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Abstract. Bioenergy crop cultivation for lignocellulosic
biomass is increasingly important for future climate mitiga-
tion, and it is assumed on large scales in integrated assess-
ment models (IAMs) that develop future land use change
scenarios consistent with the dual constraint of sufficient
food production and deep decarbonization for low climate-
warming targets. In most global vegetation models, there is
no specific representation of crops producing lignocellulosic
biomass, resulting in simulation biases of biomass yields
and other carbon outputs, and in turn of future bioenergy
production. Here, we introduced four new plant functional
types (PFTs) to represent four major lignocellulosic bioen-
ergy crops, eucalypt, poplar and willow, Miscanthus, and
switchgrass, in the global process-based vegetation model
ORCHIDEE. New parameterizations of photosynthesis, car-
bon allocation, and phenology are proposed based on a com-
pilation of field measurements. A specific harvest module is
further added to the model to simulate the rotation of bioen-
ergy tree PFTs based on their age dynamics. The resulting
ORCHIDEE-MICT-BIOENERGY model is applied at 296
locations where field measurements of harvested biomass are
available for different bioenergy crops. The new model can
generally reproduce the global bioenergy crop yield observa-
tions. Biases in the model results related to grid-based sim-
ulations versus the point-scale measurements and the lack
of fertilization and fertilization management practices in the
model are discussed. This study sheds light on the impor-
tance of properly representing bioenergy crops for simulat-
ing their yields. The parameterizations of bioenergy crops

presented here are generic enough to be applicable in other
global vegetation models.

1 Introduction

Biomass-derived fuels serve as an alternative energy source
to substitute fossil fuel and are used by many countries to
meet renewable energy and climate targets (Karp and Shield,
2008; Meier et al., 2015; Robertson et al., 2017). Expanding
bioenergy crop plantation is considered in future scenarios
for energy security and climate change mitigation (Karp and
Shield, 2008; Smith et al., 2016; Robertson et al., 2017). For
bioenergy production to provide economic and climate ben-
efits, cultivated plants must have a high productivity and a
high yield of harvestable biomass (Karp and Shield, 2008;
Whitaker et al., 2010; Robertson et al., 2017). The first gen-
eration of bioenergy crops usually refers to grain and high-
sugar crops like maize and sugarcane (Karp and Shield,
2008). These crops have high nutrient requirements that de-
mand fertilizer additions, causing high N2O emissions to the
atmosphere to achieve a high productivity (Searchinger et
al., 2008; Melillo et al., 2009). These grain and high-sugar
crops are unlikely to be planted on a large scale for the pur-
pose of bioenergy production because of the food demand
pressure for fertile land and fertilizer (Alexandratos and Bru-
insma, 2012; Gerland et al., 2014; United Nations, 2017).
Compared to the first generation, the second generation of
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bioenergy crops, known as lignocellulosic energy crops like
giant miscanthus, switchgrass, and short-rotation trees, are
adapted to a wider range of climatic and soil conditions and
require less nitrogen fertilizer (Miguez et al., 2008; Cadoux
et al., 2012). Those second-generation bioenergy crops have
potentials to be deployed on marginal lands to avoid direct
and indirect land use change (LUC) carbon emissions and
damage to ecosystem services (Robertson et al., 2017). They
also appear to have less greenhouse gas (GHG) emissions
and higher energy efficiency than the first-generation bioen-
ergy crops (Whitaker et al., 2010).

Bioenergy with carbon capture and storage (BECCS) is
the main class of future negative emission technologies ex-
pected to result in net removal of atmospheric CO2 (Smith
et al., 2016). BECCS has been extensively assumed in inte-
grated assessment models (IAMs) to develop land-based mit-
igation scenarios for low warming levels (Fuss et al., 2014;
Popp et al., 2014). In most IAMs like IMAGE (Bouwman
et al., 2006; Stehfest et al., 2014) and MAgPIE (Popp et
al., 2011; Klein et al., 2014), second-generation bioenergy
crops are used as primary energy carriers (Popp et al., 2014).
One output from IAMs is future land use maps based on dif-
ferent environmental, socioeconomic, and policy constraints.
These land use maps, after being translated into plant func-
tional type (PFT) maps, can be used in grid-based dynamic
global vegetation models (DGVMs) to simulate the terres-
trial carbon dynamics, biogeochemical (e.g., LUC carbon
emissions), and biophysical (e.g., albedo and transpiration
changes) effects of land use processes (Brovkin et al., 2013;
Wilkenskjeld et al., 2014). Global vegetation models can pro-
vide in return to IAMs some valuable information like spa-
tially explicit biomass density, crop yield, and water avail-
ability (Stehfest et al., 2014; Bonsch et al., 2015, 2016). For
example, dedicated bioenergy crop modeling has been im-
plemented in a global vegetation model (LPJml; Beringer et
al., 2011; Heck et al., 2016) to simulate biophysical yields
and water availability as input data for MAgPIE (Bonsch et
al., 2016).

In most global grid-based vegetation models, there are
no dedicated PFTs to represent second-generation bioenergy
crops. Instead, these plants are often represented by a generic
crop PFT. Biases in simulated biomass production and the re-
sulting carbon and energy balance thus arise when ignoring
differences in carbon assimilation and phenology between
generic crops and lignocellulosic bioenergy crops. Moreover,
lignocellulosic woody bioenergy crops like eucalypt, poplar,
and willow cannot be properly represented by a herbaceous
crop PFT. For example, eucalypt has a high maximum rate of
carboxylation (Vcmax) but relatively low leaf area index (LAI;
Stape et al., 2004; Whitehead and Beadle, 2004). Miscant-
hus, on the contrary, has a relatively lower Vcmax (Wang
et al., 2012; Yan et al., 2015) but a higher LAI (Heaton et
al., 2008; Zub and Brancourt-Hulmel, 2010) than eucalypt
(Whitehead and Beadle, 2004). Even if both Miscanthus and
switchgrass are C4 crops, Miscanthus can achieve a signifi-

cantly higher yield than switchgrass because of a higher effi-
ciency of converting intercepted radiation into aboveground
biomass than switchgrass (Heaton et al., 2008). The water,
nitrogen and light use efficiencies are also higher for Mis-
canthus than for switchgrass, resulting in a higher rate of leaf
photosynthesis in the former (Dohleman et al., 2009). All
these important differences between lignocellulosic bioen-
ergy crops need to be considered, which calls for a dedicated
new model PFT for each species.

Similarly, the way that harvest is implemented for generic
crops in global models (usually removing a fixed fraction of
biomass, typically on the order of 50 %) cannot be used for
bioenergy crops. The harvest index (HI, harvested biomass as
a fraction of aboveground biomass) is very different for grain
crops and herbaceous bioenergy crops. In addition, most veg-
etation models currently do not account for realistic rota-
tions of ligneous bioenergy plants (e.g., poplar and eucalypt).
Modeling the harvest of woody bioenergy crops should be
based on rotation practices of typically a few years rather
than on assuming annual full harvest like for herbaceous
crops. This requires simulating forest age dynamics (Yue et
al., 2018) to accurately represent the ligneous biomass har-
vest.

In this study, we aim to model the biomass yields of four
major lignocellulosic bioenergy crops in the global dynamic
vegetation model ORCHIDEE. We introduce the new bioen-
ergy crop PFTs, adjust the parameters relevant to the phys-
iology, phenology, and harvest process of bioenergy crops
based on observations, and evaluate the simulated biomass
yields using a new global dataset of field measurements.

