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Attempt is made to derive the Obukhov length as a nondimensionalization scale of partial differential equations governing a turbulent system. When the Richardson number, Ri, is the order of unity or less, this length can be derived as a vertical scale for the nondimensionalizeation based on a balance between the vertical buoyancy flux and the shear-generation terms in the turbulent kinetic energy (TKE) equation. On the other hand, when the Richardson number, Ri, is much larger than unity, the vertical scale is controlled by the buoyancy rather than the background shear. In this case, a characteristic scale is defined by a ratio between the vertical buoyancy eddy flux and a mean vertical advection rate of buoyancy controlled by background stratification. This scale is akin to the buoyancy scale or the external static-stability scale considered in the literature. Moreover, a third characteristic scale is identified as a ratio between the TKE vertical flux and the vertical buoyancy flux. This scale is valid independent of the Richardson number, thus it may be considered an alternative length scale for a turbulence similarity theory.

Introduction

Theories of atmospheric boundary-layer turbulence have been developed by heavily relying on the so-called dimensional analyses [START_REF] Barenblatt | Scaling, Self-Similarity, and Intermediate Asymptotics[END_REF]. This methodology is alternatively called the scaling approach in atmospheric boundarylayer studies, as reviewed by e.g., [START_REF] Holtslag | Scaling the atmospheric boundary layer[END_REF]Nieuwstadt (1986), Foken (2006). Some key variables controlling a given regime of turbulence are first identified, then various characteristic scales of the system (length, velocity, temperature, etc) are determined from these key controlling variables by a dimensional consistency. For example, the Obukhov length [START_REF] Obukhov | Turbulence in an atmosphere with a non-uniform temperature[END_REF]) is defined from the frictional velocity and the buoyancy flux from a dimensional analysis.

For performing a dimensional analysis correctly, a certain ingenuity is required for choosing proper controlling variables of a given system. No systematic methodology exists for choosing them, but the choice is solely based on physical intuitions. A wrong choice of controlling variables can lead to totally meaningless results (cf., [START_REF] Batchelor | Heat convection and buoyancy effects in fluids[END_REF]. With absence of an analytical solution to turbulent flows as well as difficulties in observations and numerical modelling, usefulness of those proposed scales is often hard to judge. As a result, the Obukhov length is hardly a unique choice. There are various efforts to introduce alternative scales as reviewed throughout the text, but the most notably one is a theory based on gradient-based scales [START_REF] Sorbjan | Local structure of stably stratified boundary layer[END_REF][START_REF] Sorbjan | Gradient-based scales and similarity laws in the stable boundary layer[END_REF][START_REF] Sorbjan | Similarity scaling system for stably stratified turbulent flows[END_REF].

However, the dimensional analysis is not a sole possibility of defining characteristic scales of a system. In atmospheric large-scale dynamics, they are typically derived by a nondimensionalization. Arguably, this procedure is more straightforward and formal: we simply introduce characteristic scales for all the variables for nondimensionalzing them. These scales cannot be arbitrary, because we expect that terms in the equation balance each other, thus their orders of magnitudes must match each other. These conditions, in turn, constrain these characteristic scales in a natural manner. Advantage of the nondimensionalization approach is that these scales are defined not only by dimensional consistencies, but also by requirements of balance between the terms in a system. The latter are stronger constraints than the former. The Rossby radius of deformation is a classical example of a characteristic scale identified by a nondimensionalization. This scale characterizes the quasi-geostrophic system (Sec. 3.12, Pedlosky 1987). The depth of the Ekman layer is another such example (Sec. 4.3, Pedlosky 1987).

The present paper attempts to derive the Obukhov length by following this principle of nondimensionalization. For this goal, the principle is applied to a turbulent system. This scale is a core of the celebrated Monin-Obukhov similarity theory [START_REF] Monin | Basic laws of turbulent mixing in the surface layer of the atmosphere[END_REF]. In spite of its importance in describing boundary-layer turbulence, the basis of this Obukhov scaling is often questioned. Especially, various studies suggest that this similarity theory breaks down in a strongly-stratified limit (cf., [START_REF] King | Some measurements of turbulence over an Antarctic ice shelf[END_REF][START_REF] Howell | Surface-layer fluxes in stable conditions[END_REF][START_REF] Mahrt | Stratified atmospheric boundary layers[END_REF]. Various efforts for generalization of the Monin-Obukhov theory already exist (e.g., [START_REF] Zilitinkevich | An extended similarity-theory for the stably stratified atmospheric surface layer[END_REF][START_REF] Zilitinkevich | Third-order transport due to internal waves and nonlocal turbulence in the stably stratified surface layer[END_REF], Zilitinkevich and Easu 2007). However, as far as the authors are aware of, all these efforts are under frameworks of the dimensional analysis. The present paper is going to suggest a procedure beyond those efforts by analysing governing equations of turbulence more directly.

