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Abstract

A ship encounters a higher drag in a stratified fluid compared to a homogeneous one. Grouped
under the same ”dead-water” vocabulary, two wave-making resistance phenomena have been historically
reported. The first, the Nansen wave-making drag, generates a stationary internal wake which produces a
kinematic drag with a noticeable hysteresis. The second, the Ekman wave-making drag, is characterized
by velocity oscillations caused by a dynamical resistance whose origin is still unclear. The latter has been
justified previously by a periodic emission of nonlinear internal waves. Here we show that these speed
variations are due to the generation of an internal dispersive undulating depression produced during the
initial acceleration of the ship within a linear regime. The dispersive undulating depression front and its
subsequent whelps act as a bumpy treadmill on which the ship would move back and forth. We provide an
analytical description of the coupled dynamics of the ship and the wave, which demonstrates the unsteady
motion of the ship. Thanks to dynamic calculations substantiated by laboratory experiments, we prove
that this oscillating regime is only temporary: the ship will escape the transient Ekman regime while
maintaining its propulsion force, reaching the asymptotic Nansen limit. In addition, we show that the
lateral confinement, often imposed by experimental setups or in harbors and locks, exacerbates oscillations
and modifies the asymptotic speed.

Keywords: Stratified fluids | Dead-water |Wave-making drags | Linear dispersive undulating depres-
sion | Lateral confinement
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Figure 1: Time evolutions of the ship speed for different constant towing forces. In yellow (purple), the ship
reaches an oscillating (ballistic) regime. Speed error ∆VS = 7.2×10−2VS+1.8×10−4

[
m · s−1

]
. Configuration

data in SI Appendix, Table S1.

The dead-water effect is a physical phenomenon developing in fluids stratified in density, typically in fjords
[1, 2] or harbors [3]. After recording the testimony of sailors and explorers like Nansen [1], Ekman [4] was
the first to study it scientifically in 1904. By reproducing this phenomenon in the laboratory, he observed a
higher ship resistance in a stratified fluid than in a homogeneous one as reported in the field. The internal
waves formation converts the kinetic energy of the ship into the wake potential energy, the so-called wave-
making drag due to the generation of an interval waves wake (see SI Appendix, fig. S1 and movie S1). For a

step-like density profile, the maximum interface waves velocity is set as [5] cφ =
√
g ρ2−ρ1ρ2

h2h1

h2+h1
, depending

on the pycnocline parameters: the height and the density of the two superposed layers in the gravity field g,
respectively (h1, ρ1) for the upper layer and (h2, ρ2) for the lower layer. Analytical studies [6] show that the
critical velocity is slower than this theoretical prediction, as experimentally confirmed [4, 7, 8]; ccrit ≈ 0.8cφ
where the physical of origin is still an open question in the literature. Our own results are consistent with
this value in the following. Based on a definition of a renormalized internal Froude number Fr = Vs/ccrit, a
dimensionless measure of the ship speed, the drag due to the internal wake is all the more important as the
ship speed is close to ccrit (Fr ≈ 1). For larger speeds (Fr > 1), the internal wave-making resistance decreases
until it becomes negligible compared to the viscous drag. In seeking to impose a constant speed, Ekman [4]
showed the existence of a hysteresis cycle: by exceeding a critical pulling force, the speed of the ship jumps
to a much higher velocity with a behavior akin to a first order phase transition in thermodynamics. Thus, a
speed range cannot be reached by a constant towing force: this branch of the drag-speed curve is unstable.

Ekman [4] classified different regimes according to the interface Froude number. If Fr < 1, the ship
accelerates to an asymptotic speed Vs < ccrit (blue and red curves in figure 1). With a bigger towing force,
it is possible to exceed the local maximum, and reach a higher asymptotic speed Vs > ccrit (purple curve in
figure 1). These regimes and their descriptions are taken up by modern studies [7, 8, 9] which distinguish a
sub-critical and a supercritical regime for the wake since the ship reaches an asymptotic speed in both cases.

