of H/H 0 such that σF and σ commute, by the correspondence between the element σ λ. σ σF λ -1 of σ (H 0 ) σF and the element σ . σF λ -1 λ of σ (H 0 ) σ σF .

Assume now that H/H 0 is commutative and that we can lift all elements of H/H 0 to commuting representatives, such that F -stable elements lift to F -stable representatives; then we can lift all pairs (σF, σ ) as in Proposition 1 which commute in H/H 0 to commuting pairs, thus we can see Sh as a linear map on the space C(H, F ) := ⊕ σ∈H 1 (F,H/H 0 ) C(H σF ), the direct sum of the spaces of class functions on the various rational forms H σF . Definition 2. Let H be a algebraic group with a Frobenius root F , then we say that H satisfies condition (*) if we can lift elements of H/H 0 to commuting elements of H, such that F -stable elements of H/H 0 lift to F -stable elements.

Beware that Sh on class functions is defined by Sh(f )(x) = f (Sh(x)) thus it maps class functions on σ (H 0 ) σ σF to class functions on σ (H 0 ) σF .

Note finally that when H 0 is trivial and F acts trivially on H/H 0 , the computations of this section recover the well-known action of GL 2 (Z) on the Drinfeld double of the finite group H/H 0 = H. See, for example [2, 8.4.2].

Conjectures

Definition 3. We extend the definition of Deligne-Lusztig characters to a disconnected reductive group H with a Frobenius root F by R H T (s) := Ind H F H 0F R H 0 T (s) where T runs over F -stable maximal tori of H and s over T * F * . We call unipotent characters the irreducible components of the R H T (1) and we denote by E(H F , 1) the set of unipotent characters of H F .

From now on, G will be a connected reductive group with a Frobenius root F and s an F * -stable semi-simple element of G * , the group dual to G. We denote by E(G F , (s) G * F * ) the G * F * -Lusztig series associated with s; this series consists of the irreducible components of the R G T * (s) where T * runs over F -stable maximal tori of C G * (s). We denote by E(G F , (s)) the geometric Lusztig series associated with s, that is the union of the series E(G F , (s ) G * F * ) where (s ) G * F * runs over the G * F * -classes in the geometric class of s.

Let ε G := (-1) F -rank G . Lusztig's Jordan decomposition of characters in a reductive group with a not necessarily connected centre is given by the following theorem (see for example [START_REF] Digne | Representations of finite groups of Lie type[END_REF]Theorem 11.5.1]).

Theorem 4. Let G be a connected reductive group with Frobenius root F and (G * , F * ) be dual to G; for any semi-simple element s ∈ G * F * , there is a bijection from E(G F , (s) G * F * ) to E(C G * (s) F * , 1). This bijection may be chosen such that, extended by linearity to virtual characters, it sends

ε G R G T * (s) to ε C G * (s) 0 R C G * (s) T *
(1) for any F * -stable maximal torus T * of C G * (s).

Conjecture 5. Let G be a connected reductive group with Frobenius root F . Then Sh, viewed as a linear operator on C(G F ), preserves the subspace spanned by E(G F , (s)) for each geometric class (s). Proposition 6. Assume that F is the Frobenius morphism corresponding to an F q -structure on G. Then Conjecture 5 holds when the characteristic is almost good for G in the sense of [7, 1.12] and ZG is connected or when G is of type A and either q is large or F acts trivially on ZG/(ZG) 0 .

Proof. The case of type A when F acts trivially on ZG/(ZG) 0 results from [START_REF] Bonnafé | Sur les caractères des groupes réductifs finis à centre non connexe: applications aux groupes spéciaux linéaires et unitaires[END_REF]Théorème 5.5.4]. Let us prove the other cases. In [9, Section 3.2] it is shown that the characteristic functions of character sheaves are eigenvectors of Sh; then in [START_REF] Shoji | Character sheaves and almost characters of reductive groups[END_REF]Theorem 5.7] and [10, Theorem 3.2 and Theorem 4.1] (resp. [START_REF] Bonnafé | Sur les caractères des groupes réductifs finis à centre non connexe: applications aux groupes spéciaux linéaires et unitaires[END_REF]Corollaire 24.11]) it is shown that when ZG is connected and the characteristic is almost good (resp. in type A with q large) the characteristic functions of character sheaves coincide up to scalars with "almost characters". Since for each s, the space CE(G F , (s)) is spanned by a subset of almost characters, this gives the result.

