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We introduce different classical characteristics used to regularize a subharmonic function and compare them.

As an application we give a complete proof of a useful characterization of the modulus of continuity of such functions in terms of these characteristics under a technical condition. This result is extended to quasi-plurisubharmonic functions on a compact Hermitian manifold.

Introduction

Given a subharmonic function u on a domain Ω ⊂ R n , we introduce various continuous approximating functions of u and use them to define various "partial moduli of continuity" associated to u. These moduli have been used in many papers to measure in different ways the continuity of solutions to complex Monge-Ampère equations on bounded domains in C n as well as on compact complex manifolds (see [START_REF] Guedj | Hölder continuous solutions to Monge-Ampère equations[END_REF], [START_REF] Demailly | Hölder Continuous Solutions to Monge-Ampère Equations[END_REF], [N18], [START_REF] Ko Lodziej | A remark on the continuous subsolution problem for the complex Monge-Ampère equation[END_REF], [START_REF] Benali | The Hölder continuous subsolution theorem[END_REF]) .

The goal of this note is to clarify the relations between these moduli and establish estimates on the (full) modulus of continuity of a subharmonic function in terms of these partial moduli of continuity.

Let Ω ⊂ R n be a domain and u : Ω -→ R ∪ {-∞} be a subharmonic function on Ω.

We fix δ 0 > 0 so that Ω δ 0 := {x ∈ Ω ; dist(x, ∂Ω) > δ 0 } = ∅. For 0 < δ < δ 0 , we can define the δ-mean value function associated to u as follows We can also consider the δ-max regularization of u defined as follows:

(1.2) M δ u(x) := max y∈B u(x + δy), for x ∈ Ω δ and 0 < δ < δ 0 .

We have obviously Λ δ u(x) ≤ M δ u() for any x ∈ Ω δ . Moreover these functions are continuous and subharmonic on Ω δ and decrease to u pointwise on Ω.

We consider a modulus of continuity κ : R + → R + which satisfies the following condition:

(1.3) ∃A > 0, lim sup

t→0 + κ(At) Aκ(t) < 1 2n •
The main result of this note is the following.

Main Theorem. Let u : Ω -→ R be a bounded subharmonic function on Ω and κ a modulus of continuity satisfying the condition (3.1). Assume that there exists a constant C 0 > 0 and 0 < δ 1 < δ 0 such that for 0 < δ < δ 1 ,

(1.4) Λ δ u(x) -u(x) ≤ C 0 κ(δ), for x ∈ Ω δ .
Then there exists constants B > 1, ε 0 > 0 with Bε 0 < δ 1 and a constant C > 0 such that for 0 < δ < ε 0 and x ∈ Ω Bδ , we have

(1.5) M δ u(x) -u(x) ≤ C κ(δ).
In particular u is κ-continuous on any compact subset E Ω.

Observe that the condition of the theorem is satisfied for any harmonic function, regardless on its regularity at the boundary. Hence we cannot expect to conclude anything about the full modulus of continuity of u on the whole domain Ω.

However if we know about the behaviour of u near the boundary we can get a better control on the modulus of continuity of u on Ω.

Corollary. Let u : Ω -→ R be a bounded subharmonic function on Ω and κ a modulus of continuity satisfying the condition (1.3).

Assume that u satisfies the condition (1.4) and extends as a κ-continuous function near the boundary. Then u is κ-continuous on Ω i.e.

(1.6) |u(x) -u(y)| ≤ L κ(|x -y|),
for any x, y ∈ Ω, where L > 0 is a uniform constant.

Let us recall the definition of κ-continuity near the boundary. Set for

δ > 0, κu (δ) := sup{|u(x) -u(y)|; y ∈ ∂Ω, x ∈ Ω ∩ B(y, δ)}•
It is easy to see that if u is continuous on ∂Ω, then lim δ→0 κu (δ) = 0. Then we say that u : Ω -→ R is κ-continuous near the boundary if there exists a constant C > 0 such that κu (δ) ≤ Cκ(δ) for δ > 0 small enough.

Characteristics associated to a subharmonic functions

Let Ω ⊂ R n be a domain. We denote by SH(Ω) ⊂ L 1 loc (Ω) the set of subharmonic functions on Ω. We will will first introduce differents characteristics associated to u and compare them. Then we prove some average estimates on them.

