

Decelerating Autumn CO 2 Release With Warming Induced by Attenuated Temperature Dependence of Respiration in Northern Ecosystems

Dan Liu, Shilong Piao, Tao Wang, Xuhui Wang, Xiaoyi Wang, Jinzhi Ding, Philippe Ciais, Josep Penuelas, Ivan Janssens

▶ To cite this version:

Dan Liu, Shilong Piao, Tao Wang, Xuhui Wang, Xiaoyi Wang, et al.. Decelerating Autumn CO 2 Release With Warming Induced by Attenuated Temperature Dependence of Respiration in Northern Ecosystems. Geophysical Research Letters, 2018, 45 (11), pp.5562-5571. 10.1029/2018GL077447. hal-02900951

HAL Id: hal-02900951 https://hal.science/hal-02900951

Submitted on 26 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

This is the **accepted version** of the article:

Liu, Dan; Piao, Shilong; Wang, Tao; [et al.]. Decelerating Autumn CO2 Release With Warming Induced by Attenuated Temperature Dependence of Respiration in Northern Ecosystems. DOI 10.1029/2018GL077447

This version is avaible at https://ddd.uab.cat/record/203567 $\,$

under the terms of the $\textcircled{O}^{\texttt{N}}_{\texttt{COPYRIGHT}}$ license

1 Drought-induced reduction in temperature dependence of respiration

2 decelerates net carbon loss with autumn warming in northern ecosystems

3 Dan Liu¹, Shilong Piao^{1,2,3,4}, Tao Wang^{1,2}, Xuhui Wang⁵, Xiaoyi Wang¹, Jinzhi Ding¹,

4 Philippe Ciais⁵, Josep Peñuelas^{6,7}, and Ivan Janssens⁸

¹Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of
 Sciences, Beijing, China,

7 ²Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China,

³Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University,
 Beijing, China,

- 10 ⁴University of Chinese Academy of Science, Beijing, China,
- ⁵Laboratoire des Sciences du Climat et de l'Environnement CEA CNRS UVSQ, Gif-sur-Yvette, France,
- 12 ⁶CREAF, Cerdanyola del Valles, Spain,
- 13 ⁷CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Valles, Spain,
- 14 8Department of Biology, University of Antwerp, Wilrijk, Belgium

15 Boreal and arctic ecosystems are highly sensitive to climate change, with the northern high-16 latitude region warming faster than the global average (IPCC, 2013). Most previous studies 17 on the response of the terrestrial carbon cycle to warming have focused on the net carbon 18 uptake period (Lafleur et al., 2007; Richardson et al., 2009; Piao et al., 2017), while much less 19 attention was paid on the dormant season, during which net carbon release occurs. 20 Understanding how net carbon exchanges from the dormant season respond to warming is, 21 however, equally crucial for forecasting ecosystem–carbon cycle feedbacks. Here, we present 22 findings on the long-term effects of climate change on high-latitude ecosystem carbon cycle 23 during the dormant season from the atmospheric CO₂ concentration record (Point Barrow, 24 Alaska). We show that over the full study period (1974-2014), warming has significantly 25 boosted autumn net carbon loss and advanced the CO₂ sink-source transition date, in line 26 with previous analyses (Piao et al., 2008). However, in the second half of the study period, the 27 atmospheric CO₂ record indicates no correlation between autumn net carbon loss and 28 warming, which is further supported by analyses of net biome production from two different 29 atmospheric inversion systems. Based on multiple sources of satellite-based productivity data, 30 a suite of state-of-the-art ecosystem models and an atmospheric transport model, we further 31 suggest that this deceleration of carbon losses with warming can be attributed to the loss of 32 temperature dependency in respiration due to the soil moisture reduction, instead of 33 changing temperature-productivity relationship, and changes in atmospheric transport, fossil fuel emissions and air-sea CO₂ exchanges. Our findings suggest that a warming climate 34 35 does not necessarily result in a higher autumn CO₂ release, which offsets recently reported 36 warming-induced loss of net carbon uptake during spring and summer seasons (Piao et al., 37 2017; Peñuelas et al., 2017) and therefore provide a negative feedback to climatic warming.