It is probable that the above proof applies to more reductive groups (see [START_REF] Shoji | Lusztig's conjecture for finite special linear groups[END_REF], [START_REF] Waldspurger | Une conjecture de Lusztig pour les groupes classiques[END_REF], and also [START_REF] Bonnafé | Sur les caractères des groupes réductifs finis à centre non connexe: applications aux groupes spéciaux linéaires et unitaires[END_REF]Introduction]), but it is difficult to find appropriate statements in the literature.

Assuming conjecture 5, a choice of a Jordan decomposition as specified by Theorem 4 will map the operator Sh on CE(G F , (s)) to a linear operator on the space

C(C G * (s) F * , F * , 1) := ⊕ σ∈H 1 (F * ,C G * (s)/C 0 G * (s)) CE(C G * (s) σF , 1). Conjecture 7. Let s ∈ G * F * . Then C G * (s) satisfies (*) and Sh on C(C G * (s), F * ) preserves the subspace C(C G * (s) F * , F * , 1)
, and the choice of a Jordan decomposition in Theorem 4 may be refined so that it maps Sh on CE(G F , (s)) to Sh on C(C G * (s) F * , F * , 1).

3. The case of a group of type A n-1 when n is prime.

Proposition 8. Conjectures 5 and 7 hold for any reductive group of type A n-1 , with n prime, if they hold for SL n .

Proof. We start with two lemmas.

Lemma 9. Let G be a connected reductive group with a Frobenius root F . Let G be a closed connected F -stable subgroup of G with same derived group. Let F * be a Frobenius root dual to F and let

s ∈ G * F * be such that C G * (s) F * = C 0 G * (s) F * . Then the characters in E(G F , (s) G * F * ) are the restrictions from GF to G F of the characters in E( GF , (s) G * F * ) where s ∈ G * F * lifts s ∈ G * F * .
Proof. By definition the characters in E( GF , (s) G * F * ) are those which occur in some R G T (s), where T is a maximal torus such that T * s, and by for instance [5, 11.3.10] we have Res

GF G F R G T (s) = R G T∩G (s).
It is thus sufficient for proving the lemma to prove that for any χ ∈ E( GF , (s) G * F * ) its restriction χ to G F is irreducible.

By, for instance [5, 11.3.9] we have χ, χ

G F = |{θ ∈ Irr( GF /G F ) | χθ = χ}|.
It is thus sufficient to prove that for any non-trivial such θ we have χθ = χ. But a non-trivial θ corresponds to a non-trivial z ∈ Z( G * ) F * with trivial image in G * , and since χθ ∈ E( GF , (sz) G * F * ) it is sufficient to prove that s and sz are not G * F *conjugate. But, indeed if g (sz) = s then ḡs = s where ḡ is the image of

g in G * , thus ḡ ∈ C G * (s) F * = C 0 G * (s) F * , whence g ∈ C G * (s) (a contradiction) since the preimage of C 0 G * (s) is C 0 G * (s) (by for example [5, 3.5.1 (i)]). Lemma 10. Consider a quotient 1 → Z → G 1 π -→ G → 1,
where Z is a connected subgroup of G 1 . Assume that G and G 1 have Frobenius roots both denoted by F and that π commutes with F ; then π is surjective from the conjugacy classes of G F 1 to that of G F , and commutes with Sh.

Proof. The group Z is F -stable since π commutes with F . Let x ∈ G F . Since Z is connected, by the Lang-Steinberg theorem π -1 (x) F is non-empty whence the surjectivity of π on elements, hence on conjugacy classes. If y ∈ π -1 (x) F the image by π of Sh(y) is Sh(x), whence the commutation of Sh with π.