A similar analysis is already performed by [START_REF] Mahrt | Momentum budget of gravity flows[END_REF] more specifically focusing on gravity-wave currents in the boundary layer. Unfortunately, he has only considered a first of step of the nondimensionalization, called "scale analysis" but without actually writing down a nondimensional set of equations.

Advantage of his study is, in turn, in actually solving a closed set of equations.

In contrast, the present study performs the nodimensionalization in a more systematic manner by taking equations for turbulence statistics. However, the chosen set of equations chosen is hardly self-contained. A full nondimensionalization of a turbulence model is performed by Nieuwstadt (1984). However, an adopted model already contains a closure, thus the final nondimensionalization result also depends on the closure. In the present study, we consider turbulence equations without closure for this reason. The present analysis is close in the spirit of [START_REF] George | A similarity theory for the turbulent plane wall jet without external stream[END_REF] in seeking to identify characteristic scales of a given system by directly examining a balance condition in a governing equation, although the latter study does not go through a path of nondimensionalization. Link of the present study to theirs further suggests possibilities of applying various methodologies of multiscale asymptotic expansions to the atmospheric boundary-layer problems, though such attempts are left for future studies.

The paper proceeds as follows. In the next section, the Richardson number is introduced by a nondimensionalization of a linear perturbation problem under a presence of a background vertical wind shear. This example serves for double purposes. First, since the Richardson number plays a key role in the Monin-Obukhov theory, its significance must be better identified in a selfcontained manner (cf., [START_REF] Lobocki | Analysis of vertical turbulent heat flux limit in stable conditions with a local equilibrium, turbulence closure model[END_REF]. Second, it provides a simple demonstration of how characteristic scales can be identified by a nondimensionalization procedure. Here, the analysis can also be performed for a fully nonlinear case as well, but without any major changes in conclusions, except for a consequence of absolute magnitudes of dependent variables can be estimated as a result. This is considered a standard problem in instabilities theories of fluid mechanics, originating from [START_REF] Miles | On the stability of heterogeneous shear flows[END_REF] and [START_REF] Howard | Notes on a paper by John W. Miles[END_REF]. In standard analyses, the Richardson number is introduced in retrospect only after solving the instability problem in dimensional form, with an exception of Sec. 8.1 of [START_REF] Townsend | The Structure of Turbulent Shear Flow[END_REF], which outlines a nondimensinalization procedure for this problem. A nondimensionalization is performed originally in this section, but merely intended to serve as a pedagogical purpose for a demonstration.

The main analyses are presented in Secs. 3 and4, where the turbulentkinetic energy (TKE) and the eddy buoyancy equations are examined, respectively. In these two sections, the nondimensionalization procedure is tailored towards a style of the similarity theory for the turbulence. A full nondimensionalization of this system under a standard procedure is provided in Appendix separately as a reference. Link to the similarity theory is discussed in Sec. 5, and the paper is concluded by final remarks in Sec. 6.

Throughout the paper, Boussinesq approximation is adopted for the analysis for a simplicity. Though an extension of the analysis under an anelastic approximation is relatively straightforward, there is no much advantage in this generalization, but only with a consequence of making the analysis more involved. For the same reason, a two-dimensional system is considered in Sec. 2 with x and z taken as horizontal and vertical coordinates, respectively.

The bar, ¯, and the prime, ′, signs are used throughout for designating the mean and the deviation from the former. The former is assumed to depend only on height, z. The latter corresponds to the turbulence fluctuation when a fully nonlinear problem is considered, as in Secs. 3 and 4. On the other hand, under a linear stability analysis in Sec. 2, the primed quantities designate the perturbation variables. Due to the linearization, the perturbation variables may grow to infinity under an unstable situation, whereas the turbulent fluctuations are bounded by full nonlinearity. Nevertheless, the formal definition of the prime sign itself does not change over these sections.

A Linear Perturbation Problem and the Richardson Number

As already stated, only a perturbation problem is considered in this section by neglecting the nonlinearity by following a standard shear instability problem [START_REF] Miles | On the stability of heterogeneous shear flows[END_REF][START_REF] Howard | Notes on a paper by John W. Miles[END_REF]. Also by following it, the viscosity is neglected in this section. Thus, the governing equations of the problem are given by:

∂u ′ ∂t + w ′ dū dz + ū ∂ ∂x u ′ = - ∂φ ′ ∂x , (1a) 
∂w ′ ∂t + ū ∂ ∂x w ′ = - ∂φ ′ ∂z + b ′ , ( 1b 
)
∂b ′ ∂t + w ′ d b dz = 0, ( 1c 
)
∂u ′ ∂x + ∂w ′ ∂z = 0. ( 1d 
)
Here, u and w are the horizontal and the vertical components of the velocity, φ the pressure divided by a reference density, b the buoyancy, which may be evaluated from the potential temperature, θ, as b = gθ/θ 0 , where g is the acceleration of the gravity, θ 0 is a reference value of the potential temperature.