In addition to these ballistic regimes, Ekman displayed a periodic behavior for Fr < 1. The ship accelerates
then oscillates around an average speed 〈Vs〉 < ccrit. These fluctuations in speed are all the more marked
as 〈Vs〉 is close to ccrit (yellow curve in figure 1), giving the impression of a false ship stop. These speed
oscillations should not be confused with the previously described hysteretic phenomenon, where it is necessary
to change the towing force to jump from one speed to another. Mercier et al. [7], suggested that the to and fro
motion is due to the interaction of nonlinear internal waves with the ship, and that linear models introduced
by Ekman [4] or Miloh et al. [6] are not sufficient to explain it. Therefore, under the vocabulary dead-water,
we must distinguish two wave-making resistance phenomena: the kinematic drag from the dynamic resistance.
We choose to name the first ”Nansen wave-making drag”, and the second, the ”Ekman wave-making drag”
which is more extensively probed in this paper. Some studies [8, 10, 11, 12, 13] make the choice to pull at
constant speed, to probe the stationary Nansen wave-making drag, without the dynamic Ekman wave-making
drag which is explored by towing at constant force.
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Figure 2: Space-time and spectral diagrams of an Ekman-like experiment (a-b) and a Scott Russell-like
experiment (c-d). In (a), black dash-dot curves symbolize the ship position. In (b) and (d), red dotted curve
represents the dispersion relation discussed by Fructus and Grue [14] (multiplied by a corrective factor 0.8
in the Ekman-like experiment). In (b), the purple dashed line represents the advective branch ω = Vsk. The
vertical white bar in (c), at x ≈ 1 m, is due to a measuring beam hiding a small part of the measurement
zone. Configuration data in SI Appendix, Tables S1 and S2.

Results

Ekman-like experiment: observation of the ship dynamics and the pycnocline

In order to understand the physical roots of the Ekman wave-making drag, we reproduce the seminal 1904
Ekmans experiments with a constant towing mass (see experimental methods and SI Appendix, fig. S2 and
table S1). The ship model is 0.10 m wide (Bb) and 0.20 m long (Lb); the canal is 0.37 m wide (W ) and
3 m long (L). The waves observed have a two-dimensional (2D) behavior, and the lateral confinement has
an impact on the dynamics of the boat as we will see later. Unlike recent studies, we choose a weaker lateral
confinement (Bb

W = 0.27 compared to 0.95 in the Mercier et al.’s experiments [7] or 0.48 in the Medjoub et al.’s
experiments [8]). We set an initial double-layer step-like stratification, depositing a layer of freshwater on a
layer of colored saline water using a sponge system. The ship is towed using a pulley system that guarantees
constant mass and free speed, compensating the towing and drop-down rope weight. The ship model generates
only internal waves at the pycnocline but does not reach a speed sufficiently large to generate a surface wake
(see theoretical methods). Thanks to two cameras, we detect the interface by a sub-pixel method, which
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allows us to plot space-time diagrams. Diminishing lateral confinement induces a decrease in wave amplitudes
and therefore requires a subpixel method in accuracy which allows a gain of a factor of 10 compared to a
pixel method. It is then possible to study waves of the order of 100 µm in amplitude.

Two kinds of internal waves are observed when a ship is put into motion from rest. First, a subcritical
depression forms under the ship and moves at the same speed, as if it was fastened to the ship. In the space-
time diagram (figure 2a), this depression follows the position of the ship indicated by the dotted curve. This is
the classical kinematic internal wake, responsible for the Nansen wave-making drag. When Fr > 1, the wake
converts to a supercritical hump with negative polarity, and the associated drag decreases. The subcritical
wake is isolated and represented by the green dotted curve in figure 3. Secondly, another internal wave is
observed at the bow, when Fr < 1. In the space-time diagram (figure 2a), this front wave with negative
polarity and its whelps (secondary waves with oscillating polarities) escape from underneath the vessel and
are then reflected on the canal wall. In figure 3 in red dashed curve, this previous wave is disentangled
from the Nansen wake. Since Ekman, this wave has been described as a ”solitary wave” [4], which ”evolves
freely” and whose ”shape remains almost unchanged” [7]. We will show that this wave is actually not a non-
linear solution of a solitary type as believed by previous authors, but a linear internal dispersive undulating
depression [15].

Spectral domain and dispersion relation

For this purpose, we disentangle these two wave systems in the spectral domain (k, ω) obtained by Fourier
transform of the space-time diagram. An advective branch ω = Vsk (purple dashed curve on figure 2b), with a
slope equal to the ship speed, corresponds to the classical kinematic internal wake (Nansen wave-making drag).
A S-shaped branch (red dotted curve on figure 2b), with a zero-point tangent slope equal to ccrit = 0.8× cφ,
coincides with the dispersive undulating depression. This latter curve fits the dispersion relation proposed
by Fructus & Grue [14](see theoretical methods and figure S3). In an Ekman-like experiment featuring the
ship, an artificial fitting factor 0.8 must multiply the Grues dispersion relation in order to comply with the
maximum dispersive undulating depression velocity ccrit observed experimentally.