Let now G be an arbitrary reductive group of type A n-1 . Since n is prime, the only semi-simple connected reductive groups of type A n-1 are SL n and PGL n ; thus any connected reductive group G of type A n-1 is the almost direct product of the derived G of G, equal to SL n or PGL n , by a torus S.

In the case G = PGL n the almost direct product is direct since PGL n has a trivial centre. If T is an F -stable maximal torus of G, then it has a decomposition

T 1 × S where T 1 = T ∩ G is F -stable since G is F -stable.
It is possible to find an F -stable complement S of T 1 (see for example the proof of [6, 2.2]) and then G has an F -stable product decomposition G × S . Since Sh is trivial on a torus the conjectures are reduced to the case of G = PGL n .

The same argument reduces the case of a direct product G = G × S where G = SL n to the case of SL n . The other possibility when G = SL n is an almost direct product SL n ×S amalgamated by Z SL n ; this is isomorphic to a product of the form GL n ×S ; in such a group all centralisers are connected, as well as in the dual group (isomorphic to G) thus both conjectures are trivial since Sh is the identity (by for example [4, IV, 1.1]).

Finally, in PGL n the action of Sh is trivial by Lemma 10 applied to the quotient GL n π -→ PGL n , and in the dual SL n semisimple elements have connected centralisers which are Levi subgroups of SL n ; considering the embedding of these centralisers in the corresponding Levi of GL n , on which Sh is trivial since it is isomorphic to a product of GL ni we get that Sh is trivial on the unipotent characters of these centralisers by Lemma 9.

We have thus shown that we only need to consider SL n . Up to isomorphism there are two possible F q -structures on SL n (only one if n = 2) thus F will be one of the Frobenius endomorphisms F + or F -where SL F+ n = SL n (F q ) and SL F- n = SU n (F q ). When we want to consider both cases simultaneously but keep track whether F = F + or F = F -, we will denote the Frobenius by F ε with ε ∈ {-1, 1}, where we always take ε = 1 if n = 2. We will use the dual group PGL n , the inclusion SL n ⊂ GL n and the quotient GL n → PGL n . Since (GL n , F ) is its own dual, we will write F (instead of F * ) for the Frobenius map on the dual of GL n and on PGL n . We choose for F + the standard Frobenius which raises all matrix entries to the q-th power, and choose for F -the map given by x → F + ( t (x -1 )). This choice is such that on the torus of diagonal matrices T * of G * , F -acts by raising all the eigenvalues to the power -q, and acts trivially on W G * (T * ).The torus T * is split for F + and of type w 0 (the longest element of the Weyl group) with respect to a quasi-split torus for F -.

Proposition 11. For the group SL n , n prime, with Frobenius F = F ε conjecture 5 holds. Further, conjecture 7 holds if it holds when q ≡ ε (mod n) for the series E(SL F n , (s)) with s ∈ PGL F n geometrically conjugate to diag(1, ζ, ζ 2 , . . . , ζ n-1 ) where ζ ∈ F q is a non-trivial n-th root of 1.

Proof. Lemma 9 applied with G = SL n and G = GL n shows that conjectures 5 and 7 hold when C PGLn (s) F = C 0 PGLn (s) F . Indeed, in this case, since Sh is trivial in GL n and commutes with the restriction to SL n by Lemma 10, Lemma 9 shows that Sh is trivial on E(SL F n , (s)); on the other hand, since C 0 PGLn (s) is the quotient with central kernel of a product of GL ni , the unipotent characters of C PGLn (s) F = C 0 PGLn (s) F can be lifted to this product (see [START_REF] Digne | Representations of finite groups of Lie type[END_REF]Proposition 11.3.8]). Since Sh is trivial in GL ni and commutes which such a quotient with connected central kernel by Lemma 10, it is trivial on the unipotent characters of C PGLn (s) F .