For the moist atmosphere, the potential temperature must be furthermore replaced by the virtual potential temperature for accounting for a contribution of moisture to the buoyancy.

Nondimensionalizations are performed on the variables by designating the nondimensional variables by the dagger, †. The nondimensionalization scales for the dependent variables are designated by the subscript * . Thus,

u ′ = u * u † , w ′ = u * w † , φ ′ = φ * φ † , b ′ = b * b † , ∂ ∂t = 1 t * ∂ ∂t † , ∂ ∂x = 1 z * ∂ ∂x † , ∂ ∂z = 1 z * ∂ ∂z † ,
and also

ū = ū * ū † , dū dz = dū dz * dū † dz † , d b dz = d b dz * d b † dz † .
Here, the velocity and the spatial scales are not differentiated in horizontal and vertical directions for maintaining the order of magnitude of the pressure gradient the same in both directions, thus x * = z * and w * = u * . Also note that the background-state gradients, dū/dz and d b/dz, are nondimensionalized by directly using the scales for these gradients, rather than by ū/z * and b/z * , respectively, for the purpose deriving a standard definition of the Richardson number below.

By substitutions of those expressions into the equations, we find the following relations for the nondimensionalization scales:

t * = z * ū * , φ * = ū * u * , b * = ū * u * z * . (2a, b, c)
Here, the last relation can be interpreted as a definition of the length scale by re-writing it as:

z * = ū * u * b * , (3) 
if all the variables in the right hand side can be considered to be prescribed.

As a result, a nondimensionalized set of equations is given by

∂u † ∂t † + z * ū * dū dz * dū † dz † w † + ū † ∂u † ∂x † = - ∂φ † ∂x † (4a) ∂w † ∂t † + ū † ∂w † ∂x † = - ∂φ † ∂z † + b † (4b) ∂b † ∂t † + z * ū * 2 d b dz * d b † dz † w † = 0 (4c) ∂u † ∂x † + ∂w † ∂z † = 0 (4d)
Note that by choosing the nondimensionalization scales by Eqs. (2a, b, c), there is no constant factor in front of almost all the terms in the equations, except for the two in Eqs. (4a) and (4c). Here, by choosing a length scale, z * , in an appropriate manner, we can remove a constant factor from one of these two terms, but not from both of them.

There are two options for choosing the length scale, z * : (i) by setting a factor in front of the second term of Eq. (4a) unity, or (ii) by setting a factor in front of the second term in Eq. ( 4c) unity. The option (i) amounts to set the spatial scale (shear scale) as that of the background wind shear, and we obtain

z * = z * u ≡ ū * /(dū/dz) * . (5a) 
The option (ii) leads to

z * = z * b ≡ ū * /(d b/dz) 1/2 * . (5b)
We may call the latter the buoyancy-gradient scale.

As a result, the set of equations also reduces to with the option (i):

∂u † ∂t † + d ū † dz † w † + ū † ∂u † ∂x † = - ∂φ † ∂x † , ∂w † ∂t † + ū † ∂w † ∂x † = - ∂φ † ∂z † + b † , ∂b † ∂t † + Ri d b † dz † w † = 0, ∂u † ∂x † + ∂w † ∂z † = 0,
and with the option (ii):

∂u † ∂t † + Ri -1/2 dū † dz † w † + ū † ∂u † ∂x † = - ∂φ † ∂x † , ∂w † ∂t † + ū † ∂w † ∂x † = - ∂φ † ∂z † + b † , ∂b † ∂t † + d b † dz † w † = 0, ∂u † ∂x † + ∂w † ∂z † = 0.
Here, Ri is the Richardson number defined by a ratio of the two characteristic scales:

Ri = z * u z * b 2 = (d b/dz) * (dū/dz) 2 * . ( 6 
)
We find that when the shear is more dominant than the buoyancy gradient (stratification), i.e., Ri < 1, the scaling based on the shear scale, z * u , (Eq. 5a) is relevant, and when the stratification is more dominant than the shear, i.e., Ri > 1, the scaling based on the buoyancy-gradient scale, z * b , (Eq. 5b) becomes relevant. We expect that these Ri-dependent characteristics of the system are still valid also for fully turbulent regimes, that are going to be addressed in the next two sections. An equivalent nondimensionalization, as in this section, is performed, separately, in the Appendix for a full turbulence system considered in Secs. 3 and 4, and essentially the same conclusion is drawn.

In this manner, we have demonstrated how naturally characteristic scales (not only the length scale) of a system can be determined by a nondimensionalization. A question that we are going to address in the next two sections is whether the Obukhov length can be derived in a similar manner for fully turbulent flows.

Furthermore, the result obtained in this section already has implications in the boundary-layer turbulence, because the identified characteristic scales, z u * and z b * , (Eqs. 5a, b) are expected to characterize the typical size of eddies of given regimes, and thus, also characterize the resulting mixing lengths, l * .