2 Model development and parameterization

2.1 Model description

The proposed parameterizations of lignocellulosic bioen-
ergy crops are based on an extended version of ORCHIDEE
(Krinner et al., 2005), ORCHIDEE-MICT (Guimberteau et
al., 2018), which contains relevant features of gross land use
change, wood harvest, and forest age classes dynamics (Yue
et al., 2018; Fig. S1). The model simulates energy exchange,
water balance, and vegetation carbon processes in the ecosys-
tem and is the land surface component of the French Earth
system model (ESM) IPSL-CM (Krinner et al., 2005). The
principal processes related to carbon cycling comprise photo-
synthesis, vegetation carbon allocation, autotrophic and het-
erotrophic respiration, plant phenology (e.g., leaf onset and
senescence), and litter and soil carbon dynamics (Krinner et
al., 2005). ORCHIDEE-MICT further includes high-latitude-
related processes with new parameterizations of soil carbon
vertical discretization, snow processes, and the SPITFIRE
fire module (Guimberteau et al., 2018). Importantly, the rep-
resentation of forest age dynamics in this version (Yue et
al., 2018) allows us to simulate wood harvest based on rota-
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Table 1. Plant functional types (PFTs) in ORCHIDEE. The newly added bioenergy PFTs (PFT14 to PFT17) use the default setting of the
original PFTs (all processes except harvest, see Sect. 2.2) but with new parameterizations (see Sect. 2.3).

PFT no. Name

1 Bare soil
2 Tropical broad-leaved evergreen
3 Tropical broad-leaved raingreen
4 Temperate needleleaf evergreen
5 Temperate broad-leaved evergreen
6 Temperate broad-leaved summergreen
7 Boreal needleleaf evergreen
8 Boreal broad-leaved summergreen
9 Boreal needleleaf summergreen
10 C3 grass
11 C4 grass
12 C3 crop
13 C4 crop
14= 2 Tropical bioenergy tree, representing eucalypts (Eucalyptus spp.)
15= 6 Temperate bioenergy tree, representing poplar (Populus spp.) and willow (Salix spp.)
16= 13 Bioenergy grass Miscanthus
17= 13 Bioenergy grass switchgrass (Panicum spp.)

tion length practices, a prerequisite for simulating the woody
yields.

There is another ORCHIDEE version including short-
rotation coppice poplar plantations (ORCHIDEE-SRC;
Fig. S1 in the Supplement, De Groote et al., 2015) based
on the forest management module (Bellassen et al., 2010),
but ORCHIDEE-SRC is more designed for studying spe-
cific coppicing processes and is evaluated using only two
coppicing sites in Belgium. Although detailed forest man-
agement processes are not included in ORCHIDEE-MICT,
this version includes explicit gross land use changes, i.e., the
rotational transitions from other vegetation types to woody
bioenergy crops and periodic clear-cut harvest of forests.
These features are important to study the carbon emissions
from bioenergy crops when their areas expand by convert-
ing other land use types in future BECCS scenarios. In addi-
tion, ORCHIDEE-MICT contains a bookkeeping system to
track different forest age classes as separate land cohorts at
a sub-grid scale (Yue et al., 2018). This functionality allows
for the simulation of woody harvest based on rotation length
tracking the carbon stock dynamics of different age classes
of forests individually. In addition to the poplar plantation
in Europe in ORCHIDEE-SRC (De Groote et al., 2015), we
aimed to include herbaceous bioenergy crops like Miscant-
hus and switchgrass as well as other woody crops like eu-
calypt and willow in a more systematic way on the global
scale.

Originally, there are 13 plant functional types (PFTs) in
ORCHIDEE (Table 1; Krinner et al., 2005). In order to repre-
sent the bioenergy crops, we introduced four new PFTs (Ta-
ble 1). PFT14 is a tropical tree representing eucalypt (Euca-
lyptus spp.); PFT15 is a temperate tree representing poplar

(Populus spp.) and willow (Salix spp.); PFT16 and PFT17
are treated as crops representing Miscanthus and switch-
grass (Panicum spp.), respectively. The reason for separat-
ing Miscanthus and switchgrass into two PFTs is that they
are significantly different in biomass yields and resource
use efficiency (Heaton et al., 2008; Dohleman et al., 2009).
The default model equations of the four new bioenergy crop
PFTs follow the ones of similar PFTs already defined in the
model (Table 1), i.e., tropical broad-leaved evergreen (PFT2)
for PFT14, temperate broad-leaved summergreen (PFT6) for
PFT15, and C4 crop (PFT13) for PFT16 and PFT17. Some
parameters were, however, adjusted specifically for their cor-
responding bioenergy crops based on field experiment or
measurement data in Sect. 2.3.

2.2 Bioenergy biomass harvest module

The new module represents the periodical harvest of bioen-
ergy crops, consisting of two subroutines differentiating
woody and herbaceous crops. For woody types, harvest is
based on simulated forest age classes (see details in Yue et
al., 2018). Briefly, each woody PFT is subdivided into six co-
hort functional types (CFTs) corresponding to different age
classes. The boundary of age classes is set as PFT specific
and defined based on maximum woody biomass (total of the
sapwood and heartwood biomass). When the biomass of a
young woody CFT reaches the upper boundary defining its
age class, it is moved to the next older CFT sequentially until
it reaches the oldest CFT (mature). The fractional harvested
area of a woody crop PFT in each grid cell is externally pre-
scribed. Then, the harvest algorithm starts from the second
youngest CFT, continues with the next older CFT, and even-
tually reverts to the youngest CFT until the prescribed har-
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vested area is met. For woody bioenergy crops, we adjusted
the fraction of aboveground biomass that is harvested (the
harvest index denoted HI) and put harvested biomass into a
separate bioenergy harvest pool rather than mixing it with the
modeled wood product pools existing for forest management
harvest (Yue et al., 2018) or with an agricultural product pool
for the two crop PFTs (PFT13 and 14; Table 1) as defined by
Piao et al. (2009). The non-harvested biomass goes to litter.
For herbaceous types, only the HI fraction of aboveground
biomass is harvested (Sect. 2.3.4) after leaf senescence ei-
ther at the end of growing season or if climate conditions
like drought and low temperature trigger canopy senescence
in the model. The remaining part of aboveground and below-
ground biomass goes to litter pools. Carbon in the bioenergy
harvest pool is released to the atmosphere directly.

2.3 Parameterization of bioenergy crops

Most parameters in ORCHIDEE are PFT specific (Krinner et
al., 2005). Since we aim to improve the biomass production
performance of the four bioenergy crop PFTs, we adjusted
parameters controlling carbon assimilation (Sect. 2.3.1), al-
location (Sect. 2.3.2), phenology (Sect. 2.3.3), and harvest
processes (Sect. 2.3.4) based on observed values at ecosys-
tem or leaf scale (Table 2). The number of observations for
each parameter varied due to the availability of data, and the
sample may also be biased in terms of different species or
climate conditions. For each parameter, we collected obser-
vational values by a detailed literature survey and used the
observational medians first. We then evaluated the model pre-
dictions of biomass yields using yield observations. If there
is a bias, we adjusted the parameter value within the obser-
vational range to reduce the misfit between predicted and ob-
served yields.

2.3.1 Photosynthesis parameters

The photosynthesis process at leaf level for C3 and C4 plants
in ORCHIDEE-MICT is based on the extended version (Yin
and Struik, 2009) of the Farquhar, von Caemmerer, and Berry
model (FvCB model; Farquhar et al., 1980). The related pa-
rameters generally follow Yin and Struik (2009) except for
the maximum rate of Rubisco activity (Vcmax) and maximum
rate of electron transport under saturated light (Jmax). The
setting of Vcmax and Jmax for C3 plants is based on Medlyn
et al. (2002) and Kattge and Knorr (2007) in order to ac-
count for the acclimation of Vcmax and Jmax to temperature.
In ORCHIDEE, Vcmax 25 (Vcmax at 25 ◦C) is prescribed for
each PFT, and Jmax is calculated from the ratio (rJV ) be-
tween Jmax and Vcmax as

Jmax = Vcmax× rJV (1), (1)

where rJV is a function of growth temperature (Tgrowth)

(Kattge and Knorr, 2007):

rJV = arJV + brJV × Tgrowth, (2)

where arJV and brJV are the acclimation parameters de-
rived by fitting data from 36 plant species (Kattge and Knorr,
2007). For C4 plants, no acclimation is considered for Vcmax
and Jmax, and thus brJV = 0, and arJV is a fixed value (Ta-
ble 2).

Because values of Vcmax and Jmax are critical for de-
termining the carbon assimilation by bioenergy PFTs, we
searched for published experimental data on these param-
eters for eucalypt, poplar, willow, Miscanthus, and switch-
grass and found 26 observation-based publications with 127
entries for Vcmax and 69 entries for Jmax (Table S1 in the
Supplement).