Scott Russell-like experiment: proof of a linear dispersive undulating depression

To better study this dispersive undulating depression, we seek to isolate it from the classical kinematic internal
wake by removing the ship and replacing it by a withdrawing object. Indeed, we reproduce an 1844 experiment
by Scott Russell [16], in shallow layer of an homogeneous fluid by a double-layer one: we create a hollow space
in the stratified column at one canal extremity by removing a parallelepiped object plunged initially in the
fluid (see experimental methods and SI Appendix, fig. S2 and table S2). A dispersive undulating depression
(namely, a linear undulatory structure with a front of negative polarity followed by a tail made of secondary
whelps) is created in order to fill the void created at the pycnocline by the withdrawal of the object. It
propagates and it is reflected several times on the aquarium walls. Reflections allow a longer acquisition tac

of the phenomenon (figure 2c), therefore a better frequency resolution (∆ω = 2π
tac

), and an observation of
the wave’s evolution. We observe the S-shaped branch describing the dispersive undulating depression in
the first and third quadrants (figure 2d), as well as its reflection in the second and fourth quadrants. Two
advective branches with low speeds can also be observed, resulting from a breaking wave created by the initial
perturbation [17] (observable on the corresponding space-time diagram figure 2c). The study of these modes
is not the subject of this paper and will be explored in a future work. The maximum dispersive undulating
depression velocity equals ccrit = cφ and not ccrit = 0.8cφ as in an Ekman-like experiment. The subsequent
whelps are slower and slower. Thus, unlike a solitonic-type wave, the front wave is asymmetrical, the front
wave and the whelps spread out (their amplitudes decrease, and their wavelengths increase). From the front
wave skewness or the ratio between its amplitude and wavelength, Xu et al. [18] give several criteria to decide
if an internal wave has a solitonic behavior or a dispersive undulating depression one. According to them,
if after 100 seconds of propagation the wave has an amplitude greater than 3% of its half-length, then the
structure is not linear. In the previous Ekman-like experiment (figure 2a and 3), we measure after 30 seconds
Aw

Lw
≈ 0.3%, which continues to decrease over time (see SI Appendix, fig. S4): the Ekman transient effect

does correspond to a linear dispersive undulating depression [15].
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Figure 3: Decomposition of the interface deformation (solid blue curve) into its two components: the dis-
persive undulating depression (red dashed curve) and the classical internal wake (green dotted curve). The
decomposition is done from the spectral space, filtering around the branches corresponding to each wave (see
SI Appendix, movie S2). Configuration data in SI Appendix, Table S1.

The coupled dynamics of the ship and the wave

To disentangle the dispersive undulating depression from the wake, we filter separately the different branches
in the spectral domain, before reverting to the space-time domain with an inverse Fourier transform (figure
3). Each whelp passage under the ship corresponds to a speed variation. Thus, the interactions between the
ship and the dispersive undulating depression result in velocity oscillations as if the ship was moving on a
bumpy treadmill. Moreover, the amplitudes of the subsequent whelps decrease in time. Therefore, we can
assume that by keeping the same towing force for a sufficient duration, the velocity oscillations will decrease
in amplitude until their disappearance.

Dynamic numerical computation and effect of lateral confinement

In order to test our analytical description of the coupled dynamics of the ship with the waves, we perform a
dynamic numerical calculation. In these simulations the pulling force Ft is constant, and the ship speed V
evolves according to Newtons principle: mbV̇ = Ft + Fd(V ), where Fd(V ) is the fluid drag on the moving
ship. The drag has two components here: the frictional drag and the internal wave drag. The frictional
drag is proportional to the square of the velocity, through a coefficient that can be measured by performing
measurements in a fluid with no stratification (see numerical methods and SI Appendix, fig. S5). The internal
wave drag is computed using the same linearized irrotational two-fluids model from which the dispersion
relation was established previously (see experimental methods). The effect of the ship on the fluid appears
through a forcing term in the equation describing the internal wave, which is justified in the dimensionless
draft Tb/ht → 0 limit, with ht = h1 + h2 the total depth. Hence, the dependence of the internal-wave drag
with V is highly non trivial and involves its history. Simulations allow us to reproduce experiments in an
infinitely long canal. Even in cases where we observe an oscillating regime, the ship ends up reaching the
asymptotic Nansen limit (figure 4). Thus, the Ekman wave-making drag is only a transient quasi-oscillatory
regime.