2.1. Basic definitions. Let u ∈ SH(Ω). We will associate to u the following characteristics. Set Ω δ := {x ∈ Ω; dist(x, ∂Ω) > δ} for 0 < δ ≤ δ 0 , where δ 0 > 0 is fixed so that Ω δ 0 = ∅.

Fix 0 < δ < δ 0 and x ∈ Ω δ . Define the max characteristic of u as follows

(2.1) M δ u(x) := max B(x,δ) u = max |ξ|=1 u(x + δξ),
where B(x, r) := {y ∈ R n ; |y -x| ≤ r} is the closed euclidean ball of center x and radius r > 0.

We define the mean value volume characteristic of u

(2.2) Λ δ u(x) := 1 τ n r n B(x,δ) u(y)dλ n (y) = 1 τ n B u(x + δy)dλ n (y),
where dλ n is the Lebesgue measure on R n and τ n := λ n (B) is the volume of the unit ball B ⊂ R n . We define the mean value area characteristic of u

(2.3) A δ u(x) := 1 σ n-1 S u(x + δξ)dσ(ξ),
where dσ is the area measure of the unit sphere S = ∂B and σ n-1 is the area of the unit sphere S ⊂ R n . We consider more general mean value characteristics associated to the subharmonic function u.

Let ρ be a radial bounded Borel function with compact support in the unit ball B ⊂ R N such that B ρ(x)dλ n (x) = 1. This means in spherical coordinates that

(2.4) σ n-1 . 1 0 ρ(r)r n-1 dr = 1.
For δ > 0 and x ∈ R n , we set ρ δ (x) := δ -n ρ(x/δ). Then it's well known that ρ δ → 0 , in the sense of distributions on R n as δ → 0, where 0 is the unit mass Dirac distribution at the origin.

For x ∈ Ω δ , the smooth mean value characteristic of u is defined by (2.5)

R δ u(x) = u ρ δ (x) := B(x,δ) u(ξ)ρ δ (x-ξ)dλ n (ξ) = B u(x+δξ)ρ(ξ)dλ n (ξ).
Observe that if ρ = 1 τn 1 B then R δ u(x) = Λu δ (x). It is well known that all these functions are non decreasing in δ and convex in the variable t = k n (r), where k 2 (r) = log r and k n (r) := -r 2-n when n ≥ 3 (see [START_REF] Armitage | Classical Potential Theory[END_REF]).

2.2. Comparison of characteristics. We want to compare all these characteristics for a subharmonic function.

Lemma 2.1. Let Ω ⊂ R n be an open set and u ∈ SH(Ω). Then for any 0 < δ < δ 0 and x ∈ Ω δ , we have

b n A δ/2 u(x) -u(x) ≤ R δ u(x) -u(x) ≤ A δ u(x) -u(x), In particular, b n A δ/2 u(x) -u(x) ≤ Λu δ (x)-u(x) ≤ A δ u(x)-u(x) ≤ M δ u(x)-u(x),
where b n := 1 1/2 ρ(r)r n-1 dr < 1/σ n-1 . Proof. Fix 0 < δ < δ 0 and x ∈ Ω δ . Using spherical coordinates, we see that

R δ u(x) = 1 0 ρ(r)r n-1 S u(x + rδξ)dσ(ξ) dr = σ n-1 1 0 ρ(r)r n-1 A rδ u(x)dr.
Therefore by the equation (2.4), we deduce that for any fixed

x ∈ Ω δ (2.6) R δ u(x) -u(x) = σ n-1 1 0 ρ(r)r n-1 (A rδ (x) -u(x)) dr.
Since the function ]0, δ] s → A s u(x) -u(x) in non-negative and nondecreasing, it follows that

(2.7) b n (A δ/2 u(x) -u(x)) ≤ R δ u(x) -u(x) ≤ A δ u(x) -u(x),
where b n := 1 1/2 ρ(r)r N -1 dr < 1. Now applying the formula (2.6) with ρ = 1 τn 1 B , we obtain

Λ δ/2 u(x) -u(x) = n 1 0 r n-1 (A rδ/2 u(x) -u(x))dr, since σ n-1 = nτ n .
Applying the inequality (2.7) we obtain for 0 < δ < δ 0 and x ∈ Ω δ

Λ δ/2 u(x) -u(x) ≤ A δ/2 u(x) -u(x) ≤ b -1 n (R δ u(x) -u(x)).
Now we want to compare the supnorm and the mean value of a subharmonic function on balls.