Some observations of Vcmax and Jmax were derived at
temperatures (Table S1) other than 25 ◦C, and we thus
normalized these two temperature-dependent variables to
Vcmax 25 and Jmax 25 (Jmax at 25 ◦C) using a modified Ar-
rhenius function from Medlyn et al. (2002) and parame-
ters for C3 and C4 plants from Yin and Struik (2009). The
ranges of Vcmax 25, Jmax 25, and rJV 25 (rJV at 25 ◦C, only
for the studies reporting both Vcmax and Jmax) are shown
in Fig. 1a–c. Vcmax 25 values generally decrease from euca-
lypt > poplar and willow > Miscanthus≥ switchgrass. The in-
terquartile range of Vcmax 25 is large for eucalypt (N = 42)
from 75 to 126 µmol m−2 s−1 and for poplar and willow
(N = 30) from 57 to 165 µmol CO2 m−2 s−1. Miscanthus
and switchgrass have a relatively smaller interquartile range
of Vcmax 25 (17 to 32, N = 38 and 12 to 26, N = 17, re-
spectively). We adjusted the prescribed parameters Vcmax 25
and arJV (Table 2) for each bioenergy crop PFT using a
value close to the median value in the observation dataset
(Fig. 1a, c, within a range of 10 % of the median values).
We also verified that Jmax 25 from Eq. (1) is in the range
of independent Jmax 25 observations (Fig. 1b). Importantly,
the observation-based estimates of Vcmax 25 and Jmax 25 for
Miscanthus are significantly larger than for switchgrass
(p = 0.02 and 0.09, respectively; Fig. 1a, b). Note that the
ranges shown in Fig. 1 could be influenced by the sample
size and number of studies.

We also adjusted other parameters including θ (the con-
vexity factor of the response of the rate of electron transport
to irradiance), α(LL) (conversion efficiency of absorbed light
into e-transport rate at strictly limiting light), and g0 (resid-
ual stomatal conductance when irradiance approaches zero)
in the leaf-level photosynthesis equations of ORCHIDEE to
match higher productivity based on field measurements or
empirical data (Table 2). The detailed effects of these param-
eters on photosynthesis in the FvCB model can be found in
Yin and Struik (2009). Briefly, θ and α(LL) are used in the cal-
culation of J (photosynthesis rate limited by electron trans-
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Figure 1. Vcmax 25 (a), Jmax 25 (b), rJV 25 (Vcmax 25/Jmax 25, c), and specific leaf area (SLA, d) collected from measurements. The box plot
indicates the interquartile range of measurements. The data size of measurements is shown below the box. The default values (open circles)
and adjusted values (filled circles) for bioenergy crops are also shown. Because the model does not prescribe Jmax 25 but rather calculates it
from Vcmax 25, the Jmax 25 values for ORCHIDEE shown here (circles in b) are calculated by Vcmax 25× rJV (circles in a and b).

port):

J =
α(LL)I + Jmax−

√
(α(LL) I+ Jmax)

2
− 4θJmaxα(LL)I

2θ
, (3)

where I is the photon flux density absorbed by leaf photosyn-
thetic pigments. g0 is an intercept related to the estimation of
gs (stomatal conductance):

gs = g0+
A+Rd

Ci−Ci∗
fVPD, (4)

where A is the net photosynthesis rate, Rd is the day respira-
tion, and Ci and Ci∗ are the intercellular CO2 partial pressure
and Ci-based CO2 compensation point in the absence of Rd,
respectively. fVPD is factor of the effect of the leaf-to-air va-
por pressure difference (Yin and Struik, 2009).

Specifically for bioenergy crop PFTs, we increased θ to
0.8 for PFT14 (eucalypt) based on Yin and Struik (2017)
and to 0.84 for PFT16 (Miscanthus) based on field measure-
ments from Dohleman and Long (2009). Light use efficiency
and productivity are high for bioenergy crops (see, e.g., re-
views by Heilman et al., 1996; Lewandowski et al., 2003;
Whitehead and Beadle, 2004; Karp and Shield, 2008; Zub
and Brancourt-Hulmel, 2010; Forrester, 2013; Laurent et al.,
2015; McCalmont et al., 2017), and we thus set α(LL) and
g0 to the maximum boundary in their ranges from Yin and
Struik (2009) to favor the high light use efficiency and pro-
ductivity characteristic of bioenergy cultivars (Table 2).

Morphological plant traits are also of key importance to
the canopy-level productivity (Chang et al., 2015). The spe-
cific leaf area (SLA) in ORCHIDEE is a PFT-specific con-
stant (Krinner et al., 2005). SLA for different bioenergy
crops from our data compilation (164 entries in Table S1)
is shown in Fig. 1d. A factor of 2 is used to convert the
SLA unit from m2 g−1 dry matter to m2 g−1 C. Observation-
derived SLA for eucalypt is lower than for the other bioen-
ergy crops, and SLA for switchgrass is relatively larger. SLA
is set to the median value of observations for PFT16 (Mis-
canthus) and PFT17 (switchgrass), and it is close to the 75th
percentile value of the data we compiled for PFT14 (euca-
lypt) and PFT15 (poplar and willow; Fig. 1d and Table 2).

Another important plant trait for photosynthesis is the leaf
orientation, which determines the radiation extinction in the
canopy. Although the LAI of eucalypts is generally moderate
(Anderson, 1981; Stape et al., 2004; Whitehead and Beadle,
2004), leaf angles are nearly close to vertical in mature euca-
lypt forest (Anderson, 1981; King, 1997), leading to a good
distribution of radiation to the lower canopy layers. The light
extinction coefficient (k) for PFT14 (eucalypt) is therefore
set to 0.36 (Table 2) according to the measurement-based es-
timate by Stape et al. (2004). Similarly, a field study shows
the seasonal average k ranging from 0.23 to 0.37 for poplars
(Ceulemans et al., 1992; Heilman et al., 1996), and a median
value of 0.3 was used for PFT15 (Table 2).
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2.3.2 Carbon allocation parameters

The maximum carbon allocation to leaf biomass is con-
trolled in ORCHIDEE by a predefined maximum LAI value
(LAImax) beyond which no carbon will be allocated to leaf
(Krinner et al., 2005). We adjusted this parameter to match
the observed maximum LAI in the field for the four selected
bioenergy plants (Table 2). LAImax for PFT14 (eucalypt),
PFT15 (poplar and willow), PFT16 (Miscanthus), and PFT17
(switchgrass) are set to 7, 9, 10, and 8, respectively (Ceule-
mans et al., 1992; Heilman et al., 1996; Whitehead and Bea-
dle, 2004; Heaton et al., 2008; Zub and Brancourt-Hulmel,
2010).

For woody PFTs in ORCHIDEE, the partitioning between
aboveground and belowground sapwood biomass is a func-
tion of forest age (Krinner et al., 2005):

fab, t = fab,min+ (fab,max− fab,min)× (1− e−t/τ ), (5)

where fab, t is the fraction of sapwood allocated to above-
ground at age t ; fab,min and fab,max are the minimum and
maximum fraction allocated to aboveground (0.2 and 0.8, re-
spectively); and τ is an empirical parameter. This equation
implies that more biomass is allocated to belowground sap-
wood to develop coarse roots in younger forests. The par-
tition between aboveground and belowground biomass is in-
fluenced by resource supply like water and nutrient availabil-
ity (Litton et al., 2007). For example, belowground carbon al-
location in eucalypts is observed to be strongly reduced by ir-
rigation (Barton and Montagu, 2006; Stape et al., 2008; Ryan
et al., 2010). Fertilized poplars also showed greater shoot
growth than control plots (Coleman et al., 2004). We as-
sumed that bioenergy trees should usually be under intensive
management (e.g., irrigation and fertilization), especially in
the establishment year (Jacobs, 1981; Caslin et al., 2015; Ise-
brands and Richardson, 2014). A higher water and nutrient
availability then implies a lower investment of biomass on
roots for bioenergy trees. In the ORCHIDEE version used
here, as there is no specific fertilization or irrigation practice
included, the idealized approach chosen to partially account
for these managements operations was to reduce τ in Eq. (5)
from 5 to 2 years (Table 2) to give a maximum allocation of
sapwood biomass to aboveground faster than in the standard
version. The difference in these two values is illustrated in
Fig. S2. Also because the rotation length for bioenergy trees
is usually several years only (Karp and Shield, 2008), it is
reasonable to assume that these plants allocate more biomass
aboveground in the first few years. However, trees like poplar
and willow can sprout from the remaining stem or root (Ise-
brands and Richardson, 2014), which is not accounted for in
the model. Last, we also adjusted the factor (β, Table 2) in
the exponential function to calculate the soil water stress in
ORCHIDEE (Krinner et al., 2005; McMurtrie et al., 1990) to
reduce the soil moisture stress on bioenergy trees (Fig. S3).