In this respect, it may be worthwhile to note that, for example, [START_REF] Grisogono | Generalizing 'z-less' mixing length for stable boundary layers[END_REF] propose to use two different mixing lengths,

l * = v ′ * (dū/dz) * , (7a) 
l * = v ′ * (d b/dz) 1/2 * , (7b) 
depending on the Richardson number, Ri. Here, v ′ * is a scale for the velocity.

A similar scale (buoyancy scale), defined by

l * = w ′ * (d b/dz) 1/2 * , (8) 
is introduced by [START_REF] Stull | Inversion rise model based on penetrative convection[END_REF], [START_REF] Zeman | Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer[END_REF], [START_REF] Brost | A model study of the stably stratified planetary boundary layer[END_REF]. [START_REF] Hunt | Some observational structure in stable layers[END_REF], in turn, suggest by field data analysis that the buoyancy scale (Eq. 8) characterizes both the vertical heat transport and the temperature-variance production in the stably-stratified boundary layer.

These definitions reduces to z * u and z * b , respectively, with small and large

Richardson numbers by re-setting as v ′ * = ū * and w ′ * = ū * . This condition is expected to be satisfied when a system is fully turbulent.

3 Turbulent System: Turbulent Kinetic Energy Equation

Obukhov Length

In the following two sections, nondimensionalization of stably-stratified turbulence system is considered. The goal is to derive the Obukhov length as a natural consequence of nondimensionalization, in a similar manner as demonstrated in the last section how a characteristic length of a system is identified.

Thus, we focus on the equations containing the vertical buoyancy flux, w ′ b ′ , and the vertical momentum stress, u ′ w ′ . The Obukhov length is defined by a ratio of fractional powers of those two quantities:

L = (u ′ w ′ ) 3/2 * (w ′ b ′ ) * . (9) 
Here, (u ′ w ′ ) * and (w ′ b ′ ) * are the characteristic scales for the vertical momentum stress and the vertical buoyancy flux, respectively. Note that unlike in the dimensional analysis, under a nondimensionalization procedure, these scales do not necessarily refer to actual values at a particular vertical level (say, the surface). Even when such a choice to be made, the chosen values must also be representative for the whole vertical stretch of the boundary layer.

This definition is often further simplified into

L = u * 3 (w ′ b ′ ) *
by introducing a frictional velocity, u * , defined by

u * 2 = (u ′ w ′ ) * . ( 10 
)
Here, note that in a standard nondimensionalization procedure, the orders of magnitudes of those flux terms are estimated by

(u ′ w ′ ) * = u * w * , (w ′ b ′ ) * = w * b * .
By substituting these two expressions into (9),

L = u 3/2 * w 1/2 * b * .
If an isotropic scaling (i.e., w * = u * ) can further be assumed as in the last section, and also ū * = u * , the last expression reduces to Eq. ( 3) with L = z * .

In this manner, taking the Obukhov length as an example here, we see that the turbulence length scales assume more than what are typically assumed for the nondimensionalization scales. See Secs. 3.7 and 5 for the further discussions.

Turbulent Kinetic Energy Equation

In this section, we consider the turbulent kinetic energy (TKE) equation, because it contains both the vertical buoyancy flux, w ′ b ′ , and the vertical momentum stress, u ′ w ′ . Based on a result from the last section, we expect that a closed scaling for the nondimensionalization is obtained by considering this equation when the shear effect is strong (i.e., Ri ≤ 1). On the other hand, when the stratification becomes strong enough (i.e., Ri ≫ 1), we expect that we also have to consider the eddy-buoyancy equation, which also contains a vertical buoyancy flux term. The latter will be considered in the next section.

By following a standard formulation of the atmospheric boundary-layer turbulence, only the vertical flux terms are considered assuming horizontal homogeneity. This is solely for simplifying the analysis focusing on the goal of deriving the Obukhov length. Horizontal heterogeneity is expected to be important for some stable-stratified atmospheric turbulent flows, but this extension is left for a future study.

A standard TKE equation (e.g., Deardorff 1983) is given by:

∂ ∂t v ′2 2 = w ′ b ′ -u ′ w ′ ∂ ū ∂z - ∂ ∂z w ′ (v ′2 + φ ′ ) -ε (11) 
Here, the overbar designates a horizontal average, v is a velocity vector, and ε the dissipation rate.

3.3 The Balance:

w ′ b ′ ∼ (u ′ w ′ )dū/dz
We first consider a balance between two terms that involve the vertical buoyancy flux, w ′ b ′ , and the vertical momentum stress, u ′ w ′ , respectively, because this balance is likely to lead to a derivation of the Obukhov lenght. This amounts to consider a balance between the first and the second terms. This balance requirement leads to:

(w ′ b ′ ) * = (u ′ w ′ ) * dū dz * . ( 12 
)
This condition may be used to estimate a vertical scale, z * , by introducing a typical change, ū * , of the background wind over this scale so that

dū dz * = ū * z * . ( 13 
)
By substituting this relation back to the balance condition ( 12), we obtain an estimate of the length scale given by

z * = ū * (u ′ w ′ ) * (w ′ b ′ ) * . ( 14 
)
Our next goal is to try to show the equivalence of this length scale with that of Obukhov.