Lemma 2.2. There exists δ 0 > 0 small enough and a constant a n > 0 such that for any 0 < δ < δ 0 , 0 < θ < 1 and x ∈ Ω δ , we have

M θδ u(x) -u(x) ≤ c n (A δ u(x) -u(x)) + c n 2 n θ (1 -θ) n-1 S (u(x + δy) -u(x)) + dσ(y)• (2.8)
In particular

M δ/2 u(x) -u(x) ≤ c n (A δ u(x) -u(x)) + 4 n c n S (u(x + δy) -u(x)) + dσ(y).
(2.9)

Proof. Assume first that u is subharmonic in a neighbourhood of the closed ball B. It follows from Poisson-Jensen formula for the unit ball B (see [START_REF] Armitage | Classical Potential Theory[END_REF]) that (2.10) u(x) ≤ S P (x, y)u(y)dσ(y), x ∈ B, where

P (x, y) := c n 1 -|x| 2 |x -y| n , (x, y) ∈ B × ∂B, is the Poisson kernel of the unit ball B ⊂ R n .
Since S P (x, y)dσ(y) = 1, it follows from (2.10) that for any x ∈ B,

(2.11) u(x) -u(0) ≤ S P (x, y)(u(y) -u(0))dσ(y) = I + (u) + I -(u),
where (2.12)

I + (u) := {y∈S;u(y)≥u(0)} P (x, y)(u(y) -u(0)) dσ(y),

and

(2.13)

I -(u) := {y∈S;u(y)≤u(0)} P (x, y)(u(y) -u(0)) dσ(y).
Since for 0 < r < 1 and |x| = r, we have

(2.14) c n 1 -r (1 + r) n-1 ≤ P (x, y) ≤ c n 1 + r (1 -r) n-1 ,
it follows from (2.12) and (2.14) that for |x| = r < 1, (2.15)

I + (u) ≤ c n 1 + r (1 -r) n-1 {y∈S;u(y)≥u(0)} (u(y) -u(0)) dσ(y).
Moreover, it follows from (2.13) and (2.14) that for |x| = r < 1, (2.16)

I -(u) ≤ c n 1 -r (1 + r) n-1 {y∈S;u(y)≤u(0)} (u(y) -u(0)) dσ(y).
Therefore from (2.15), (2.16) and (2.11), we deduce that

u(x) -u(0) ≤ c n 1 + r (1 -r) n-1 {y∈S;u(y)≥u(0)} (u(y) -u(0)) dσ(y) + c n 1 -r (1 + r) n-1 {y∈S;u(y)≤u(0)} (u(y) -u(0)) dσ(y).
Observe that for r < 1,

1 + r (1 -r) n-1 ≤ 1 + 2 n r (1 -r) n-1 , and 1 -r (1 + r) n-1 ≥ 1 -nr. This implies that max |x|=r u(x) -u(0) ≤ c n S (u(y) -u(0)) dσ(y) + c n 2 n r (1 -r) n-1 S (u(y) -u(0)) + dσ(y) -nc n r S (u(y) -u(0)) -dσ(y).
Now in the general case fix δ 0 > 0 small enough so that Ω 2δ 0 = ∅. We fix x ∈ Ω 2δ so that B(x, 2δ) ⊂ Ω and apply the previous inequality to the function y -→ u(x + δy) which is subharmonic in a neighbourhood of the unit ball B. We then obtain for 0 < r < 1 max

B(x,rδ) u -u(x) ≤ c n S (u(x + δy) -u(x)) dσ(y) + c n 2 n r (1 -r) n-1 S (u(x + δy) -u(x)) + dσ(y) -nc n r S (u(x + δy) -u(x)) -dσ(y).
Since the last term is non positive, the inequality of the lemma follows.

We can easily deduce the following result.

Corollary 2.3. Let u be a bounded subharmonic function on a bounded domain Ω ⊂ R n . Assume that there exists α ∈]0, 1] and κ 1 > 0 such that for any 0 < δ < 2δ 0 and x ∈ Ω δ , we have

R δ u(x) ≤ u(x) + κ 1 δ α .
Then there exists κ 2 > 0 and 0 < δ 1 << 1 such that for any δ < δ 1 and x ∈ Ω δ , we have

M δ u(x) ≤ u(x) + κ 2 δ α/(1+α) .
Proof. Apply Lemma 2.2 with θ = δ α . Then for δ < δ 1 < 2 -1/α and x ∈ Ω δ 1+α , we have

M δ 1+α u(x) -u(x) ≤ c n κ 1 δ α + L n M δ α .
where M := oscΩu is the oscillation of u on Ω and L n > 0 is a uniform constant. Relpacing δ by δ 1/(1+α) we obtain that u is Hölder continuous with exponent α/(1 + α) and κ 2 := a n κ 1 + nM L n .