2.3.3 Phenology parameters

An adjustment of parameters related to phenology was per-
formed for the two herbaceous bioenergy PFTs (PFT16 and
PFT17; Table 2) to derive the total biomass production for the
whole growing season. Lewandowski et al. (2003) and Zub
and Brancourt-Hulmel (2010) reviewed the growth temper-
ature and growing season length of Miscanthus and switch-
grass and found that these two crops have higher cold toler-
ance and a longer growing season than grasses. Compared to
maize, Miscanthus has an earlier leaf onset and later leaf fall,
and thus its growing season length is 59 % longer (Dohleman
and Long, 2009). Some Miscanthus genotypes need fewer
cumulative degree days for shoot emergence (60 to 118 de-
gree days) and a high frost tolerance (−9 to −6 ◦C; Farrell
et al., 2006). To account for this frost tolerance and longer
growing season, we decreased the growing degree days for
leaf onset in the model (GDDonset) from 700 (standard value
for C4 crop PFT) to 320 degree days (same as the default
value for C4 grass PFT in ORCHIDEE) and the critical tem-
perature for leaf senescence (Tsenescence) from 10 to 0 ◦C
for PFT16 and PFT17 (Table 2). Note that we did not set
Tsenescence as −9 to −6 ◦C because frost tolerance was only
documented for certain Miscanthus genotypes, so we used a
conservative value of 0 ◦C for Miscanthus and switchgrass
PFTs. In addition, we increased the critical leaf age beyond
which leaves enter senescence (tleaf) and the minimum leaf
age to allow leaf senescence (tleaf,min) to be the same as the
default values for C4 grass PFT (PFT11 in Table 1) in OR-
CHIDEE (Table 2).

2.3.4 Biomass harvest

The harvest index (HI) determines how much aboveground
biomass is harvested. Theoretically, all the aboveground
biomass of a lignocellulosic crop can be used for energy pro-
duction. Some IAMs (e.g., GCAM3.0; Kyle et al., 2011) in-
deed assume an HI of 1 for switchgrass, for instance. In prac-
tice, harvesting Miscanthus and switchgrass is usually per-
formed in winter and early spring after drying and nutrient re-
cycling through leaf senescence (Lewandowski et al., 2003;
Zub and Brancourt-Hulmel, 2010), which leads to a lower
biomass at harvest but enhances nutrient conservation. For
example, 18–46 % of the nitrogen in Miscanthus can be recy-
cled through leaf falling to soil and translocation from shoots
to rhizomes (Cadoux et al., 2012). Similar seasonal nitrogen
dynamics were also observed for switchgrass (Heaton et al.,
2009). In fact, Miscanthus is recommended to be harvested
between January and March in practice guidelines (Nixon
and Bullard, 2001). Otherwise, fertilizers have to be applied
to amend the nutrient removal from harvest, which is nei-
ther cost effective nor environmentally friendly. For bioen-
ergy trees, current harvesting techniques can hardly harvest
100 % of aboveground biomass (Jacobs, 1981; Isebrands and
Richardson, 2014; Caslin et al., 2015). Following Caslin et
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Figure 2. Harvest age (a) and rotation length (b) in the evaluation dataset. The box plot indicates the interquartile range, and the number of
observations is also shown. In this study, the harvest age class is set to 4–6 years (red shading).

al. (2010), Richards et al. (2017), and Zhuang et al. (2013),
we used an HI of 0.9 (i.e., 90 % of aboveground biomass is
harvested) for all the bioenergy PFTs in ORCHIDEE (Ta-
ble 2). However, for simulations using future land use maps
generated from IAMs, we would recommend setting the HI
the same as in IAMs to be consistent.

The rotation length for eucalypt, poplar, and willow varies
among different tree types, species, locations, and plantation
purposes (Ugalde and Pérez, 2001; Keoleian and Volk, 2005;
Karp and Shield, 2008; Isebrands and Richardson, 2014;
Caslin et al., 2015). For example, eucalypt and poplar for
sawlog and veneer utilization are often on rotations of 8–
20 years, depending on regions (Ugalde and Pérez, 2001;
Isebrands and Richardson, 2014). But short-rotation coppice
bioenergy plantations of poplar and willow have shorter cut-
ting cycles of 3–5 years (Keoleian and Volk, 2005; Karp and
Shield, 2008; Isebrands and Richardson, 2014; Caslin et al.,
2015). A rotation length of 8 years was used in the LPJml
model for bioenergy trees (Beringer et al., 2011). In OR-
CHIDEE, the rotation length for bioenergy tree PFTs is asso-
ciated with the setting of age classes (see Sect. 2.2). Namely,
harvesting starts from the second youngest age class, and
thus the age in the second youngest forest age cohort should
be set up as the same as the rotation length. For the idealized
simulations presented below, we used a rotation length of 4–
6 years based on the harvest age and rotation length in the
evaluation dataset (Fig. 2; Sect. 3.2). Here, the harvest age
(Fig. 2) represents the age at which the biomass of bioenergy
trees was harvested or estimated. It is directly reported by
the original literature and corresponds to the reported yield.
Rotation length (Fig. 2) is the management practice reported
in the original literature, and it is the same as the harvest age
in most studies. In other studies, however, some trees may
be harvested earlier or later than the regular rotation length,
e.g., for comparison purposes. In addition, not all literature
reported both harvest age and rotation length (see the num-
ber of observations in Fig. 2).

3 Model evaluation

3.1 Evaluation dataset

We used the global bioenergy crop yield dataset from Li
et al. (2018, see “Data availability”) to evaluate the per-
formance of the modified ORCHIDEE-MICT-BIOENERGY
model. This global dataset was compiled from more than
200 field-measurement-based studies with five main bioen-
ergy crop types, i.e., eucalypt, poplar, willow, Miscanthus,
and switchgrass (Li et al., 2018). Most of the measurements
(> 90 %) are based experimental trials, especially for Mis-
canthus and switchgrass. About 98 % of the compiled obser-
vations are reported as the aboveground biomass, and the rest
are reported as the total of aboveground and belowground
biomass. We thus did not exclude the observations of the to-
tal biomass in the model–observation comparison since their
fraction is very low (< 2 %). The biomass yield in this dataset
is compiled in a unit of ton DM (dry matter) ha−1 yr−1, corre-
sponding to the mean annual biomass yield. For example, if
the original literature reported the total harvested biomass of
poplar at a certain age, the total biomass amount is divided by
age to get the mean annual biomass yield. If the original lit-
erature reported the annual harvested biomass of Miscanthus
for several years, each annual yield is taken as one observa-
tion. Note that this dataset does not distinguish the utilization
of the plantation (for bioenergy use or for timber or pulp-
wood). In order to evaluate the simulated biomass yields by
ORCHIDEE at half-degree resolution, we calculated the me-
dian and range of all observations in each half-degree grid
cell containing at least one site of the dataset. Each half-
degree grid cell may contain observations from different sites
or one site with different species, genotypes, and/or treat-
ments (e.g., different irrigation or fertilization levels). Glob-
ally, the number of half-degree grid cells containing obser-
vations for PFT14 (eucalypt), PFT15 (poplar and willow),
PFT16 (Miscanthus), and PFT17 (switchgrass) are 63, 120,
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69, and 44, respectively (see maps in Sect. 3.5), giving a total
of 296 grid cells (some may have several crops in common).