The lateral confinement, defined by the beam-to-width ratio Bb/W , strongly impacts the dynamics of
the ship. In a highly confined water, amplitudes of the classical wake and of the linear dispersive undulating
depression are amplified. Indeed, the linear undulating depression is produced by a displacement of water
which cannot propagate laterally because of the channel’s walls. In open sea, the water is laterally unlimited,
and the waves created are more divergent (figure 5) and with lower amplitude (which justifies requirement of
the sub-pixel accuracy). In the presence of close walls, there are no more 3D effects and waves are parallel.
In an intermediate case, like our configuration, we can observe reflections on the walls which generate minima
and maxima in the middle of the channel (see SI Appendix, fig. S6 and movie S5). Thus, the closer beam-
to-width ratio Bb/W is to 1, the greater the amplitudes of the waves, and the stronger the wave-making
resistance (see SI Appendix, fig. S7 and movie S3). This then exacerbates the speed quasi-oscillations and
the Ekman wave-making drag. The Nansen wave-making drag is also impacted by the lateral confinement
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Figure 4: Comparison between dynamic calculations and experimental measurements. The simulation allows
a longer canal. The ship leaves the quasi-oscillating regime and reaches a ballistic regime. Configuration
data in SI Appendix, Tables S1.

Bb/W , as it is well known in a mono-layer either in infinite depth [19] or finite depth [20]. In sub-critical
regime Vb < ccrit, the wake-making resistance is greater in the confined configuration than in the unconfined.
On the contrary, in super-critical regime Vb > ccrit, the wake-making resistance is lower in the confined
configuration than in the non-confined (see SI Appendix, fig. S8). However, this is not just a laboratory’s
observation: ships can move in confined and stratified environments and endure this marked phenomenon
such as in harbors or locks, or in geographical complexities such as the strait of the Ambracian Gulf [21].

Discussion

A ship moving in a stratified fluid generates an internal wake responsible for a kinematic drag, which we name
the Nansen wave-making drag. In addition to this wake, the ship produces during its initial acceleration a
linear dispersive undulating depression. The interactions between the vessel and the latter create the ship
speed oscillations. Contrary to previous studies, a linear analytical model reproduces numerically for the
first time these interactions and the ship behavior (see SI Appendix, movie S4). Due to the linear nature of
the dispersive undulating depression, this interaction decreases in amplitude over time. The quasi-oscillating
regime, which we name the Ekman wave-making drag, is only a transient regime. Thus, there are two types of
waves superimposed with a weak interaction among both but more a superposition. The Ekman wave-making
drag modulates the Nansen wave-making drag until it becomes negligible compared to the latter.

A linear analytical calculation makes it possible to model experiments in wider and longer channels than
laboratory’s channels. This made it possible to highlight the impact of lateral confinement on the ship’s
dynamics. By amplifying the amplitudes of the waves, the confinement intensifies the Ekman wave-making
drag and has facilitated for more than a century the observation of this particular ship’s dynamics. However,
such confinement hides the 3D waves’ behavior, and does not represent classical ship dynamics in open sea.
Future experiments must take this result into consideration. A wide channel allows to limit the number of
speed oscillations and therefore makes it possible to reach the steady state more quickly with a subsequent
shorter laboratory channel. On the contrary, a narrow channel amplifies the speed oscillations, so requires a
longer channel to study the steady state. Moreover, large amplitudes can cause non-linear effects. We believe
to have solved a more than one century mystery with respect to the true nature of the dead-water effect.
Unfortunately, none laboratory experiments have really studied the original Nansen wave-making drag per
se...
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Figure 5: Numerical calculations of the 2D interface’s deformation (left) for different lateral confinements
(Bb/W = 0.952 corresponds to [7]; Bb/W = 0.670 to [8]; Bb/W = 0.270 to [4]) and our configuration, with Bb
the beam and W the channel’s width. A narrow channel prevents 3d effects and amplifies the classical internal
wake (Nansen wave-making drag) and the dispersive undulating depression (Ekman wave-making drag). So
the dynamics of the boat are impacted (right). Red circles indicate when deformations are represented; Black
dotted curve is the limitation of 3 m corresponding to our channel length.
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Materiels and Methods

Experimental methods

We chose a wide water tank (L = 3 m; W = 0.37 m; H = 0.40 m), which reduces the effects of lateral
confinement in comparison to previous studies [7, 8, 9] (Bb/W = 0.27). A silicon gasket was used to seal
the glasses. To better visualize the internal waves, a white board is placed behind the tank to get a uniform
background thanks to the use of a light-emitting diode lighting system. Two side cameras, placed 3 m from the
tank, record a lateral region of interest (ROI) of 2.25 m long, with a spatial resolution of ∆x = 5.6×10−4 m.
These are grayscale Point Grey cameras with complementary metal-oxide-semiconductor technology, triggered
and controlled by a user interface. We record at fac = 45 fps during the Ekman-like experiments and at
fac = 25 fps during the Scott Russell-like experiments keeping the same maximum number of images (4096).
We set a step-like stratification in density, with the goal of having a two-layer fluid. On the first layer,
previously saline and coloured in red, we deposit a layer of transparent freshwater. In order to avoid mixing,
we need to reduce as maximum as possible the turbulence. The freshwater is transferred to the experimental
tank by gravity, and poured on top of three floating sponges (Q ≈ 20 L/h for each sponge). This process is
very slow (about 10 minutes per centimeter), and allows a good separation between both layers. The density
profile is measured with an Anton Paar DMA 35 digital density meter just after the stratification is built.
The mass diffusivity of salt in water is measured as 1.8 × 10−8 m · s−1. The water is at room temperature
(around 293 Kelvin).