38 The northern land region that includes the tundra and boreal forests is acknowledged to be an 39 important component of the global carbon cycle, accounting for a considerable land-based sink for 40 atmospheric CO₂ (McGuire et al., 2009; Pan et al., 2011). There is a wide recognition that climate 41 change is having and will continue to have fundamental impacts on northern ecosystem carbon 42 cycling and in turn on variations in atmospheric CO₂ (Beer et al., 2010; Keenan et al., 2014; 43 McGuire et al., 2009; Heimann and Reichstein, 2008; Cox et al., 2000; Fiedlingstein et al., 2001; 44 McGuire et al., 2009; Ahlström et al., 2012). Although studies of ecosystem responses to warming 45 have mainly focused on spring and summer (Guerlet et al., 2013; Keenan et al., 2014; Piao et al., 46 2017), climate-carbon cycle interactions during the dormant season could be as crucial in 47 modulating future climate change, due to the fact that a large portion of ecosystem carbon is stored 48 in the soil (Wang et al., 2011; Commane et al., 2017), and a small fractional change in soil 49 respiration with warming might significantly affect net ecosystem production and atmospheric CO₂. 50 However, we still lack the satisfactory assessment how the overall CO_2 exchange responds to 51 climate change during the dormant season.

52

53 Multiple lines of evidence that have recently emerged indicate that the response of carbon cycling 54 to recent climate change since the late 1990s are different from the previous few decades (Piao et 55 al., 2014; Piao et al., 2017; Peñuelas et al., 2017; Ballantyne et al., 2017). It has long been assumed 56 that warming advances spring phenology and increases ecosystem carbon uptake (Keeling et al., 57 1996; Richardson et al., 2009). Although this was valid up to the 1990s, it no longer holds because 58 of the weakening temperature control of spring net primary productivity (Piao et al., 2017). 59 Furthermore, atmospheric CO₂ concentrations suggest that warm spring and summer-induced 60 increases in annual CO_2 amplitude (the difference between the annual maximum and minimum 61 concentrations within the same year), that could reflect the strength of net carbon uptake during 62 spring and summer disappeared in the last 17 years (Peñuelas et al., 2017). These multiple 63 observational signals consistently reveal a shift in the warming effect on net carbon uptake from 64 positive to neutral or even negative in spring and summer. However, it remains unclear how the 65 effects of warming on net carbon release during the dormant season change with time. There is 66 growing consensus that ecosystem productivity shows strong acclimation to warming (Oechel et 67 al., 2000; Smith and Dukes, 2013), while respiratory flux to the atmosphere from ecosystem is 68 anticipated to increase with warming. We therefore formulate the hypothesis that warming can 69 accelerate net carbon loss during the dormant season and exacerbate negative warming impact on 70 annual carbon sequestration.