The

Balance: (u ′ w ′ )dū/dz ∼ ∂(w ′ v ′2 )/∂z
This length scale (14) reduces to the Obukhov length (9) if we can set ū * = (u ′ w ′ )

1/2 * .

To get an answer to this question, we need an estimate of the windshear strength, ū * , relative to the eddy. Thus, this amounts to consider a balance between the second and the third terms.

This balance condition is given by

(u ′ w ′ ) * dū dz * = (w ′ v ′2 ) * z * .
To obtain a more explicit expression for (dū/dz) * in terms of the turbulence fluctuations, we further note

(u ′ w ′ ) * = u * w * , (15a) 
(w ′ v ′2 ) * = u 2 * w * . (15b) 
By substituting Eqs. (15a, b) into the balance condition above, it reduces to

dū dz * = u * z * , (16) 
and ū * = u * . Thus,

z * = u * (u ′ w ′ ) * (w ′ b ′ ) * . ( 17 
)
The stress term can further be re-written as

(u ′ w ′ ) = ǫu 2 *
by introducing an aspect ratio, ǫ, of the system. As a result,

u * = ǫ-1/2 (u ′ w ′ ) 1/2 . ( 18 
)
By further substituting ( 18) into (17), we finally obtain

z * = ǫ-1/2 (u ′ w ′ ) 3/2 * (w ′ b ′ ) * . ( 19 
)
If the turbulence is isotropic, the length scale ( 19) reduces to the Obukhov length (9). However, keep in mind that stably-stratified turbulence is often observed to be quasi two dimensional (i.e., ǫ ≪ 1), thus the Obukhov length may underestimate the vertical scale.

Most importantly, keep in mind that the balance ( 16) is possible only if the wind-shear is strong enough, and the Richardson number, Ri, is the order of unity or less. When the Richardson number, Ri, is very small, this balance is no longer valid (the wind-shear term drops as O(Ri)), and the perturbationbuoyancy equation must be considered instead, as in Sec. 4, in defining the length scale of the system.

3.5 The Balance:

w ′ b ′ ∼ ∂(w ′ v ′2 )/∂z
In completing the analysis, we also consider the balance between the first and the third terms, because this term provides an alternative estimate of the vertical scale, z * . It is given by

z * = (w ′ u ′2 ) * (w ′ b ′ ) * . ( 20 
)
Note that the estimate of the length scale by Eq. ( 20) is valid regardless of the magnitude of the Richardson number, Ri, of the system, unlike Eq. ( 19).

Deardorff Velocity Scale

Eq. ( 20) can further be re-written by noting that

(w ′ u ′2 ) * = u 2 * w * = ǫu 3 * = ǫ-2 w 3 *
Rearrangement after the substitution leads to a velocity scale

w * = [ǫ 2 z * (w ′ b ′ ) * ] 1/3 (21)
This velocity scale reduces to one introduced by [START_REF] Deardorff | Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection[END_REF] and [START_REF] Tennekes | Free convection in the turbulent Ekman layer of the atmosphere[END_REF], when we set ǫ = 1 and z * the boundary-layer depth. However, it may be useful to realize that the same expressions can also be derived by adopting eddy-diffusion formulations. Under the latter, the left hand sides in Eqs. (15a, b) may be represented as

(u ′ w ′ ) * = -ν t dū dz (22a) (w ′ v ′2 ) * = -ν t dū 2 dz (22b)
Here, the eddy-diffusion coefficient, ν t , may further be written as

ν t = u * l *
in terms of a velocity scale, u * , and a mixing length, l * . By substituting this expression into Eqs. (22a, b), we finally obtain

(u ′ w ′ ) * = u * l * ū * z * f † (z † ) (23a) (w ′ v ′2 ) * = u * l * ū2 * z * g † (z † ) (23b)
Here, f † (z † ) and g † (z † ) are universal functions (cf., Sec. 5 for further discussions). By normalizing them as, say, f † (1) = 1 and g † (1) = 1, and also However, here, more steps are required to reach the same conclusion.

Turbulent System: Buoyancy Perturbation Equation

The analysis in Sec. 2 suggests that as the Richardson number, Ri, becomes larger than unity, the shear term in the TKE equation (or the momentum equation) becomes less important, so that it loses a basis of using this term for deriving the Obukhov length from Eq. ( 14). As the Richardson number increases, in turn, the buoyancy stratification, d b/dz, plays a more important role. For considering the contribution of this term, in this section, we consider the buoyancy perturbation equation:

∂b ′ ∂t + w ′ d b dz + ∂w ′ b ′ ∂z = Q ′ . (24)
Here, Q ′ is a perturbation diabatic heating.