In an Ekman-like experiment (see SI Appendix, fig. S2, top), we tow a ship with a constant force.
A small sized Playmobil R©ship was used for the experiments (Lb = 20 × 10−2 m; Bb = 10 × 10−2 m;
Tb = 2.4× 10−2 m) [7]. We add lead weights to adjust the draft. Its total mass is Mb = 0.354 kg. To remove
its holes and irregularities, the ship hull was filled with resin and sanded. The towing system is composed
of three pulleys. The first two form a horizontal loop, which is connected to a third one placed above and
linked to a vertical wire featuring a towing mass attached by a hook. A wire extension is also hung on the
hook, with a sufficient length to keep contact with the ground, compensating for the wire lengthening with
the purpose of getting a constant towing mass. An initial mass can be added near the ground to facilitate the
start to overcome both the static friction forces and the dynamic ones due to the pulleys. The ship is hooked
to the horizontal loop by two independent free vertical T-shape rods connected to the horizontal towing wire,
one to the bow and the other to the stern. This setup allows pitches, heaves and surges, while preventing
sways, rolls and yaws. The ship start is controlled by an electromagnet with a trigger as well as the cameras
recording. However, when the ship stops while reaching the aquarium end, perturbations are generated due
to the ship final motions.

In a Scott Russell-like experiment (see SI Appendix, fig. S2, bottom), a negative polarity perturbation is
created at the pycnocline and its evolution is recorded. A parallelepiped object 0.37 m wide, 0.119 m long
and 4.0× 10−2 m height, is placed at the end of the canal, immersed by a draft TSR = 2.4× 10−2 m within
the lower layer h2. A counterweight system raises this block with a manual procedure, on a distance equal
to the draft. So the block is lifted up to the water level limit, without being fully emerged. In addition to
cameras, a Microsonic Mic+340 acoustic sensor measures the deformation of the free surface in one position.
Since there is no disturbance created by the ship stop, we can study the dispersive undulating depression and
its reflections in the long run. The measurement time is therefore longer, which induces a better frequency
resolution in the spectral domain.

The pycnocline is detected by the brightness gradient between the red saline water (appearing black
on black and white cameras) and the transparent freshwater (appearing white on cameras). A MATLAB
script automates this detection. At first, the script looks for the maximum brightness gradient. This step
allows a fast detection of the interface with a precision of the order of the pixel. The brightness profile
is fitted with a tanh curve, which increases the precision by a factor 10. This method, called subpixel, is
necessary for the study of low amplitude waves of the order of 10 µm in height. Between two frames, the
ship displacement is small. Using a cross-correlation method we can go back to this displacement vector with
a subpixel precision. This vector is converted to a velocity using the time and spatial resolutions. The ship

speed measurement uncertainty is ∆VS = ±
(

0.1∆x
2
√

3dt
+ Vs

2
√

3facdt

)
with dt the time between the two frames

of the cross-correlation. The measurement of the ship displacement is done on 4 images, so dt = 4/fac and
∆VS = 7.2× 10−2VS + 1.8× 10−4

[
m · s−1

]
.
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The ship model is subject to separate resistance components:

Rt = Rν +Rs +Rh +Rf +RW

where Rν is the viscous friction, Rs is the free surface wave-making resistance, Rh is the hydraulic resistance
due to confinement, Rf is the solid friction due to pulleys, andRW is the internal wave-making resistance (with
both the Nansen and Ekman contributions). We can have access to the four firsts by tests in homogeneous
water. The model speed is less than the Landau threshold (0.23 m · s−1), so there is no surface wake [22] and
Rs = 0 because of surface tension effects. According to correlation proposed by the International Towing
Tank Conference (if Tb/h � 1 and Bb/W � 1), the viscous drag is given by Rν = KV 2

s and Rh ≈ 0. We
find empirically in homogeneous configuration (see SI Appendix, fig. S5), a total resistance (with RW = 0):
Rt = 3.44× 10−1V 2

s + 5.2× 10−3 [N], including a static resistance, due to the towing system, which must be
exceeded to launch the ship. This empirical relation is valid only for our ship model, and for Tb/h � 1. If
Tb/h ≈ 1, greater resistance effects must be taken into account. We add to the homogeneous resistance, the
internal wave-making resistance calculate below (see numerical methods).