We have thus reduced the study of conjectures 5 and 7 to the case of semi-simple elements s ∈ PGL n with C PGLn (s) F = C 0 PGLn (s) F . By [5, Lemma 11.2.1(iii)], since n is prime a semi-simple element s ∈ PGL n has a non-connected centraliser if and only if |C PGLn (s)/C 0 PGLn (s)| = n. Since this group of components is a subquotient of the Weyl group S n , it has order n if and only if it is a subgroup of S n generated by an n-cycle. An easy computation shows that such an s is as in the statement of Proposition 11. Now the centraliser of s is the semidirect product of T * with the cyclic group generated by the n-cycle c = (1, . . . , n). Assume that the geometric class of s has an F -stable representative s in a torus of type w ∈ S n with respect to T * (or equivalently that wF s = s). Then C PGLn (s ) F C PGLn (s) wF hence is equal to C 0 PGLn (s ) F unless w commutes with c, that is w = c i for some i. Since c centralises s we get that s is F -stable, which means for F = F ε that n divides q -ε, in particular Conjecture 7 holds when q ≡ ε (mod n); we recall that we always take ε = 1 when n = 2.

Finally, conjecture 5 holds in any case, since Sh preserves all geometric series except possibly that of s and preserves orthogonality of characters, thus preserves also the series E(SL F n , (s)). Henceforth we assume that n is prime and divides q -ε, and study conjecture 7 for the particular s of Proposition 11.

Assumption 12. We choose ζ, a primitive n-th root of unity in F q . We choose an isomorphism F q × (Q/Z) p which maps ζ to 1/n and a group embedding

Q/Z → C × which maps 1/n to ζ C := exp(2iπ/n).
We denote by T the diagonal torus of SL n and by T the diagonal torus of GL n ; we choose the dual torus T * to be the diagonal torus of PGL n . We let s ∈ T * be the image of diag(1, ζ, ζ 2 , . . . , ζ n-1 ) ∈ T.

Sh on C PGLn (s).

We first study Sh on C(C PGLn (s) F , F, 1). We have C PGLn (s) = T * c where c is the permutation matrix representing the cycle (1, 2, . . . , n) ∈ S n , which acts on T * by sending diag(t 1 , . . . , t n ) to diag(t n , t 1 , . . . , t n-1 ). On T * the Frobenius F ε acts by t → t εq , and acts trivially on W G * (T * ). Note that C G * (s) satisfies condition (*) since c is F -stable. Since C PGLn (s)/C 0 PGLn (s) = c , and F acts trivially on c, we have H 1 (F, C PGLn (s)/C 0 PGLn (s)) = c and the geometric class of s splits into n rational classes parametrised by the powers of c. A representative of the class parametrised by c j is x s where x is such that x -1 F x = c j . This representative lies in a maximal torus T * c j = x T * of type c j with respect to T * . Choosing the PGL n -conjugacy by x -1 to identify (T * c j , F ) with (T * , c j F ), we identify back the representative of the class parametrised by c j with the element s in T * c j F . We have

C(C PGLn (s) F , F, 1) = ⊕ n-1 j=0 CE(T * c j F c , 1).
Since T * is a torus, the unipotent characters of T * c j F c are the n extensions of the trivial character of T * c j F . We parametrise these by Z SL n ×Z/nZ in the following way: if

z 0 = diag(ζ, . . . , ζ), we call θ z i 0 ,k the character of T * c k F c
which is trivial on T * c k F and equal to ζ i C on c. This allows us to define another basis of C(C PGLn (s) F , F, 1), the "Mellin transforms", defined for j, k ∈ Z/nZ by θ j,k := z∈Z SLn ŝj (z)θ z,k , where ŝj is the character of T c j F corresponding to the element s ∈ T * c j F through duality. The point is that it is more convenient to compute the action of Sh on the Mellin transforms:

Proposition 13. We have Sh θ j,i = θ j,i+j unless n = 2 (thus ε = 1) and q ≡ -1 (mod 4). In this last case we have Sh θ j,i = θ j,i+j-1

Proof.