By considering a balance between the second and the third terms in the left hand side, we obtain as a length scale:

z * = (w ′ b ′ ) * w * (d b/dz) * . ( 25 
)
This is expected to be a characteristic scale of a turbulent flow when the perturbation buoyancy becomes a dominant under a strong stratification, being consistent with a more general analysis in the Appendix.

This scale is somehow akin to the external static-stability scale

L N = (u ′ w ′ ) 1/2 * (d b/dz) 1/2 * .
as introduced by [START_REF] Kitaigorodskii | A note on similarity theory for atmospheric boundary layers in the presence of background stable stratification[END_REF], and considered, especially, by [START_REF] Zilitinkevich | Resistance and heat-transfer for stable and neutral planetary boundary layers: Old theory advanced and reevaluated[END_REF]. More specifically, [START_REF] Zilitinkevich | An extended similarity-theory for the stably stratified atmospheric surface layer[END_REF] suggests a nondimensional parameter, L/L N , to define a transition from a regime dominated by the Obukhov lenght, L, to L N . A link to the buoyancy-gradient scale introduced by Eq. ( 5b) is also noted. Recall that the latter is further linked to the buoyancy scale introduced by Eqs. (7b, c). [START_REF] Sorbjan | Local structure of stably stratified boundary layer[END_REF][START_REF] Sorbjan | Gradient-based scales and similarity laws in the stable boundary layer[END_REF][START_REF] Sorbjan | Similarity scaling system for stably stratified turbulent flows[END_REF], in turn, develops his gradient-based similarity theory based on the buoyancy scale. [START_REF] Zilitinkevich | Resistance and heat-transfer for stable and neutral planetary boundary layers: Old theory advanced and reevaluated[END_REF] argue that the scale, L N , becomes relevant when the vertical eddy heat flux is small. In turn, we argue that the scale defined by Eq. ( 25) becomes relevant when the Richardson number, Ri, is large enough. The scale, L N , can be obtained by assuming that Ozmidov scale,

L o = ε 1/2 (d b/dz) 3/2 * , is equal to another length scale, z * = (u ′ w ′ ) 3/2 * /ε,
which defines the characteristic turbulence length [START_REF] Grisogono | Generalizing 'z-less' mixing length for stable boundary layers[END_REF].

It transpires that the scale, L N , is purely based on a dimensional analysis.

In contrast, the scale ( 25) is derived from an actual balance in an equation.

These two scales become equivalent when all the flux scales are re-written in terms of the scales of more basic variables as in Eqs. (15a, b), and also the relation (3) is invoked. We expect that values of these two scales are also similar numerically in practice. Note furhter that under this equivalence, the nondimensional parameter, L/L N , also reduces to the Richardson number, Ri.

However, as emphasized in the next section, in employing a length scale in a context of a dimensional analysis leading to a similarity theory, it must be exact numerical value rather than just an order-of-magnitude estimate, as in a standard nondimensionalization.

Discussions: Link to the Similarity Theory

A basis for the similarity theory may be provided from the nondimensionalization of the system considered in the last two sections in the following manner. As an example, let us consider the TKE equation ( 11). Note that the TKE equation is hardly self-contained. However, for the sake of a heuristic argument, let us suppose that every variable in Eq. ( 11) can be determined self-consistently by solving it. Alternatively, we may just suppose, though not feasible in reality, that all the necessary higher-order moments are also nondimensionalized in a similar manner, and all the necessary equations are solved to obtain all the variables in Eq. ( 11).

Steady solutions for these nondimensionalized variables are given in terms of nondimensional functions, say, f † (z † ), g † (z † ), q † (z † ), etc. as

w †′ b †′ = f † (z † ) (26a) u †′ w †′ = g † (z † ) (26b) ∂ ū † ∂z † = q † (z † ), (26c) 
etc. After dimensionalizations,

w ′ b ′ = (w ′ b ′ ) * f † ( z z * ) (27a) u ′ w ′ = (u ′ w ′ ) * g † ( z z * ) (27b) ∂ ū ∂z = ∂ ū ∂z * q † ( z z * ) (27c) 
Furthermore, let us suppose that the only necessary boundary conditions required for determining these variables are their surface values. In that case, As a result, general solutions to the system are given by

we set (w ′ b ′ ) * = (w ′ b ′ ) 0 , (u ′ w ′ ) * = (u ′ w ′ ) 0 ,
w ′ b ′ = (w ′ b ′ ) 0 f † ( z z * ) (28a) u ′ w ′ = (u ′ w ′ ) 0 g † ( z z * ) (28b) ∂ ū ∂z = ∂ ū ∂z 0 q † ( z z * ) (28c) 
Based on the arguments so far, we may conclude that the nondimensional functions, f † (z/z * ), g † (z/z * ), q † (z/z * ), are universal only depending on the nondimensionalization scale, z * . This is an essence of the similarity theory (cf., [START_REF] Sorbjan | Structure of the Atmospheric Boundary Layer[END_REF].