Theoretical methods

The dispersion relation proposed by Fructus and Grue [14] is given by:

Kδ
2 − k [coth (kh1) + coth (kh2)]Kδ coth (Kδδ)− k2 coth (kh1) coth (kh2) = 0

with Kδ = k
√
N0

2/ω2 − 1, the thickness of the pycnocline δ, and the constant buoyancy frequency N0 =√
− g
ρ2

∂ρ
∂z ≈

√
g
ρ2

ρ2−ρ1
δ . The limit δ → 0 matches with the dispersion relation proposed by Stokes [23] :

ω =

√
g

(ρ2 − ρ1) |k|
ρ1 cot |kh1|+ ρ2 cot |kh2|

The latter does not take into account the thickness of the pycnocline. Since the salt diffuses trough the
water, the thickness tends to increase. Thus, the relation proposed by Stokes is valid momentarily, when the
density profile is close to a step. Moreover, when the wavenumber k → 0, Grues and Stokes expressions are
identical, and ω → cφk.

Numerical methods

Let us describe the calculation of the internal wave resistance. Let us suppose that the hull of the ship can
be described by a function f(x, y) and that its position is X(t). The shape function f is defined such that it
is zero outside of the rectangle ]−L/2, L/2[×]−B/2, B/2[ and defined inside by a fourth order polynomial :

f(x, y) = T
(x4 − (L/2)4)(y4 − (B/2)4)

(LB/4)4

This choices defines a smooth yet bulky hull shape with a length L, beam B and depth T .
First, using Newton’s second law, the motion of the boat is described by the following differential equation

:
mbẌ(t) = −Rt(X(t), Ẋ(t)) , (1)

where mb is the mass of the boat, and Rt is the total resistance experienced by the boat. Let us now describe
how the wave component of this resistance is determined (the expression of the other components is detailed
in the main article).

Using the equation of Bernoulli, and integrating the pressure on the surface of the hull [24], we obtain:

RW = ρ1

∫ L

0

∫ W/2

−W/2

∂φ

∂t
(x, y, t)

∂f

∂x
(x−X(t), y) dxdy (2)
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where φ is the velocity potential at the free surface that is supposed to behave like a wall. Using the linearized
theory of internal waves, the 2D Fourier transform of the surface potential evolves according to:

∂2φ̂

∂t2
= ω2φ̂+ ĝ

where ω is given by the Stokes dispersion relation [23] and ĝ is the forcing term that takes into account the
motion of the hull:

ĝ =

(
α
∂2

∂t2
+ βω2

)
λ(t, k) (3)

with:

α =
ρ2 coth |kh1| coth |kh2|+ ρ1

ρ1 coth |kh1|+ ρ2 coth |kh2|

β =
(ρ2 coth |kh1| coth |kh2|+ ρ1) sinh2 |kh2|+ ρ1

(ρ1 coth |kh1|+ ρ2 coth |kh2|) sinh2 |kh2|
and:

λ(t, k) = −iẊ(t)
kx
|k|
e−ikX(t)f̂(k)

From a numerical point of view, we rely on an explicit scheme for the motion of the boat and an exact
exponential scheme based on the use of the Fast Fourier Transform (FFT) for the evolution of the interface.
On the one hand, since the boat is centered in the y-axis, the periodicity induced by FFT is equivalent to
wall conditions on the sides ; on the other hand, we obtain the wall conditions on both ends of the canal by
extending the wave deformation in an even fashion for negative values of x. Let us describe one iteration
of the numerical code, assuming the ships position X and velocity Ẋ and the interface potential Φ and its
impulsion ∂tΦ to be known at a given discrete time tn. First we compute the wave resistance RW using (2)
from ∂tΦ, and X known at time tn. Once the resistance is obtained, we update the ships position and velocity
by solving (1) with an explicit Eulers scheme. Finally, we can update Φ and ∂tΦ by solving (3) exactly for
the dispersive part using the FFT of Φ and ∂tΦ from the previous step, and using an explicit Eulers scheme
for the source term ĝ (which depends on the ships position and velocity that were just updated). Finally, the
inverse FFT provides us with Φ and ∂tΦ at time tn+1.