Lemma 14. With the conventions of Assumption 12, when n is odd, we have

ŝj (z i 0 ) = ζ ij C ; when n = 2 (thus ε = 1) we have ŝj (z 0 ) = (-1) (q-1)/2 if j = 0 (-1) (q+1)/2 if j = 1 .
Proof. The correspondence between T * c j F and Irr(T c j F ) comes from the diagram of exact sequences X(T)

c j F -1 ----→ X(T) Res --→ Irr(T c j F ) → 1   ∼ Y (T * ) c j F -1 ----→ Y (T * ) π -→ T * c j F → 1
where π maps y ∈ Y (T * ) to N F m /c j F (y(1/(q m -1))) for any m such that (c j F ) m = F m (see [START_REF] Digne | Representations of finite groups of Lie type[END_REF]Proposition 11.1.7]); here y(1/(q m -1)) is defined using the choices of Assumption 12 and N F m /c j F is the norm map on T * given by x → x. c j F x . . . (c j F ) m-1 x.

When j = 0 we can take m = 2 in the above diagram. We have s = N F 2 /F (y(1/(q 2 -1))) = y(1/(εq -1)) where y is the cocharacter mapping λ ∈ F q × to the image in

T * of diag(1, λ (εq-1)
/n , λ 2(εq-1)/n , . . . , λ (n-1)(εq-1)/n ) ∈ T. The element y interpreted as a character of

T F maps z 0 = diag(ζ, . . . , ζ) ∈ Z SL n to ζ εq-1 n n(n-1) 2 C = ζ (n-1)(εq-1)/2 C
which is equal to 1 when n is odd-thus in this case ŝ0 is trivial on Z SL n . If n = 2 we have ε = 1 and we get ŝ0 (diag(-1, -1)) = (-1) (q-1)/2 .

When j = 0, we can take m = 2n. We want to find y ∈ Y (T * ) such that s = N F 2n /c j F (y(1/(q 2n -1))). Since (c j F ) n = F n we have

N F 2n /c j F (x) = N F n /c j F (x)F n (N F n /c j F (x)).
Let y 0 be a cocharacter mapping λ ∈ F × q 2n to the image in T * of diag(λ, 1, . . . , 1). We have (c j F ) k (λ, 1, . . . , 1) = (1, . . . , 1, λ (εq) k , 1, . . .) where λ (εq) k is at the place indexed by kj + 1, hence at the place indexed by i in N F n /c j F (y 0 (λ)) the exponent of λ is such that i ≡ kj + 1 (mod n), which since λ ∈ F × q n is equivalent to k = (i -1)j where jj ≡ 1 (mod n). Hence N F n /c j F (y 0 (λ)) is the image in T * of diag(λ, λ (εq) j , λ (εq) 2j , . . . , λ (εq) (n-1)j ) and N F 2n /c j F (y 0 (λ)) is the image in T * of diag(λ 1+(εq) n , λ (1+(εq) n )(εq) j , λ (1+(εq) n )(εq) 2j , . . . , λ (1+(εq) n )(εq) (n-1)j ). If we set µ = λ 1+(εq) n , the element diag(1, µ (εq) j -1 , µ (εq) 2j -1 , . . . , µ (εq) (n-1)j -1 ) has same image in T * . For µ εq-1 = ζ j we have µ (εq) kj -1 = ζ j(1+εq+...+(εq) kj -1 ) = ζ jkj = ζ k , the second equality since q ≡ ε (mod n). Hence N F 2n /c j F (y 0 ( j n(εq-1)((εq) n +1) )) = s, thus we can take y = j(q 2n -1)

n(εq-1)((εq) n +1) y 0 = j((εq) n -1)
n(εq-1) y 0 (note that (εq) n -1 n(εq-1) is an integer). As a character of T c j F it maps the element

z 0 = diag(ζ, . . . , ζ) ∈ Z SL n to ζ j((εq) n -1) n(εq-1)

C

. We now use:

Lemma 15. If n is odd, k > 0 and n k divides εq -1, we have (εq) n -1 n(εq-1) ≡ 1 (mod n k ).
Proof. Let us write εq = 1 + an k . We have (εq) n -1

εq-1 = 1 + εq + • • • + (εq) n-1 ≡ n+a n(n-1) 2 n k (mod n k+1 ).
Since n is odd it divides n(n-1)/2, so that (εq) n -1 εq-1 ≡ n (mod n k+1 ) which, dividing by n, gives the result. This lemma applied with k = 1 shows that ŝj maps

z i 0 to ζ ij C when n is odd. If n = 2 (thus ε = 1) we get ŝ1 (diag(-1, -1)) = (-1) (q+1)/2 .
Proposition 16. We have Sh χ j,i = χ j,i+j unless n = 2 (thus ε = 1) and q ≡ -1 (mod 4). In this last case we have Sh χ j,i = χ j,i+j-1 .