3.2 Simulation setup

The setup for the site-scale simulations in ORCHIDEE-
MICT-BIOENERGY is as follows. The model is forced
with 30 min time step climatic forcing data, CRU-NCEP
v7 (Viovy, 2017) recycling the period of 1990–2000. The
CRU-NCEP forcing data represent a merged product of the
CRU TS climate dataset (Harris et al., 2014) and NCEP re-
analysis data (Kalnay et al., 1996). Some observation sites
have reported mean annual temperature (MAT) and precipi-
tation (MAP), and we verified that these data are consistent
with the MAT and MAP from the CRU-NCEP v7 climate
forcing data we used (Fig. S4). Thus no bias correction was
applied to the CRU-NCEP v7 climate forcing. The soil tex-
ture map used in the model is based on the 12 USDA texture
classes from Reynolds et al. (2000).

We assumed a homogenous coverage (100 %) of one sin-
gle bioenergy crop PFT in a grid cell covered by the same
PFT type as the site observations. We set an annual harvest
fraction of 1 % of the grid cell each year. The 1 % annual har-
vest fraction is just an artificial value to make sure that there
is always forest in the second youngest age class available
for harvest every year after a stable rotation is established.
We compared the annual harvested biomass in the bioenergy
harvest pool per area unit, so the harvest area has no influence
on our model evaluation. For the bioenergy trees (PFT14 and
PFT15), a spin-up of 100 years without harvest was run first
to derive biomass evolution in time to define the respective
biomass boundaries for age classes in each grid cell (see Yue
et al., 2018). The biomass boundaries are grid-cell specific
because of the different vegetation growth rates in differ-
ent grid cells. The six age classes from youngest to oldest
are thus set to correspond to 0–4, 4–6, 6–10, 10–30, 30–50,
and > 50 years. We set the second youngest age class that is
used in priority for bioenergy harvest (Sect. 2.2) to 4–6 years
(Fig. 2) based on harvest age and rotation length reported by
the original publications in the evaluation dataset (Li et al.,
2018). After spin-up, the simulations for PFT14 (eucalypt)
and PFT15 (poplar and willow) were run with a bioenergy
harvest process for 50 years because we only harvested the
second age class (4–6 yr) and 50 years is long enough to es-
tablish a stable rotation. The harvested biomass amount for
the last 10 years was used to calculate the median and range
of the simulated yields. Note that we artificially harvest 1 %
of the grid cells each year, and the harvested patches will
be planted immediately. After the first 5 years (one rotation
length), there is always a fraction reaching a full rotation and
ready for harvest. The harvest in the last 10 years thus repre-
sents 10 harvest events. We divided the harvested biomass by
5 years (4–6 years in the second youngest age class) to ob-
tain the annual mean yields of PFT14 (eucalypt) and PFT15

(poplar and willow). A carbon-to-dry-matter ratio of 0.5 was
used to convert the unit of yields into ton DM ha−1 yr−1.

For the bioenergy grasses (PFT16 and PFT17), simula-
tions were performed directly (without spin-up) with harvest
for 50 years, and similarly, the yields of the last 10 years were
used for comparison with site-observed values. Note that we
aim to assess the performance of simulated biomass yields
rather than the state of the carbon pools, including litter and
soil organic matter, that depend on site history. As litter and
soil carbon pools do not influence vegetation productivity in
the model, we did not perform a full long spin-up of carbon
pools to their equilibrium values.

3.3 Simulated bioenergy yields at global level

The simulated bioenergy biomass yields in comparison with
field observations for the four bioenergy crops are shown in
Fig. 3. The model–observation results generally lie around
the 1 : 1 ratio line (Fig. 3a, c, e, g). Although the regres-
sion between modeled and observed medians is not signif-
icant with a low r2 value because of the overestimation
and underestimation at some sites (Fig. 3a, c, e, g), the
difference between the two samples of modeled and ob-
served yields is not significant (t test, p > 0.17) and the per-
cent bias (PBIAS, defined as the sum of biases divided by
the sum of observed values; Moriasi et al., 2007) ranges
from 2 to 8 % for all PFTs, implying that the global dis-
tributions of modeled and observed yields are consistent.
ORCHIDEE-MICT-BIOENERGY reproduces the frequency
distributions of the observed biomass yields across differ-
ent grid cells well (Fig. 3b, d, f, h). The median observed
and simulated biomass yields in all grid cells are 16.0
and 17.5 ton DM ha−1 yr−1 for PFT14 (eucalypt), 8.4 and
8.3 ton DM ha−1 yr−1 for PFT15 (poplar and willow), 12.7
and 10.8 ton DM ha−1 yr−1 for PFT16 (Miscanthus), and 8.7
and 9.0 ton DM ha−1 yr−1 for PFT17 (switchgrass). PFT14
(eucalypt) shows a large spread in both the observed and
simulated biomass yields. Some site observation data with
high yield (> 25 ton DM ha−1 yr−1) were not reproduced by
the model for eucalypt. By contrast, observed and simulated
yields for PFT15 (poplar and willow) and PFT17 (switch-
grass) concentrate in a relatively narrow range. In addition,
the error bars for most sites (67, 73, 74, and 64 % for PFT14
to PFT17, respectively) reach the 1 : 1 line (Fig. 3a, c, e, g),
implying that at least some observations in these grid cells
can be represented by the model.

It should be noted that it is impossible to perfectly repro-
duce observations in all grid cells, i.e., all dots in Fig. 3 on the
1 : 1 line, because of uncertainties in the observation dataset,
e.g., treatments, genotypes, and local fertilization or irriga-
tion practices, as well as in soil characteristics and climate
forcing variations prescribed in the model. The error bars
of modeled yield (y axis) come from the range of different
harvest years and represent interannual variability. The error
bars of the observations (x axis) represent the range from dif-
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Figure 3. Biomass yields from the observations and simulated by the ORCHIDEE model. The error bars of observations in the left panel
represent the range of different observations in this half-degree grid cell caused by different sites, treatments, species, and genotypes. The
error bars of modeled yields represent the range of different harvest years caused by the interannual variability of climate. PFT14 is tropical
bioenergy tree, eucalypt; PFT15 is temperate bioenergy tree, poplar and willow; PFT16 is C4 bioenergy grass, Miscanthus; PFT17 is C4
bioenergy grass, switchgrass. The red line indicates the 1 : 1 ratio line.

ferent sites, crop species, genotypes, and treatments, as well
as the observation number in each grid cell. It is difficult to
systematically synthesize all these factors to give an optimal
observed yield in each grid cell. First, different species and

genotypes are impossible to be accounted for in a global veg-
etation model, and thus a further classification of such infor-
mation would not help the model evaluation. Second, some
management practices are difficult to quantify. For example,
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Figure 4. Biomass–age curves at different sites for PFT14 (tropical bioenergy tree, eucalypt). The site number, coordinates, and country for
each site are also shown. Biomass at most sites refers to aboveground biomass, except Site nos. 5, 11, and 12 (labeled “total”, i.e., the sum
of aboveground and belowground biomass; the same total biomass from the model is used for these sites). The detailed site information is
shown in Table S2.

some studies report irrigation as an amount per year, while
others report only “irrigating when necessary”. The fertil-
ization rates are also difficult to synthesize between differ-
ent studies because they applied different types of fertilizers,
some annually but some in random years. Third, each obser-
vation is associated with different managements and treat-
ments, and there is no uniform standard to weight all these
different managements. Last, global vegetation models usu-
ally run at a half-degree resolution, which may not fully rep-
resent the site-level climate variations and soil properties.

3.4 Biomass–age relationship at site level

A good representation of biomass–age curves for bioenergy
trees in the model is crucial to reproduce the yields, es-
pecially in the first several years after planting (≤ rotation

length). However, most of the observations in the global eval-
uation dataset were only mean annual yield (Li et al., 2018).
This precludes a detailed analysis of biomass dynamics over
time for bioenergy trees. We thus selected 22 studies (Ta-
ble S2) from the evaluation dataset that reported the biomass
amount of multiple ages (at least 2 years) and at the same
site for eucalypt, poplar, or willow. We went through the
original articles to derive the biomass–age curves and com-
pared them with the same curves from the model simulations
(Figs. 4 and 5).