A mesh study has been carried out. If a coarse mesh implies errors on the dynamics of the boat, i.e.
the acceleration or speed oscillations (Ekman wave-making drag), it has only a moderate impact on the
asymptotic behavior (Nansen wave-making drag).
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Dispersive undulating depression vocabulary

In this paper, the linear wave structure responsible for the speed oscillations of the ship is named ”Linear
dispersive undulating depression”. Because there is no clear scientific consensus on the term to adopt, this
vocabulary has been subject to debate since the present authors have hesitated to call it a linear dispersive
shock wave of the negative polarity type. For some authors the word shock evokes a discontinuity and
therefore a non-linearity, while others use it to describe a linear structure [25]. Trillo et al. [26] use the
term ”dispersive shock wave” to describe undulatory structure with quasi-linear behaviors despite the fact
that they used non-linear models to fit their experimental results . In our case, the dispersion prevents the
formation of a shock. It is a ”would-be dispersive shock-wave”. In the literature, one can find the simple term
of dispersive wave. However, we still fear confusion both with the dispersion shock wave expression used by
some by some scientists as a non-linear structure and with the non-linear dispersive waves solutions of the
Korteweg-de-Vries equations (KdV) namely solitons, as in the experiments of Falcon et al. [27]. Therefore,
we have chosen to remove any ambiguity and to introduce the expression ”Linear dispersive undulating
depression”. As a first approximation, it can be seen as the solution of the linearized KdV equation with an
initial negative polarity condition without topological jumps at infinities : one notice the rounded shape of
the fore front depression which is characteristic of linear structure as opposed to the constant slope behavior
of non linear solutions like the ones used by Trillo et al. [26].
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Figure 6: Side view of an Ekman-like experiment, for different towing forces. Red curves correspond to the
pycnocline interfaces.
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Region Of Interest

z starter

Figure 7: Experimental devices. (Top) the Ekman-like experimental setup. The model ship is towed in the
middle of the canal by a system of pulleys. The red cube symbolized the traction mass. With a starter mass
(the lower red cube) put initially close to the ground, it is possible to overcome the wave-making resistance
crisis la Scott Russell (see Figure S8). (Bottom) the Scott Russell-like experimental setup. A system of
pulleys raises an obstacle initially immerged in the lower layer, generating an internal dispersive undulating
depression.
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Figure 8: Effect of a thickness in the density stratification on dispersion relations. The blue dashed curve is
the dispersion relation proposed by Stokes [23] for a step density stratification. In red, the dispersion relation
proposed by Fructus and Grue [14] for a density stratification with a gentle slope. In inset, the density profile.
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Figure 9: The longitudinal spreading of the dispersive undulating depression over time in the Ekman-like
experiment. Blue dotted curve symbolizes the skewness γ1, solid red curve is the ratio between the amplitude
and the half-width of the dispersive undulating depression front Aw/Lw . Skewness is a measure of the
asymmetry of the wave front. If γ1 = 0, the wave front is a Gaussian (solitonic behaviour); γ1 > 0, the right
tail is longer; γ1 < 0, the left tail is longer. Configuration data in Tables S1.
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Figure 10: Viscous drag (speed below the Landau threshold of 0.23 m · s−1 [22]) drag measurements in a
homogeneous fluid (without stratification), according to the asymptotic ship speed.
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Figure 11: Experimental visualization of the 3D behavior of a classical internal wake, illustrating the nu-
merical calculation of Figure 5 in the case Bb/W = 0.27. The reflections on the channel’s edge generate an
alternation of amplitude maxima in the center and at the edge of the channel.See SI movie 5.
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Figure 12: Impact of the Bb/W ratio on dynamic of the ship (with Bb the beam and W the channel’s
width). The results were obtained by numerical simulations. Horizontal confinement increases the number
of oscillations in speed.
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Figure 13: Ship dynamics as a function of lateral confinement Bb/W (with Bb the boat beam and W the
channel width) and of the ratio between the traction force and the ship’s weight Ft/(mbg). The results were
obtained by numerical simulations. On the 3D plot (A): continuous lines represent the asymptotic speeds
without an additional starter mass; Colored areas denote the amplitude of the speed oscillations; Dotted
lines represent the asymptotic speeds with an additional starter mass. On the Bb/W |Vb/ccrit projection (C):
the color gradient represents the speed oscillations’ amplitudes before reaching the asymptotic regime. On
the Bb/W |Ft/(mbg) projection (D): the metastable region is not accessible with a constant mass during the
whole experiment because by changing adiabatically the mass value one can only probe the discontinuous
transition from the subcritical (green) to the supercritical (yellow) region. It is necessary to temporarily use
an additional starter mass to overcome the drag crisis la Scott Russell [16] to reach the metastable region: this
non-adiabatic behavior is similar to the mono-layer case as described by Forester in the novel Hornblower
and the Atropos [28] ”Hornblower noticed that the boatmen had the trick of lifting the bows, by a sudden
acceleration, onto the crest of the bow raised by her passage, and retaining them there. This reduced the
turbulence in the canal to a minimum; it was only when he looked aft that he could see, far back, the reeds at
the banks bowing and straightening again long after they had gone by. It was this trick that made the fantastic
speed possible”. Another possibility is to vary spatially a fluid’s parameter (layers depths or densities). The
unstable region is not accessible asymptotically with a constant traction mass. On the Ft/(mbg)|Vb/ccrit

projection (B): in the subcritical stable region (Vb/ccrit < 1), the lateral confinement accentuates the internal
drag with a diminished speed whereas, in the supercritical stable region (Vb/ccrit > 1), the lateral confinement
decreases the internal drag with an increased speed.
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Table 1: Parameters used in an Ekman-like experiment.