Proof. We note first that χ z,j (g) is independent of z if C SLn (g) is connected. Indeed, χ z,j and χ z ,j are conjugate by an element x ∈ GL F n since they are two components of the restriction of an irreducible character of GL F n . We have thus χ z ,j (g) = χ z,j ( x g). We can multiply x by a central element to obtain an element y ∈ SL n and, since y g = x g ∈ SL F n , we have y -1 . F y ∈ C SLn (g). If this centraliser is connected, using the Lang-Steinberg theorem we can multiply y by an element of C SLn (g) to get a rational element y , whence χ z ,j (g) = χ z,j ( y g) = χ z,j (g). For such an element g we thus have χ j,i (g) = 0 if j = 0.

Since C SLn (g) is connected we have Sh(g) = g thus Sh χ j,i (g) = χ j,i (g), in particular Sh χ 0,i = χ 0,i and if j = 0 we have (Sh χ j,i )(g) = χ j,i+j (g) = 0, whence (Sh χ j,i )(g) = χ j,i+j (g) for all j.

It remains to consider the conjugacy classes of SL n which have a non-connected centraliser.

Lemma 17. When n is prime the only elements of SL n which have a non-connected centraliser are the zu with z ∈ Z SL n and u regular unipotent.

Proof. Let su be the Jordan decomposition of an element of SL n with s semi-simple and u unipotent. We have C SLn (su) = C CSL n (s) (u). The group C SLn (s) is a Levi subgroup of SL n , that is the subgroup of elements of determinant 1 in a product k i=1 GL ni . Thus C SLn (su) is the subgroup of elements with determinant 1 in a product k i=1 H i where H i is the centraliser of u in GL ni , which is connected. We claim that if k > 1 the group C SLn (su) is connected. Indeed, since n is prime, if k > 1 the n i are coprime so that there exist integers a i satisfying k i=1 a i n i = -1. Then the map (h 1 , . . . , h k ) → (h 1 λ a1 , . . . , h k λ a k , λ) where λ = det(h

1 h 2 . . . h k ) is an isomorphism from H 1 × • • • × H k to C SLn (su) × F q .
Hence this last group is connected, thus its projection C SLn (su) is also connected.

It remains to look at the centralisers of elements zu with u unipotent and z ∈ ZSL n , that is the centralisers of unipotent elements. By [4, IV, Proposition 4.1], since n is prime, C SLn (u) is connected unless u is regular and when u is regular we have C SLn (u) = R u (C SLn (u)).ZSL n which is not connected.

Thus to prove the proposition we have only to consider the classes of the elements zu with u regular unipotent and z ∈ Z SL n . Fix a rational regular unipotent element u 1 . The conjugacy classes of rational regular unipotent elements are parametrised by H 

1 (F, C SLn (u 1 )/C 0 SLn (u 1 )) = H 1 (F, ZSL n ) = Z SL n (the last equality since q ≡ ε (mod n)): a representative u z of the class parametrised by the F -class of z ∈ ZSL n is t u 1 where t ∈ T satisfies t -1 F t = z.
χ z,k (u z ) = z ∈H 1 (F,ZSLn) σ z z -1 (-1) F -semi-simple rank(SLn) D(χ z,k ), Γ z SL F n ,
where D is the Curtis-Alvis duality. If k = 0 and F = F + or if F = F -we claim that (-1) F -semi-simple rank(SLn) D(χ z,k ) = χ z,k : indeed, in both cases the character R GLn Tc k (s k ) is cuspidal since the torus Tc k is not contained in a proper rational Levi subgroup. Indeed when F = F + and k = 0 (resp. F = F -), the type c k (resp. the type w 0 c k ) of T c k with respect to a quasi-split torus is not contained in a standard parabolic subgroup of S n . Thus χ z,k is cuspidal as a component of the restriction to SL F n of R GLn Tc k (s k ), whence our claim since the duality on cuspidal characters is the multiplication by (-1) F -semi-simple rank(SLn) (take L = SL n in [5, 7.2.9]). If k = 0 and F = F + , the characters χ z,0 are the irreducible components of