Here, for this last statement to be valid in strict manner, it is not sufficient that the nondimensionalization scale, z * , simply measures a characteristic scale of a system, merely as an estimate of an order of magnitude, as the nondimensionalization intends to do. Instead, this length scale, z * , must be re-scaled in a precise manner as the system environment changes so that the universality of the functions f , g † , and q † is maintained.

Being consistent with this requirement for developing a similarity theory, in the last two sections, attempt is made to define the length scale, z * , of the system in a more strict manner based on the flux scales, (u ′ w ′ ) * , (w ′ b ′ ) * etc.

rather than simply in terms of the variable scales, u * , w * , etc. For applying a similarity theory in a strict manner, these flux values must also be defined at a specific vertical level, probably, most conveniently at the surface.

In this respect, under a systematic nondimensionalization procedure, the present study has failed to derive the Obukhov length, L, (Eq. 9) in any strict manner as a nondimensionalization scale, z * . The closest we have obtained is Eq. ( 14), which defines the length scale in terms of both the wind stress magnitude, (u ′ w ′ ) * , and the wind-shear scale, ū * . It reduces to the Obukhov length only under an extra scale argument (15a, b) for isotropic turbulence (i.e., ǫ = 1). We should realize that this reduction is hardly exact from a point of view of the similarity theory, either, thus in applying this scale to the universal functions, f † , g † , and q † , some minor adjustment factors must be multiplied on the nondimensionalized vertical coordinate, z † .

Most importantly, this scaling is valid only when the Richardson number is Ri ≤ 1. When Ri ≫ 1, with strong stratification, the buoyancy-gradient scale defined by Eq. ( 25) becomes more relevant rather than the shear-based scale ( 14).

However, the TKE equation identifies an alternative vertical scale defined by Eq. ( 20), which is expected to be valid independent of the value of the Richardson number, thus also independent of the turbulence regimes. This new length scale is not remotely different from the Obukhov length, but obtained by replacing the frictional velocity, u * , by the scale, (w ′ u ′2 )

1/3 * , for the vertical flux of the turbulent kinetic energy.

Summary and Further Remarks

The present study has derived the Obukhov length as a result of a balance between the vertical buoyancy flux and the shear-generation terms in the TKE equation. However, this balance is valid only with the Richardson number, Ri, of the order of unity or less. When the Richardson number is much larger than unity, the system is characterized by another length scale defined by a ratio between the vertical buoyancy eddy flux and a vertical advection rate of buoyancy controlled by background stratification (Eq. 25). This scale is akin to the buoyancy scale introduced by [START_REF] Stull | Inversion rise model based on penetrative convection[END_REF], [START_REF] Zeman | Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer[END_REF], [START_REF] Brost | A model study of the stably stratified planetary boundary layer[END_REF], and the external static-stability scale considered by [START_REF] Zilitinkevich | Resistance and heat-transfer for stable and neutral planetary boundary layers: Old theory advanced and reevaluated[END_REF].

The present nondimensionalization analysis has also identified a new length scale defined as a ratio between the the TKE vertical flux, (w ′ u ′2 ) * , and the vertical buoyancy flux, (w ′ b ′ ) * (Eq. 20). This scale may be adopted as an alternative length scale for developing a boundary-layer turbulence similarity theory. A next step would be to examine this possibility based on field-campaign data sets.

An important aim behind the present study has been to demonstrate how a characteristic scale of a turbulent system can be identified directly by nondimensionalization of a partial differential-equation system describing turbulence. For this demonstrative purpose, the analysis has been performed with the simplest possible turbulence system, assuming a horizontal homogeneity.

Also only a limited set of equations is examined, namely, the TKE and the buoyancy-perturbation equations. The choice is made specifically with a goal in mind of identifying the Obukhov length so that equations contain the dimensional parameters used in its definition.

An equivalent nondimensionalization analysis with a full turbulence equation system is still to be performed. Nevertheless, the present preliminary analysis already suggests a fruitfulness of such an investigation. It is expected that different turbulent regimes are identified by changing orders of magnitudes of the Richardson number, as the present study has already suggested.

Such an analysis is expected to provide a more solid theoretical basis for interpreting the various different turbulent regimes phenomenologically identified for the stably-stratified turbulence (cf., [START_REF] Mahrt | Stratified atmospheric boundary layers[END_REF]. Various further generalizations are equally feasible. The present analysis has been performed under an assumption of quasi-stationarity of the system. However, some of the turbulence regimes under stable stratification may be fundamentally transient (cf., [START_REF] Caughey | Turbulence in the evolving stable boundary layer[END_REF]. A role of horizontal heterogeneity is another aspect to be investigated, especially in a context of stably-stratified turbulence. For example, under certain situations, the horizontal heat transport, a term that is often neglected in theoretical studies, becomes a key process in heat budget (e.g., [START_REF] Wittch | The nocturnal boundary layer over the Northern Germany: An observational study[END_REF]. A role of anisotropy of the flow with ǫ ≪ 1 is still to be carefully examined as well.