Parameters Symbols Values Units

Tank Dimensions L×W ×H 3× 0.37× 00.4 m3

Traction Towing mass mt [0.5− 1.8]× 10−3 kg

Ship
Dimensions Lb ×Bb × Tb 0.20× 0.10× 0.024 m3

Mass mb 0.354 kg
Asymptotic speed VS [0.03− 0.2] m · s−1

Upper layer
Depth h1 0.05 m
Density ρ1 999.0 kg ·m−3

Lower layer
Depth h2 0.05 m
Density ρ2 1023.7 kg ·m−3

Stratification
Density jump (ρ2 − ρ1) /ρ2 0.0241
Pycnocline thickness δ 0.005 m

Constant buoyancy frequency N0 =
√
− g
ρ2

∂ρ
∂z
≈

√
g
ρ2

ρ2−ρ1
δ

6.87 s−1

Maximum phase velocity cφ =
√
g ρ2−ρ1

ρ2

h2h1
h2+h1

0.077 m · s−1

Critical speed ccrit = 0.8cφ 0.061 m · s−1

Internal Froude number Fr = Vs/ccrit [0.3− 2]

Space-time domain

Experimental frame rate fac 45 s−1

Acquisition time tac [30− 65] s
Spatial resolution ∆x 5.6× 10−4 m
ROI length Lac 2.25 m

Spectral domain

Maximal angular frequency ωmax = 2πfac 283 rad · s−1

Frequency resolution ∆ω = 2π/tac [0.097− 0.21] rad · s−1

Maximal wavenumber kmax = 2π/∆x 1.12× 104 rad ·m−1

Wavenumber resolution ∆k = 2π/Lac 2.79 rad ·m−1
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Table 2: Parameters used in a Scott Russell-like experiment.

Parameters Symbols Values Units

Tank Dimensions L×W ×H 3× 0.37× 00.4 m3

Obstacle
Dimensions LSR ×WSR ×HSR 0.119× 0.37× 0.04 m3

Draft TSR 0.024 m
Asymptotic speed VS [0.03− 0.2] m · s−1

Upper layer
Depth h1 0.05 m
Density ρ1 999.8 kg ·m−3

Lower layer
Depth h2 0.126 m
Density ρ2 1024.8 kg ·m−3

Stratification
Density jump (ρ2 − ρ1) /ρ2 0.0240
Pycnocline thickness δ 0.025 m

Constant buoyancy frequency N0 =
√
− g
ρ2

∂ρ
∂z
≈

√
g
ρ2

ρ2−ρ1
δ

3.07 s−1

Maximum phase velocity cφ =
√
g ρ2−ρ1

ρ2

h2h1
h2+h1

0.094 m · s−1

Critical speed ccrit = cφ 0.094 m · s−1

Space-time domain

Experimental frame rate fac 25 s−1

Acquisition time tac 328 s
Spatial resolution ∆x 5.6× 10−4 m
ROI length Lac 2.25 m

Spectral domain

Maximal angular frequency ωmax = 2πfac 157 rad · s−1

Frequency resolution ∆ω = 2π/tac 0.019 rad · s−1

Maximal wavenumber kmax = 2π/∆x 1.12× 104 rad ·m−1

Wavenumber resolution ∆k = 2π/Lac 2.79 rad ·m−1
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Movie S1. Side view of an Ekman-like experiment (Bb/W = 0.27), for different towing forces with pycnocline
detection.

Movie S2. Detection of the pycnocline in an Ekman-like experiment. The internal wake and the dispersive
undulating depression have been disentangled and plotted.

Movie S3. Side view of an Ekman-like experiment (Bb/W = 0.95), for different towing forces without
pycnocline detection.

Movie S4. Side views of a homogeneous fluid experiment, an Ekman-like experiment, a Scott Russell-like
experiment and a numerical calculation in the same configuration.

Movie S5. Experimental movie illustrating the 3D behavior of a classical internal wake with Bb/W = 0.27.
The reflections on the channel’s edge generate an alternation of amplitude maxima in the center and at the
edge of the channel.
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