R SLn T (ŝ 0 ) = Ind SL F n B F ŝ0
, where B is the Borel subgroup of upper triangular matrices and ŝ0 has been lifted to B F . The endomorphism algebra of this induced character is isomorphic to the group algebra of Z/nZ, hence the components of Ind SL F n B F ŝ0 are parametrised by the characters of Z/nZ and by [START_REF] Mcgovern | Multiplicities of principal series representations of finite groups with split (B, N )-pairs[END_REF]Theorem B] the effect of the duality is to multiply the parameters by the sign character of the endomorphism algebra which is trivial if n is odd and is -

1 if n = 2.
If n is odd or if n = 2 and k = 0, we thus have χ z,k (u z ) = σ z z -1 . If n = 2 and k = 0 we have χ z,0 (u z ) = -σ z z where {z, z } = {1, diag(-1, -1)}.

We consider first the case n odd. By Lemma 14 we have ŝk ( If n = 2 we have z 0 = diag(-1, -1). We have χ j,k (zu z ) = ŝk (z)(ŝ j (1)χ z 0 0 ,k (u z )+ ŝj (z 0 )χ z0,k (u z )). We get χ j,0 (zu z ) = ŝ0 (z)(-σ z0z -ŝj (z 0 )σ z ) and χ j,1 (zu z ) = ŝ1 (z)(σ z + ŝj (z 0 )σ z0z ). If ŝj is the identity character then χ j,0 and χ j,1 are invariant by Sh since Sh(u z ) = u z and Sh(z 0 u z ) = z 0 u z0z . If ŝj is not trivial then, χ j,0 (zu z ) and χ j,1 (zu z ) are equal if z = 1 and opposite if z = 1, thus, using again Sh(u z ) = u z and Sh(z 0 u z ) = z 0 u z0z we see that χ j,0 and χ j,1 are exchanged by Sh. By Lemma 14, if q ≡ 1 (mod 4) the character ŝ0 is trivial and we get the same result as in the odd case. If q ≡ -1 (mod 4), the character ŝ1 is trivial and Sh exchanges χ 0,0 and χ 0,1 and fixes χ 1,0 and χ 1,1 , which is the announced result.

z i 0 ) = ζ ki C .
We can now state: Proposition 18. For s = diag(1, ζ, . . . , ζ n-1 ), the bijection J : χ j,i → θ j,i from CE(SL F n , (s)) to CE(C PGLn (s) F , F, 1) restricts on characters to a refinement of the Jordan decomposition which satisfies Conjecture 7.

Proof. Propositions 13 and 16 give the commutation of J with Sh. It remains to show that J(R SLn T c j (s j )) = R 

Id =

θ 0,j for n odd or q ≡ 1 (mod 4) θ 1,j for n = 2, q ≡ -1 (mod 4) . On the other hand for n odd or q ≡ 1 (mod 4), we have χ 0,j = z ŝ0 (z)χ z,j = z χ z,j since in that case ŝ0 is the trivial character. For n = 2, q ≡ -1 (mod 4), we have χ 1,j = z ŝ1 (z)χ z,j = z χ z,j since in that case ŝ1 is the trivial character. By definition of χ z,j we have z χ z,j = R SLn T c j (s j ), whence the proposition.