2.3. Average estimates. We first recall a well know result which is important in applications. This result is shown in [?], beut we will recall the proof here for the convenince of the reader.

Lemma 2.4. Let u be subharmonic function on a bounded domaine Ω ⊂ R n . Then there exists a uniform constant e n > 0 such that for 0 < δ < δ 0 ,

Ω δ (A δ u(x) -u(x)) dy ≤ e n ∆u Ω δ δ 2 .
Proof. Let µ := (1/2π)∆u be the Riesz measure of u on Ω. It follows from Poisson-Jensen formula that for x ∈ Ω with u(x) > -∞, we have

A δ u(x) -u(x) = δ 0 t 1-n (µ(B(x, t))dt.
Then integrating on x over Ω and applying Fubini's Theorem we obtain

A δ u(x) -u(x)dλ n (x) ≤ δ 0 t 1-n Ω δ dµ(ζ) (B(ζ,t) dλ n (z)dt ≤ τ n µ(Ω δ ) δ 0 t dt = τ n µ(Ω δ )δ 2 /2,
where τ n = λ n (B) is the volume of the unit ball in R n . This proves the Lemma.

Corollary 2.5. Assume that u is a subharmonic function on a bounded domain Ω ⊂ R n . Then for any 0 < δ < δ 0 /2, we have

Ω 2δ (M δ u -u)dλ n ≤ p n Ω 2δ (A 2δ u -u)dλ n + q n δ ∇u L 1 (Ω δ ) ,
where p n , q n > 0 are uniform constants.

In particular

Ω 2δ (M δ u -u)dλ n ≤ p n ∆u Ω 2δ δ 2 + q n ∇u L 1 (Ω δ ) δ,
where p n , q n > 0 are uniform constants.

Proof. We apply Lemma 2.2 and integrate over Ω 2δ . Then for 0 < δ < 2δ 0 ,

Ω 2δ (M δ u(x) -u(x))dλ(x) ≤ c n b n Ω 2δ (A 2δ u(x) -u(x)) + c n 2 2n-2 S Ω 2δ |u(x + δy) -u(x)|dλ(x) dσ(y),
where p n = c n b n and q n := c n 2 2n-2 . We claim that for fixed x ∈ Ω δ and 0 < δ < δ 0 /2, we have

(2.17)

Ω 2δ |u(x + δy) -u(x)|dλ(x) ≤ δ ∇u L 1 ( Ωδ ) .
Indeed assume first that u is smooth. Now observe that for |y| = 1, we have

u(x + δy) -u(x) = δ 0 Du(x + ty) • ydt.
Then using Fubini's Theorem, we obtain Integration over Ω 2δ leads to the inequality (2.17). For a non smooth function u, we can approximate u by a decreasing sequence (u j ) of smooth subharmonic functions on a neighbourhood V of Ωδ so that Du j → Du in L 1 (V ) and almost everywhere on V . Applying the inequality (2.17) to the u j 's and passing to the limit, we obtain by Fatou's lemma the inequality (2.17) for u.

More general moduli of continuity

We want to show that the sup-regualrization and the mean value regularisation have the same behaviour for a large class of moduli of continuity. Namely we will prove an important result which confirms a lemma stated in [START_REF] Guedj | Hölder continuous solutions to Monge-Ampère equations[END_REF] and used in the litterature for a Hölder modulus of continuity. Chinh H. Lu discovered recently a gap in the proof of [START_REF] Guedj | Hölder continuous solutions to Monge-Ampère equations[END_REF] which was fixed in [START_REF] Lu | Stability and Hölder regularity of solutions to complex Monge-Ampère equations on compact hermitian manifolds[END_REF] in the case of a compact hermitian manifold (without boundary) following the same scheme.

We will follow the same scheme as in [START_REF] Guedj | Hölder continuous solutions to Monge-Ampère equations[END_REF] and use a new idea of [START_REF] Lu | Stability and Hölder regularity of solutions to complex Monge-Ampère equations on compact hermitian manifolds[END_REF] to prove a more general result.

A new characterization. Let us first give some definitions.

Let κ : [0, l] -→ R + be a modulus of continuity i.e. a continuous increasing subadditive function such that κ(0) = 0.

We will consider the following growth condition on κ.