There is a good agreement on the biomass–age relation-
ship of eucalypt between models and observations for some
sites in Australia and China (Site nos. 2, 8–12 in Fig. 4). But
the model underestimates the biomass evolution of eucalypt
at Site no. 13 in New Zealand and overestimates it at Site
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Figure 5. Biomass–age curves at different sites for PFT15 (temperate bioenergy tree, poplar and willow). The site number, coordinates, and
country for each site are also shown. Biomass at most sites refers to aboveground biomass, except Site no. 17 (labeled “total”, i.e., the sum of
aboveground and belowground biomass; the same total biomass from the model is used for this site.). The detailed site information is shown
in Table S2.

nos. 5–6 in China (Fig. 4). For poplar and willow, there are
two long-term (> 10 years) consecutive observation sites in
Wisconsin, USA (Site no. 13 and no. 15 in Fig. 5), where the
model captures the biomass–age relationship well. At some
other sites (Site nos. 2, 3, 7, 14, and 17 in Fig. 5), however,
the model results only agree with observations for the first
few years and then deviate from the observations afterwards.

The model generally coarsely underestimates the biomass of
poplar and willow at all ages at the sites in the eastern (Site
no. 1 in Fig. 5) and western (Site nos. 5 and 6 in Fig. 5)
coastal regions of the US, in the UK (Site nos. 8 to 11 in
Fig. 5), and in Sweden (Site no. 16 in Fig. 5), but overesti-
mates in India (Site no. 12 in Fig. 5) and at one site in China
(Site no. 18 in Fig. 5).
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Figure 6. The map of relative difference between simulated and observed biomass yields for PFT14 (tropical bioenergy tree, eucalypt). The
inset plot shows the frequency of the relative difference between the model and observation.

Possible reasons for the model–observation differences at
each site using the information reported in the original stud-
ies (see details in Table S2) include the different varieties
of species (e.g., genotypes) and management (e.g., fertil-
ization, irrigation, or spacing) in the field, which were not
explicitly considered in the model. For example, the model
overestimates biomass at Site no. 4 in Fig. 4 because of the
large spacing of plantation in the trial at that experimen-
tal site (Han et al., 2010), which results in lower biomass
yield when converting the unit of ton DM plant−1 yr−1 to
ton DM ha−1 yr−1. Site nos. 13, 14, and 15 in Fig. 5 are from
the same study (Strong and Hansen, 1993), and the model
reproduces it at Site nos. 13 and 15 but underestimates it
at Site no. 14. This is because the biomass–age curves at
Site nos. 13 and 15 are from the average of several geno-
types (some have higher yields and some lower), but only one
genotype with relatively high yield was planted at Site no. 14
(Strong and Hansen, 1993), causing a model underestimation
at Site no. 14. In addition, our model seems to systematically
underestimate the biomass production of willow for the sites
in the UK (Site nos. 8–11 in Fig. 5). This observed biomass
production in the UK was based on a range of willow va-
rieties in trial experiments, and the authors (Lindegaard et
al., 2011) claimed that the trial experiments generate higher
yields than large-scale commercial plantations because of the
differences in land quality and practice guidelines (e.g., cut-
ting, harvest index). Despite some model–observation differ-
ences, we emphasize that the modeled biomass–age curves

are consistent with observations for most sites within the ro-
tation length.

3.5 Maps of differences between simulated and
observed yields

The spatial distributions of relative differences between sim-
ulated and observed biomass yields are shown in Figs. 6 to 9
for each PFT. The observations for eucalypt are mainly dis-
tributed in Brazil, tropical Africa, South Asia, and Australia
(Fig. 6). ORCHIDEE-MICT-BIOENERGY slightly underes-
timates biomass yield for PFT14 (eucalypt) in Brazil and
overestimates some grid cells in southern China and Aus-
tralia. Some biomass observations of eucalypts in Australia
are obtained from native forests (Li et al., 2018), which may
partly explain the overestimation by the model.

Poplar and willow are mainly planted in temperate re-
gions like the United States, Europe, and Central and East
Asia (Fig. 7). ORCHIDEE-MICT-BIOENERGY underesti-
mates the biomass yields for PFT15 (poplar and willow) in
the western US but overestimates the yields in the eastern
US. There is no distinct pattern for the differences between
observations and model results in Europe, with both under-
estimation and overestimation across grid cells. But it seems
that the simulated biomass yields are lower than observations
in Sweden. In Central and East Asia, biomass yields in the in-
land grid cells are generally underestimated but those in the
coastal areas are overestimated.

Most of the observations for Miscanthus are from Europe
although some trial tests are also available in the eastern US
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Figure 7. The map of relative difference between simulated and observed biomass yields for PFT15 (temperate bioenergy tree, poplar and
willow). The inset plot shows the frequency of the relative difference between the model and observation.
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Figure 8. The map of relative difference between simulated and observed biomass yields for PFT16 (C4 bioenergy grass, Miscanthus). The
inset plot shows the frequency of the relative difference between the model and observation.

and a few in China (Fig. 8). In the US, a very slight underes-
timation of yield was found in the inland areas, while overes-
timation occurred more close to the ocean. The model under-
estimates biomass yields for PFT16 (Miscanthus) in the UK
and southern Europe and slightly overestimates it in other
areas in Europe. There are only three grid cells with Mis-
canthus yield observations in China, and they are all largely
overestimated in the simulations.

Switchgrass is a native perennial grass in North America
(Lewandowski et al., 2003) and thus mainly grows in the US
(Fig. 9). There are also very few observations in Europe and

East Asia. ORCHIDEE-MICT-BIOENERGY can generally
reproduce the biomass yields for PFT17 (switchgrass) in the
central US but overestimates in the eastern US, especially
in some grid cells around the Great Lakes. The simulated
biomass yields are lower than observations in grid cells in
Europe and China but fit well with observations in the grid
cell in Japan.
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Figure 9. The map of relative difference between simulated and observed biomass yields for PFT17 (C4 bioenergy grass, switchgrass). The
inset plot shows the frequency of the relative difference between the model and observation.
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Figure 10. The relative difference between simulated and observed yield in different MAT and MAP intervals. The median values of model–
observation differences of all grid cells in each MAT and MAP interval are shown. PFT14 is tropical bioenergy tree, eucalypt; PFT15 is
temperate bioenergy tree, poplar and willow; PFT16 is C4 bioenergy grass, Miscanthus; PFT17 is C4 bioenergy grass, switchgrass.

3.6 Model–observation difference in different climate
bins

The differences between simulated and observed biomass
yields for bioenergy crop PFTs in different MAT and MAP
intervals are shown in Fig. 10. There is no systematical
bias of simulated biomass yields in the climate space ex-
cept in the climate zones with relatively high MAT and MAP

(upper-right grids in Fig. 10b, c) for PFT15 (poplar and wil-
low) to PFT17 (switchgrass). For these PFTs, it seems OR-
CHIDEE overestimated the yields with MAT > 15 ◦C and
MAP > 1000 mm yr−1. The strong underestimation (darker
blue color) seems more aligned to the drier regions, espe-
cially for poplar and willow (PFT15, Fig. 10b).

The distribution patterns in Fig. 10 also reflect the differ-
ent climate conditions of growth for these bioenergy crops.
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Consistent with their physiological characteristics, eucalypts
grow in tropical regions (Fig. 6) with MAT > 10 ◦C and
MAP > 500 mm yr−1 (Fig. 10). By contrast, poplars and wil-
lows grow in temperate regions (Fig. 7) and some under low
MAT and MAP (Fig. 10). Miscanthus and switchgrass are
usually planted in Europe and the US (Figs. 8 and 9) with
moderate MAT and MAP.