  By [4, IV,Proposition 1.2] Sh maps the SL F n -class of zu z to that of zu zz . Now χ z,k being a component of the restriction of the irreducible character R GLn Tc k (s k ) has central character equal to ŝk , independently of z, whence χ z,k (z u z ) = ŝk (z )χ z,k (u z ). By [5, Corollary 12.3.13], there is a family of Gauss sums σ z indexed by ZSL n such that

0 . 0 . 0 .C σ z z -i 0 =

 0000 Thus the values of the Mellin transforms areχ j,k (z u z ) = i ŝj (z i 0 )χ z i 0 ,k (z u z ) = i ŝj (z i 0 )ŝ k (z )σ z z -i 0 = ŝk (z ) i ζ ij C σ z z -i Let us put z = z l 0 ; we get χ j,k (z l 0 u z ) = ζ lk C i ζ ij C σ z z -i Now as recalled above we have Sh(z u z ) = z u z z , whence (Sh χ j,k )(z l 0 u z ) = χ j,k (z l 0 u z l 0 z ) = ζ lk C i ζ ij C σ z z l-i Taking i-l as new variable inthe summation we get (Sh χ j,k )(z l 0 u z ) = ζ lk χ j,j+k (z l 0 u z ), which gives the proposition for n odd.

  . As we have noticed after the proof of Proposition 13 we have R T c j c T c j

We thank Cédric Bonnafé for having suggested improvements to a previous version of this text.

We now compute the Mellin transforms θ j,k . If n is odd, we have by Lemma 14

We see that θ j,i is a function supported by the coset T c i F .c -j ⊂ T c i F c and is constant equal to n on this coset. By proposition 1, Sh maps a constant function on this coset to the constant function on T c i+j F .c -j with same value, hence Sh θ j,i = θ j,i+j .

If n = 2 we have

Thus θ j,i is supported by T c i F .c j if q ≡ 1 (mod 4) and by T c i F .c 1-j if q ≡ -1 (mod 4) and is constant equal to 2 on its support. We get the same result as in the odd case for the action of Sh when q ≡ 1 (mod 4). If q ≡ -1 (mod 4), since Sh maps functions on T c i c 1-j to functions on T c i+j-1 c 1-j we get Sh θ j,i = θ j,i+j-1 .

Proposition 13 shows that Sh preserves the space C(C PGLn (s) F , F, 1). Note that the computation made in the proof of Lemma 14 and Definition 3 show that R

For computing the other side of conjecture 7, that is Sh on SL F n , we first parametrise the characters in ∪ j E(SL F n , (s j ) PGL F n ), where s j ∈ (T * c j ) F is an F -stable representative of the rational class that we parametrised above by s ∈ T * c j F . We use the following notation: for z ∈ Z SL n we denote by Γ z the Gelfand-Graev character indexed by z as in [START_REF] Digne | Representations of finite groups of Lie type[END_REF]Definition 12.3.3]; that is Γ z = Ind SL F n U F ψ z where U is the unipotent radical of the Borel subgroup consisting of upper triangular matrices and ψ z is a regular character of U F indexed by z. This labelling depends on the choice of a regular character ψ 1 : we have ψ z = t ψ 1 where t ∈ T satisfies t -1 F t = z.

Let sj ∈ ( T * c j ) F be a lifting of s j . By [START_REF] Digne | Representations of finite groups of Lie type[END_REF]Proposition 11.3.10] R SLn Tc j ∩SLn (s j ) is the restriction of R GLn Tc j (s j ), hence the series E(SL F n , (s j ) PGL F n ) is the set of irreducible components of the restrictions of the elements of E(GL F n , (s j )). Moreover since C GLn (s j ) is a torus, the character R GLn Tc j (s j ) is irreducible, hence is the only character in E(GL F n , (s j )); thus this character must be a component of the (unique) Gelfand-Graev character of GL F n by [START_REF] Digne | Representations of finite groups of Lie type[END_REF]Theorem 12.4.12]. The restriction of this character to SL F n is equal to z∈Z SLn χ z,j where χ z,j is the unique irreducible component of the Gelfand-Graev character Γ z in the series E(SL F n , (s j )) (see [START_REF] Digne | Representations of finite groups of Lie type[END_REF]Corollary 12.4.10]). Thus we have E(SL F n , (s j )) = {χ z,j | z ∈ Z SL n }. It is again more convenient to compute Sh on the basis formed by the Mellin transforms χ j,k := z∈Z SLn ŝj (z)χ z,k .