(3.1) ∃A > 0, lim sup

t→0 + 2nκ(At Aκ(t) < 1.
Observe that this condition holds for a logarithmic Hölder modulus of continuity defined by κ α,β (t) = t α (-log t) β , 0 < t < t 0 < 1 with 0 ≤ α < 1 and β ∈ R, with β < 0 if α = 0 and t 0 > 0 is chosen so small that κ α,β is concave on [0, t 0 ]. However it's not satisfied by the modulus of continuity κ 1,β with β ≤ 0.

We need another definition.

Definition 3.1. We say that a function u : Ω -→ R is κ-continuous near the boundary ∂Ω if there exits ε 0 > 0 small enough such that for any ζ ∈ ∂Ω and z ∈ Ω with |z -ζ| ≤ ε 0 , we have

(3.2) |u(z) -u(ζ)| ≤ κ(|z -ζ|).
Observe that this condition implies the continuity of u on ∂Ω and it is satisfied if there exists two functions v, w κ-continuous near the boundary such that v ≤ u ≤ w near the boundary and v = u = w on ∂Ω.

We need to introduce one more characteristic associated to u. For 0 < δ < δ 0 , we set

O δ u(x) := osc B(x,δ) u = max{|u(y 1 ) -u(y 2 )|; y 1 , y 2 ∈ B(x, δ)}•
Now we can sate the main result of this note. Theorem 3.2. Let κ be a modulus of continuity satisfying the condition (3.1) and u : Ω -→ R be a bounded function which is subharmonic on Ω and κ-continuous near the boundary ∂Ω.

Then the following properties are equivalent :

(1) there exists a constant L 1 > 0 and 0 < δ 1 < δ 0 such that for

0 < δ < δ 1 , M δ u(x) -u(x) ≤ L 1 κ(δ), for x ∈ Ω δ , (2 
) there exists constants L 2 > 0 and 0 < δ 2 < δ 0 such that Bδ 2 < δ 0 and for 0 < δ < δ 2 ,

R δ u(x) -u(x) ≤ L 2 κ(δ), for x ∈ Ω δ ,
(3) there exists a constants B > 1, L 3 > 0 and 0 < δ 3 < δ 0 such that for 0 < δ < δ 3 , O δ u(x) ≤ L 3 κ(δ), for x ∈ Ω Bδ , (4) the function u is κ-continuous on Ω i.e. there exists a constant L 3 > 0 and 0 < δ 3 < δ 0 such that for any x ∈ Ω and y ∈ Ω with |x -y| ≤ δ 3 , we have

|u(x) -u(y)| ≤ L 3 κ(|x -y|).
Observe that the condition (2) is always satisfied for any harmonic function u on Ω, regardless of its behaviour at the boundary, while the condition (4) implies that the boundary values of u is κ-continuous on ∂Ω. Therefore (2) and ( 4) are not equvalent without any condition on the behaviour of u at the boundary.

The main step in the proof of our theorem is the following lemma whose proof is inspired from [START_REF] Guedj | Hölder continuous solutions to Monge-Ampère equations[END_REF] and [START_REF] Lu | Stability and Hölder regularity of solutions to complex Monge-Ampère equations on compact hermitian manifolds[END_REF].

Lemma 3.3. Let u : Ω -→ R be a bounded subharmonic function on Ω and κ a modulus of continuity satisfying the condition (3.1) . Assume that there exists a constant C 0 > 0 and 0 < δ 1 < δ 0 such that for 0 < δ < δ 1 ,

(3.3) R δ u(x) -u(x) ≤ C 0 κ(δ), for x ∈ Ω δ .
Then there exists constants B > 1, ε 0 > 0 with Bε 0 < δ 1 and a constant C 3 > 0 such that for 0 < δ < ε 0 and x ∈ Ω Bδ , we have

(3.4) O δ u(x) ≤ C 3 κ(δ).
In particular u is κ-continuous on any compact set E Ω.