We further investigated whether other climate forcing vari-
ables in the model impact the model–observation differences
using the multiple linear regression method (Table S3) and
the regression tree method (Breiman et al., 1984; Pedregosa
and Varoquaux, 2011; Fig. S5). In these two methods, PFT
types and nine climate forcing variables (Table S3) were used
as independent variables and the relative model–observation
difference as a dependent variable. The multiple linear re-
gression is nonsignificant (p = 0.28) with a very low r2

(0.01), suggesting that the variations in the relative model–
observation differences are mostly explained by other factors
rather than the climate forcing biases used in the model. In
the regression tree (Fig. S5), the first discriminator is short-
wave radiation but it only split very few samples. Although
north wind speed separates a relatively large proportion of
samples (Fig. S5), it has little to do with the biomass pro-
duction in the model. Therefore, results from these two re-
gression methods suggest the model–observation biases are
unlikely caused by the model simulation.

4 Discussion

4.1 Model performance before and after bioenergy
crop implementation

In this study, we added four new PFTs to represent the main
lignocellulosic bioenergy crops and implemented new pa-
rameterizations for each new PFT. As a first step, we eval-
uated the biomass production from bioenergy crops in OR-
CHIDEE using a global field measurement dataset. We com-
pared the biomass yields simulated by the new ORCHIDEE-
MICT-BIOENERGY with the yields from the previous OR-
CHIDEE version (Fig. 11). In the previous version, bioen-
ergy crops were all taken as herbaceous C4 crops (PFT13),
and thus severe overestimation (overestimating 60 % on aver-
age) occurs for tropical bioenergy trees (i.e., eucalypts; gray
squares in Fig. 11a). Although using herbaceous C4 crops
generally reproduces the observed biomass yields of poplars
and willows (gray squares in Fig. 11b), different carbon dy-
namics in litter and soil and water and energy balance can be
expected.

Using the right tree PFTs for bioenergy trees and the right
herbaceous PFTs for bioenergy grasses but without new pa-
rameterizations also results in significant biases in the sim-
ulated yields compared to observations (blue triangles in
Fig. 11). Specifically, using the default parameters of the pre-
vious version is found to largely underestimate the biomass

yields of all bioenergy trees (blue triangles in Fig. 11a, b).
For bioenergy grasses, a slight underestimation was found for
Miscanthus (blue triangles in Fig. 11c), while large overesti-
mation was found for switchgrass (blue triangles in Fig. 11d)
with previous default parameters. The large biomass yields
of C4 crops in the previous ORCHIDEE version (blue tri-
angles in Fig. 11c, d) mainly result from the high Vcmax 25
(Table 2), which is not the reason for the high yields of Mis-
canthus and switchgrass (Fig. 1). We emphasize again that
different bioenergy crops achieve high productivities through
different pathways based on their plant traits (Sect. 2.3) and
it is important to specifically consider these traits by proper
parameterizations in the global vegetation models.

4.2 Management impacts on parameters

We adjusted some key parameters (e.g., Vcmax, Jmax, and
SLA) related to the productivity of bioenergy crops based
on a collection of field measurements. We only took the me-
dians and the ranges to validate the parameter values in the
model but did not explicitly consider the impacts of manage-
ment (e.g., fertilization, species) on these parameters, neither
in the model nor in the measurements. Here, we summarize
some management effects on these parameters for different
bioenergy crops based on measurements as follows.

1. Miscanthus. Wang et al. (2012) found that biomass
yield of Miscanthus increased under nitrogen addition
through elevated SLA, but fertilization did not affect
Vcmax, stomatal conductance (gs), or the extinction co-
efficient (k). Yan et al. (2015) measured photosynthesis
variables of three Miscanthus species in two experimen-
tal fields and found significantly higher gs, Jmax, and
Vcmax of Miscanthus lutarioriparius than M. sacchari-
florus and M. sinensis.

2. Switchgrass. SLA differed significantly among nine
cultivars of switchgrass but did not respond significantly
to water stress or nitrogen application for individual cul-
tivars (Byrd and May II, 2000). Trócsányi et al. (2009)
reported a lower SLA of switchgrass from the early har-
vest than from the late harvest. Hui et al. (2018) in-
vestigated the leaf physiology of switchgrass under five
precipitation treatments and found a significantly higher
photosynthesis rate and gs under elevated precipitation
but no significant difference under reduced precipitation
compared to control plots.

3. Eucalypt. Lin et al. (2013) measured the photosynthe-
sis response of six Eucalyptus species to temperature
and found significantly different Jmax 25 and Vcmax 25
among species but nonsignificant differences in their
ratios (Jmax 25 / Vcmax 25) and in the temperature re-
sponse of Jmax and Vcmax. With extra nitrogen supply,
Jmax and Vcmax of Eucalyptus grandis increased signif-
icantly, mainly associated with elevated leaf nitrogen
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Figure 11. Comparison of biomass yields simulated by ORCHIDEE-MICT-BIOENERGY and previous versions. Only median values in
half-degree grid cells, some containing multiple sites, are shown for both simulated and observed yields. Red circles represent the simula-
tions using specific bioenergy parameterizations (same as Fig. 3). Gray squares represent using the herbaceous crop PFTs of the previous
ORCHIDEE version for bioenergy trees, i.e., PFT13 for both PFT14 and PFT15 (Table 2). Blue triangles represent the simulations using
the right PFTs but the parameters of the previous ORCHIDEE version, i.e., parameters of PFT2 (tropical broad-leaved evergreen), PFT6
(temperate broad-leaved summergreen), PFT13 (C4 crop), and PFT13 (C4 crop) for PFT14 (eucalypt), PFT15 (poplar and willow), PFT16
(Miscanthus), and PFT17 (switchgrass), respectively (Table 2).

content (Grassi et al., 2002). Sharwood et al. (2017)
also found that Jmax and Vcmax of Eucalyptus globulus
were correlated with leaf nitrogen content and the ratio
of Jmax / Vcmax was constant under elevated CO2 or el-
evated temperature, but SLA is influenced by different
CO2 and temperature treatments.

4. Poplar and willow. In experimental trials of three Pop-
ulus deltoides clones and two P. deltoides×P. ni-
gra clones, Jmax and Vcmax of the former species
were significantly higher than the latter hybrid de-
spite some clonal variations (Dowell et al., 2009).
Wullschleger (1993) summarized the species-specific
estimates of Jmax and Vcmax, and the five Populus
species displayed large variations. In a poplar free-air
CO2-enrichment (PopFACE) experiment, P. alba, P. ni-
gra, and P. euramericana showed significant differences
in gs but nonsignificant differences in Jmax and Vcmax
among species, while the elevated CO2 significantly
decreased Jmax and Vcmax but had no influence on gs
species (Bernacchi et al., 2003). SLA was also found

to differ significantly between the P. deltoides×P. ni-
gra family and the P. deltoides×P. trichocarpa family
(Marron et al., 2007). For willows, SLA increased sig-
nificantly under fertilization and irrigation, but the mag-
nitude of response varied among six varieties of Salix
species (Weih and Rönnberg-Wästjung, 2007). Simi-
larly, the response of SLA and gs to nitrogen fertiliza-
tion differed among three willow clones, but no signifi-
cant difference in Vcmax was found between fertilization
and control plots for all clones (Merilo et al., 2006).

In general, the values of parameters like Vcmax, Jmax, and
SLA differ among different species or genotypes within each
bioenergy crop type. The parameter responses to manage-
ment like fertilization and irrigation also show large varia-
tions depending on the specific species. Although the effects
of management on these parameters seem evident in some
cases, a set of quantitative relationships that can be applied
in relation to simple management operations in a global veg-
etation model for large-scale and generalized PFTs is still
lacking. Expanding the PFT level to the species level in
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global vegetation models requires substantial computational
resources and, more importantly, there may not be enough
measured parameters of each species for all the processes im-
plemented in the models. At this stage, therefore, using the
medians and ranges across a great number of observations
is a more justified and practical way to tune the parameters
in the models. But more field measurements and quantita-
tive reviews of relationships between individual parameters
and individual managements as well as interactions between
different parameters and managements are highly needed in
future research.