Another aspect, that is not discussed herein, is a role of boundary conditions in solving the turbulence problems. When our focus is on a layer close enough to the surface (e.g., surface layer), a contribution from a top of the planetary layer may be neglected, as a basic premise of the Monin-Obukhov theory as well as in subsequent generalizations. However, when a problem concerns a whole depth of the boundary layer, the depth of the boundary layer becomes another parameter to be considered. As pointed out by e.g., [START_REF] Holtslag | Scaling the atmospheric boundary layer[END_REF], the problem must be solved by explicitly taking into account of a condition at the top of the boundary layer.

A critical difference must also be recognized between a typical dimensional analysis performed in the turbulence studies and the nondimensionalization procedure considered in the present study. It is common in turbulence studies to take characteristic scales (not only the length scale, but more generally) to be functions of height, as manifested as a local similarity theory (Nieuwstadt 1984, Sec. 4.4.1, Sorbjan 1989;[START_REF] Mahrt | Stratified atmospheric boundary layers[END_REF]. For example, a frictional velocity can be evaluated as a function of height, under a dimensional analysis, and the given result is used for furthermore evaluating the Obukhov length.

On the other hand, a single fixed scale must be adopted for each variable in nondimensionalization. If the velocity is ever nondimensionalized by a scale that depends on height, a height-dependence of the dimensional velocity must somehow be partitioned between a nondimensional velocity and a velocity scale for a nondimensionalization. Such a partitioning is hardly trivial, thus usually not considered.

A major exception to this rule is when variables are defined purely locally, without influence of their spatial gradients (e.g., with absence of transport processes). In this case, nondimensionalization may be performed independently at every spatial point. Conversely, it suggests that a local similarity theory is valid in a strict sense, only if a system is locally in equilibrium at each vertical level without significant effects of vertical transport, as theoretically expected as a z-less stratification state (Neustadt 1984). In other words, a local similarity theory is strictly valid only for the flows with strong two dimensionality.

The last remark further suggests how a validity of a given similarity theory can be verified by a more direct nondimensionalization of a given system, more generally speaking. Further investigations along this line are much anticipated.
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Appendix: Full Nondimensionalization of the Turbulent System

The appendix presents a full nondimensionalization of the system consisting of Eqs. ( 11) and (24). By following the same procedure as in Sec. 2, we find the following relationships between the nondimensionalization scales: In analogous manner as in Sec. 2, we obtain a nondimensionalized system:

∂ ∂t † v †′2 2 = w †′ b †′ - z * u * ∂u ∂z * u †′ w †′ ∂ ū † ∂z † - ∂ ∂z † w †′ (v †′2 + φ †′ ) -ε † (30a) ∂b †′ ∂t † + z * u * 2 db dz * w †′ d b † dz † + ∂w † ′ b † ′ ∂z † = Q †′ (30b)
Here, the vertical scale, z * , is left unspecified. As in Sec. 2, we have two 

3. 7

 7 Link to Eddy-Diffusion Formulation Those readers who are with a strong background in boundary-layer meteorology, Eqs. (15a, b) may not be immediately clear. Here, the right hand sides are the expressions used in the standard nondimensionalization procedure, as considered in Sec. 2. As already remarked at the end of Sec. 3.1, the dimensional analysis in the boundary-layer meteorology, more specific scale variables, such as fluxes, are considered for deriving the characteristic scales of a system. On the other hand, under a nondimensionalization procedure, only the orders of magnitudes of the variables in concern, thus if u ∼ u * , w ∼ w * , etc, we can immediately write as Eqs. (15a, b). Keep in mind that, by definition, the values in the left-hand sides are also only the orders of magnitude estimates. They do not correspond at all to any actual flux values at any vertical levels, as expected in standard boundary-layer similarity theories.

  assuming l * = z * , ū * = u * , ǫ = 1, Eqs. (23a, b) reduce to Eqs. (15a, b).

  and (∂ ū/∂z) * = (∂ ū/∂z) 0 with the subscript, 0, designating the surface values. Here, those eddy flux values are more precisely defined at the top of the viscous boundary layer, but these can also be equated with the actual values of the fluxes from the surface.

  options to choose: (i) (z * /u * )(∂u/∂z) * = 1, or (ii) (z * /u * ) 2 (db/dz) * = 1. Each leads to an option of (i) the wind-shear scale, z * = u * /(∂u/∂z) * or (ii) the buoyancy-gradient scale, z * = u * /(db/dz) 1/2 * . In respective cases, we obtain (i) (z * /u * ) 2 (db/dz) * = Ri, and (ii) (z * /u * )(∂u/∂z) * = Ri -1/2 . Recall that the Richardson number, Ri, is defined by Eq. (6).