Proof. We claim that the condition (3.1) implies that we can choose A > 2 large enough and δ 2 > 0 small enough such that (2A + 1)δ 2 < δ 1 and

(3.5) θ := 2n sup

0<t≤δ 2 κ((A + 1)t) Aκ(t) < 1.
Indeed by (3.1) we see that there exists A > 0, ν < 1/2n and 0 < δ 2 < δ 0 small enough such that sup

0<s≤δ 2 κ(A s) A κ(s) < ν < 1/2n.
Fix an integer N > 1 and apply this inequality for s = N t. Then by subadditivity of κ, we have for 0

< t < δ 2 := δ 2 /N , κ((N A t) N A κ(t) ≤ κ(N A t) A κ(N t) = κ(A s) A κ(s) < ν. Now choose N > 1 so large that N A > 3 and set A := N A -1 > 2.
Then the previous inequality implies that for 0 < t < δ 2 , κ(((A + 1)t)

Aκ(t) = κ((N A t) N A κ(t) N A A < ν N A A .
Since N A A = N A N A -1 → 1 as N → +∞ and ν < 1/2n, we can find N > 2 large enough so that ν N A A < 1/2n, which implies the inequality (3.5) and proves the claim. Now choose δ 2 > 0 so small that (2A + 1)δ 2 < δ 1 and fix 0 < δ < δ 2 . The first step of the proof follows the scheme given in [START_REF] Guedj | Hölder continuous solutions to Monge-Ampère equations[END_REF]. Observe that the condition (3.3) implies that u is continuous on Ω.

Let x 0 ∈ Ω (2A+1)δ . Then B(x 0 , δ ⊂ Ω and by continuity, there exists ξ 0 , y 0 ∈ B(x 0 , δ) such that

(3.6) O δ u(x 0 ) = u(y 0 ) -u(ξ 0 ).
Since dist(x 0 , ∂Ω) > (2A + 1)δ, we have B(ξ 0 , 2Aδ) ⊂ Ω. Set a := A -2 > 0 and r := Aδ = (a + 2)δ. Then by Lemma 2.1, it follows that

(3.7) R 2r u(ξ 0 ) -u(ξ 0 ) ≥ b n (Λ r u(ξ 0 ) -u(ξ 0 )) , where b n := σ n-1 1 1/2 s n-1 ρ(s)ds. Since B(y 0 , aδ) ⊂ B(ξ 0 , r) ⊂ Ω, we can write, 1 τ n r n B(ξ 0 ,r) u(y)dλ n (y) = 1 τ n r n B(y 0 ,aδ) u(y)dλ n (y) + 1 τ n r n B(ξ 0 ,r)\B(y 0 ,aδ) u(y)dλ n (y). (3.8)
By subharmonicity of u, we have 1

τ n r n B(y 0 ,aδ) u(y)dλ n (y) ≥ a n (a + 2) n u(y 0 ).
On the other hand, we have

1 τ n r n B(ξ 0 ,r)\B(y 0 ,aδ) u(y)dλ n (y) ≥ 1 - a n (a + 2) n (u(y 0 ) -O r+δ u(x 0 )) .
Therefore adding the last two inequalties, we obtain

Λ r u(ξ 0 ) -u(ξ 0 ) ≥ a n (a + 2) n u(y 0 ) -u(ξ 0 ) + 1 - a n (a + 2) n (u(y 0 ) -O r+δ u(x 0 )) = O δ u(x 0 ) -1 - a n (a + 2) n O r+δ u(x 0 ).
From (2.11) and the previous estimate, we deduce that

R 2r u(ξ 0 ) -u(ξ 0 ) ≥ b n (O δ u(x 0 ) -a n O r+δ u(x 0 )) ,
where a n := (1 -a n (a+2) n . The second step of the proof will use an idea of [START_REF] Lu | Stability and Hölder regularity of solutions to complex Monge-Ampère equations on compact hermitian manifolds[END_REF]. Set f (t) := O t u(x 0 ) and g(t) := R 2t u(ξ 0 ) -u(ξ 0 ) for 0 < t < δ 2 and observe that a n ≤ 2n A , with A := a + 2. Then for 0 < δ < δ 2 , we have

f (δ) ≤ (2n/A)f ((A + 1)δ) + (1/b n )g(Aδ).
Now since ξ 0 ∈ Ω 2Aδ and 2Aδ < δ 1 , it follows from (3.3) that g(Aδ) ≤ C 0 κ(2Ar). Then by subadditivity of κ, we have for 0

< δ < δ 2 f (δ) ≤ (2n/A)f ((A + 1)δ) + C 1 κ(δ),
where

C 1 := (2A + 1)C 0 /b n .
Consider the quotient function h(t) := f (t)/κ(t). From the previous estimate we deduce that for 0 < δ < δ 2 ,

h(δ) ≤ 2n κ((A + 1)δ) Aκ(δ) h(Bδ) + C 1 ,
where B := A + 1. Now as A > 2 is choosen so that the condition (3.1) is satisfied, there exits 0 < δ 3 < δ 2 so that for 0 < δ < δ 3 , we have 2n