4.3 Management impacts on yields

Management like fertilization, irrigation, and species plays
an important role in biomass yields. In ORCHIDEE-MICT-
BIOENERGY, nutrient limitations, and management by irri-
gation and fertilization are not explicitly implemented. In-
stead, we used parameter values in the range that favors
a higher productivity (Sect. 2.3, Fig. 1) and compared the
simulated yields with the median values of all observations
regardless of the management (Fig. 3). We further catego-
rized the observations into three groups (fertilization, non-
fertilization, or non-reported) and compared with simulated
yields (Fig. S6). There is no systematic bias between sim-
ulated yields and yields at fertilized sites for all PFTs (or-
ange dots in Fig. S6). The model seems to overestimate the
yields of eucalypt at sites with non-reported information of
fertilization (most gray dots above the 1 : 1 line in Fig. S6a,
Table S4) and overestimate yields of poplar and willow at
sites without fertilization (green dots in Fig. S6b, Table S4).
Yields at sites with non-reported fertilization information are
underestimated by the model for Miscanthus (gray dots in
Fig. S6c, Table S4) but overestimated for switchgrass (gray
dots in Fig. S6d, Table S4).

We did not group the observations based on different fertil-
ization rates because there are large variations in the biomass
response to fertilization rates. For example, in a quantita-
tive review by Heaton et al. (2004), the relationship be-
tween yields of Miscanthus and nitrogen application rates
were not significant. Cadoux et al. (2012) reviewed 11 stud-
ies that measured Miscanthus yields under fertilization, and
the biomass response to nitrogen fertilization was positive
in 6 of the studies with no response in the others. Simi-
larly, some studies showed a positive biomass response of
poplar to nitrogen fertilization, but others did not (Kauter et
al., 2003). Eucalypt also showed a variable response to fertil-
ization, while the general response was positive (De Moraes
Gonçalves et al., 2004). In quantitative reviews of fertiliza-
tion effects on yields of switchgrass (Wang et al., 2010) and
willow (Fabio and Smart, 2018), the relationship between
biomass yields and nitrogen fertilization rates was signifi-
cantly positive but the coefficient of determination (r2) was
very low. In summary, biomass response to fertilization var-
ied largely, and evidence from field measurements is not

conclusive. More importantly, the basic soil characteristics
should be taken into account in addition to the fertilization
rates, but unfortunately we did not have information on soil
nutrient contents or types, nutrient stoichiometry, or the rates
and timing of applied fertilizers for each site from observa-
tions.

We also separated the observations based on irrigation
information (irrigation, nonirrigation, and non-reported) in
comparison with modeled yields (Fig. S7). Both underesti-
mation and overestimation were found for sites with different
irrigation management for different PFTs. The yields of eu-
calypt were underestimated at sites with irrigation (blue dots
in Fig. S7a, Table S4) but overestimated at sites with non-
reported irrigation information (gray dots in Fig. S7a, Ta-
ble S4). Compared to fertilization, not many sites reported ir-
rigation information and the quantification of irrigation rates
is more difficult. For example, some studies reported an irri-
gation amount per year, while some others only reported de-
scriptive information like “soil moisture maintained to field
capacity” or “irregular irrigation when necessary”.

Comparison between simulated yields and observations
for the main species of bioenergy crops is shown in
Fig. S8. The model overestimated yields of Eucalyptus uro-
phylla×E. grandis, E. globulus, and E. nitens (Fig. S8a, Ta-
ble S5). For poplar and willow, the model generally overesti-
mated yields of Populus deltoides×P. nigra and P. deltoides
but underestimated yields of P. trichocarpa and Salix schw-
erinii× S. viminalis (Fig. S8b, Table S5). There is an under-
estimation of yields for Miscanthus× giganteus but overes-
timation for Miscanthus sinensis. In fact, the observed yields
of the former are significantly higher than yields of the lat-
ter (t test, p < 0.01). Only four sites reported yields for Pan-
icum pretense, and they were overestimated by the model
(Fig. S8d, Table S5).

4.4 Future development

Although the model can generally reproduce the bioenergy
crop yields on a global scale, there are still some regional
biases of biomass yields for different bioenergy crops. For
example, ORCHIDEE-MICT-BIOENERGY underestimates
the biomass yields of Miscanthus in the UK by 43 % (Fig. 8)
and overestimates the yields of switchgrass in the eastern
US by 18 % (Fig. 9). Thus, for regional use of modeled re-
sults, slight modifications of the related parameters would be
needed.

In addition to the yields from aboveground biomass, the
allocation of belowground biomass also needs to be modi-
fied, and the resulting soil carbon stocks need to be evaluated.
In the current version, the non-harvested parts of biomass
go to the litter pool after each harvest. In reality, however,
stumps and coarse roots remain alive in coppicing practices
of tree species like eucalypt, poplar, and willow, and new
shoots grow out of these stumps in the next growing sea-
son. Similarly, new shoots grow out of rhizome for peren-
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nial grasses like Miscanthus in the next growing season after
harvest. Carbon in such live biomass compartments does not
transfer to the litter or soil and thus does not contribute to
soil carbon stocks. It is necessary to correct the model pro-
cesses in this respect before applying this model to account
for the full carbon cycle involving bioenergy plants. Mean-
while, a global observation dataset of belowground biomass
and soil organic carbon for bioenergy crops would be desir-
able to systematically evaluate the model, but this does not
exist to the best of our knowledge. For a long-term perspec-
tive, the implementation of explicit managements and inter-
actions between bioenergy yields and nutrient limitations are
increasingly important to simulate the carbon reduction po-
tentials of bioenergy crop deployments.

Beside the biogeochemical processes, it is also critical
to further parameterize and evaluate biophysical processes,
especially in the coupled simulations of global vegetation
models with climate models to calculate the biophysical
feed-backs. Field measurements on, e.g., leaf traits, heat ex-
change, and the transpiration of bioenergy crops extend our
knowledge of these biophysical processes and need to be in-
tegrated adequately in the global vegetation models.

5 Conclusions

Bioenergy crops have been extensively assumed in IAMs
and are an important type of future land use. However, most
global vegetation models do not have specific representations
of these bioenergy crops. It is important to accurately rep-
resent the physiology, phenology, and carbon allocation of
these crops because it fundamentally impacts the hydrology
dynamics, energy balance, and carbon cycle. Especially for
woody bioenergy crops like eucalypts, poplars, and willows,
not only the biomass yields but also the seasonal variations,
biophysical effects, and carbon turnover are impacted by new
parameterizations.

In this study, we demonstrated the importance of the
proper representative of bioenergy crops in a global veg-
etation model to reproduce the observation-based biomass
yields. We introduced new bioenergy crop PFTs based on
their plant characteristics, modified the parameters relevant
to productivity based on field measurements and empirical
evidence, and added the dedicated harvest process to simu-
late bioenergy biomass yields. The bioenergy crop simula-
tions in ORCHIDEE-MICT-BIOENERGY generally repro-
duced the observation-based biomass yields for bioenergy
crops at global level. However, it is still difficult to match
observations site by site due to the uncertainties in the ob-
servation dataset and the lack of explicit managements in the
model. Evaluations on soil carbon dynamics and biophysical
variables are further needed. Our work improves the perfor-
mance of ORCHIDEE on bioenergy crop modeling, and the
parameters used in ORCHIDEE-MICT-BIOENERGY also
provide guidance for other vegetation models on incorporat-
ing dedicated bioenergy crops.

Code availability. This model development is based on the
ORCHIDEE-MICT version (Guimberteau et al., 2018) with
gross land use changes and forest age dynamics (Yue et
al., 2018). The code availability can be found in these
two publications. The newly implemented parameterization
can be found in Table 2 in this study. The source code
of this version (ORCHIDEE-MICT-BIOENERGY) is avail-
able online (http://forge.ipsl.jussieu.fr/orchidee/browser/perso/wei.
li/ORCHIDEE_GLUC_BIOENERGY), but its access is restricted
to registered users. Requests can be sent to the corresponding author
for a username and password for code access. ORCHIDEE-MICT
is governed by the CeCILL license under French law and abides
by the rules of distribution of free software. One can use, modify,
and/or redistribute the software under the terms of the CeCILL li-
cense as circulated by CEA, CNRS, and INRIA at the following
URL: http://www.cecill.info.

Data availability. The compiled Vcmax and Jmax data from obser-
vations can be found in Table S1 in the Supplement. The evaluation
dataset used in this study, i.e., the global yield dataset for major lig-
nocellulosic bioenergy crops based on field measurements, has been
accepted in a data description journal and will be freely accessible.
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