=: θ < 1. Then for 0 < δ < δ 3 we have

h(δ) ≤ θh(Bδ) + C 1 ,
Iterating this inequality we see that for any 0 < δ < δ 3 and any k ∈ N, we have

(3.9) h(δB -k ) ≤ θ k h(δ) + C 2 ,
where C 2 := C 1 1 1-θ . We claim that this inequality implies that h(t) is bounded near 0. Indeed choose ε 0 > 0 such that B 2 ε 0 < δ 3 and set

M 0 := max{h(t) ; ε 0 ≤ t ≤ B 2 ε 0 }.
Fix 0 < t < ε 0 and choose an integer k so that tB k ∈ [ε 0 , B 2 ε 0 ]. Then applying the inequality (3.9) with δ = tB k we obtain

h(t) ≤ θ k h(tB k ) + C 2 ≤ M 0 + C 2 =: C 3 ,
which proves our claim.

Let E Ω be a compact set and r 0 := dist(E, ∂Ω) > 0. Then for 0 < δ < r 0 /(2A + 1) , E ⊂ Ω (2A+1)δ . Then we can apply the previous estimate and get for x ∈ E and y ∈ E with |x -y| ≤ δ, u(x) -u(y) ≤ C 3 κ(δ).

We do not know if the condition (3.3) implies that the condition (3.4) holds for any x ∈ Ω δ , nor if it implies that u is κ-continuous on Ω.

3.2. Proof of the main theorem. We are now ready to prove the main theorem stated in the introduction.

Proof. It follows from from the assuptions od the main theorem that u is continuous on Ω. Therefore we can find x 0 ∈ Ω, ξ 0 ∈ Ω such that |x 0 -ξ 0 | ≤ δ and (3.10)

κ u (δ) = sup ξ,x∈ Ω(u(ξ) -u(x)) = u(ξ 0 ) -u(x 0 ).
Take 0 < δ 3 small enough so that (B + 1)δ 3 < δ 2 and fix 0 < δ < δ 3 . Then there are two cases to be considered for the point x 0 .

1) If x 0 ∈ Ω and dist(x 0 , ∂Ω) > Bδ, then x 0 ∈ Ω Bδ and ξ 0 ∈ B(x 0 , δ) and then by the inequality (3.4) we have κ u (δ) = u(ξ 0 ) -u(x 0 ) ≤ L 3 κ(δ).

2) If x 0 ∈ Ω and dist(x 0 , ∂Ω) ≤ Bδ, we can choose y 0 ∈ ∂Ω such that |y 0 -x 0 | = dist(x 0 , ∂Ω) ≤ Bδ. Then |ξ 0 -y 0 | ≤ (B + 1)δ ≤ ε 0 and |y 0 -x 0 | ≤ ε 0 . Since u is κ-continuous near the boundary , taking δ 3 small enough, it follows that |u(x 0 ) -u(y 0 )| ≤ C 0 κ(Bδ) and |u(ξ 0 ) -u(y 0 )| ≤ C 0 κ((B + 1)δ).

This implies that

κ u (δ) = u(ξ 0 ) -u(x 0 ) ≤ u(ξ 0 ) -u(y 0 ) + u(y 0 ) -u(x 0 ) ≤ C 0 κ(Bδ) + C 0 κ((B + 1)δ,
which by subadditivity implies κ u (δ) ≤ 2(B + 2)C 0 κ(δ). This proves the theorem.

Question : Is the main theorem true for for any modulus of continuity?

3.3. The case of quasi-plurisubharmonic functions. Let (X, ω) be a compact Hermitian manifold of complex dimension n. Let d be the geodesic distance on X associated to the metric ω. Let ϕ be an ωplurisubharmonic function on X. We define the modulus of continuity of ϕ as follows. For δ > 0 set

(3.11) κ ϕ (δ) := sup{ϕ(x) -ϕ(y) ; (x, y) ∈ X 2 , d(x, y) ≤ δ}.
On the other hand, we can define the local regularization R δ ϕ of ϕ on a neighbourhood of each point x 0 using a local chart (U, F ) centered at x 0 as follows : if F : U -→ C n is a biholomorphism from a neighbourhood U of x 0 to a bounded domain Ω

C n such that F (x 0 ) = 0. Then we define for x ∈ U

δ := F -1 (Ω δ ), R δ ϕ(x) := (ϕ • F -1 ) δ • F (x),
where Ω δ := {z ∈ Ω ; dist(z, ∂Ω) > δ} and (ϕ • F -1 ) δ is the standard regularization of the quasi-psh function ϕ • F -1 on Ω.

We consider a modulus of continuity κ : [0, l] -→ R + satisfying the following growth condition (3.12) ∃A > 0, lim sup

t→0 + 4nκ(At Aκ(t) < 1.
The following result was used in [START_REF] Demailly | Hölder Continuous Solutions to Monge-Ampère Equations[END_REF] for a Hölder modulus of continuity and was proved recently in [START_REF] Lu | Stability and Hölder regularity of solutions to complex Monge-Ampère equations on compact hermitian manifolds[END_REF] in that case. We will prove the following more general version using our previous results.

Theorem 3.4. Let κ be a modulus of continuity satisfying the condition (3.12) and ϕ : X -→ R be a bounded ω-plurisubharmonic function on X. Assume that for any point x 0 ∈ X there exists a local chart (U, z) contered at x 0 and constants C 1 > 0 and 0 < δ 1 << 1 such that for any x ∈ U and any 0 < δ < δ 1 ,

(3.13) R δ ϕ(x) -ϕ(x) ≤ C 1 κ(δ),
where R δ ϕ is a local regularization of ϕ in the local chart U . Then there exists a constant C 2 > 0 such that for any x ∈ X and y ∈ X, we have

|u(x) -u(y)| ≤ C 2 κ(d(x, y)).
Proof. It follows from our hypothesis that the function u is continous on X. Indeed fix an arbitrary point x 0 ∈ X and localize the problem in a neighbourhood of x 0 so that the inequailty (3.13) is staisfied. Fix a neighbourhood Y of x 0 in U and a biholomorphism F : Y -→ F (Y ) ⊂ C n from Y to a neighbourhood of the closed euclidean unit ball B ⊂ C n so that the point x 0 is sent onto 0. Since ω > 0 there exists a constant C > 0 such that β ≤ ω ≤ Cβ on Y , where F * (β)) is a multiple of the standard Kähler form on C n . Since u is ω-plurisubharmonic, and ω ≥ β, u is β-plurisubhramonic on Y and we can choose a local smooth potential w for β on Y so that the function v := ϕ + w is plurisubharmonic on Y . Since d ω (x, y) ∼ d β (x, y) on Y and R δ v = R δ ϕ + O(δ) on Y , we are then reduced to the case where v is a plurisubharmonic function on a neighbourhood of B which satisfies R δ v -v ≤ L 1 κ(δ) on a neighbourhood of B for some constant L 1 > 0. This implies that v is continuous on B, hence u is continuous on a neighbourrhood of x 0 . This proves the continuity of ϕ on X since x 0 was arbitrary.

In remains to prove the estimate on the modulus of continuity of ϕ. By continuity of u there exists (x δ , y δ ) ∈ X 2 such that d(x δ , y δ ) ≤ δ and κ ϕ (δ) = ϕ(x δ ) -ϕ(y δ ).

We want to show that there exists a constant C 2 > 0 such that lim sup

δ→0 + κ ϕ (δ) κ(δ) ≤ C 2 .
It's enough to show that the limsup along any sequence δ j → 0 is uniformly bounded by the same constant C 2 . Up to extracting a subsequence, we can assume by compactness that there exists a point x 0 ∈ X such that (x δ j , y δ j ) → (x 0 , x 0 ) as j → +∞.

Since R δ v -v = R δ ϕ -ϕ + O(δ), applying the previous localization process at the point x 0 , we are reduced to the case where v is a plurisubharmonic function on a neighbourhood Ω of B which satisfies R δ v -v ≤ C 1 κ(δ) on a neighbourhood of B. Then we can assume that all the points x δ j and y δ j belong to B for any j ∈ N.

From Lemma 3.3 there exists a constant L 2 > 0 such that for j > 1 large enough, we have v(x δ j ) -v(y δ j ) ≤ L 2 κ(δ j ), which implies that κ ϕ (δ j ) = ϕ(x δ j ) -ϕ(y δ j ) ≤ C 2 κ(δ j ). The theorem is proved.
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  + δξ)dλ B (ξ), for x ∈ Ω δ := {x ∈ Ω ; dist(x, ∂Ω) > δ}, where λ B is the normalized Lebesgue measure on the euclidean unit ball B ⊂ R n .
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