71

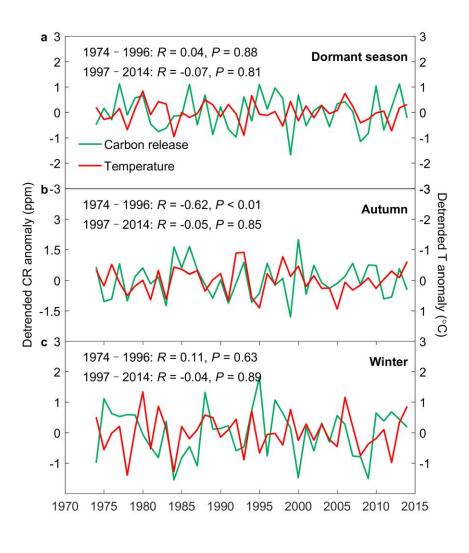
72 We studied this hypothesis by analyzing the relationship between indicators of net carbon release 73 inferred from atmospheric CO_2 and temperature during the dormant season, and its temporal 74 change over the period 1974–2014. We calculated partial correlation coefficient between net 75 carbon release during the dormant season (defined as the change of CO₂ concentration from September to November for autumn and from December to next April for winter at Point Barrow, 76 77 Alaska) and temperature in boreal and arctic ecosystems north of 50°N (through removing 78 statistical influence of precipitation and cloudiness variations, as detailed in Methods). There is a 79 tight relationship between autumn net carbon release (ACR) and temperature on the inter-annual timescale over the period 1974–2014 ($R_{ACR-T} = -0.39$, P < 0.05) (Figure S1), confirming that 80 81 warming-induced increase in autumn respiration dominated over autumn photosynthetic gains 82 (Piao et al., 2008; Miller, 2008). Unexpectedly, R_{ACR-T} changed from -0.62 (P < 0.01) during 83 1974–1996 to -0.05 (P = 0.85) during 1997–2014, which runs counter to our proposed hypothesis 84 that the negative temperature impact on annual carbon sequestration would recently become much 85 more pronounced. The observed diminished correlation between mean autumn temperature and 86 ACR implies smaller land carbon release and reduced atmospheric CO₂ growth between September 87 and November during warmer years. The sensitivity of ACR to autumn temperature (γ_{ACR-T}) shifts from -1.09 ppm K⁻¹ during the earlier period to -0.11 ppm K⁻¹ during later period (Figure S2), with 88 89 change in magnitude of 0.98 ppm K⁻¹, indicating a change in sensitivity of about 2.09 gigatonnes of carbon per year per K when calculating based on a conversion factor of 2.14 GtC ppm⁻¹ (IPCC. 90 91 2013). This diminished negative temperature effect on autumn carbon cycle is also detected in the 92 upward zero-crossing date of CO_2 (defined as the day when detrended seasonal CO_2 crosses the 93 zero line from the negative to positive value). In the earlier period warmer years implied earlier 94 crossing dates (R = -0.66, P < 0.01), while in the later period no correlation remained (R = -0.02, 95 P = 0.95) (Figure S3). In contrast to autumn, in winter no temperature response of ACR was 96 detected, neither in the earlier period (R = 0.11, P = 0.63), nor in the later period (R = -0.04, P =97 0.89) (Figure 1c).

98

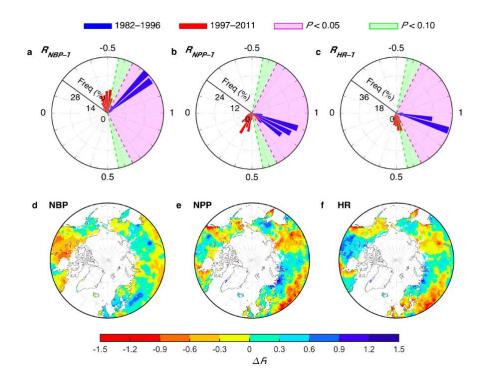
99 To test the robustness of the observed decelerated loss of warming impact on autumn ACR, we 100 performed the following additional analyses: (1) we defined autumn as the period from September 101 1st to the date when detrended seasonal CO₂ crosses the zero line from the negative to positive 102 value (Figure S4), (2) we used another climate dataset (WFDEI, see Methods, Figure S5) and (3) 103 we used CO₂ concentration records from weekly in situ measurements and flask samples (see 104 Methods, Figure S6). All of these analyses confirmed that autumn warming no longer accelerates 105 autumn net carbon release in the latest period. In a consistent manner, we also analyzed the 106 temporal change in temperature dependence of net biome production (NBP) from two different 107 atmospheric inversion systems. Consistent with the atmospheric CO₂ analyses, NBP from the Jena 108 CarboScope inversion system also indicated a non-significant temperature impact on autumn NBP 109 over boreal and arctic ecosystems north of 50°N during 1997–2011 ($R = -0.44 \pm 0.13$), in contrast 110 to the significant temperature effect found during 1982–1996 ($R = -0.74 \pm 0.05$) (Figure 2a). 111 Similar results were also found if NBP from MACC inversion system was considered (1982–1996: 112 $R = -0.65 \pm 0.08$; 1997–2011: $R = -0.16 \pm 0.15$, Figure S7). Besides land ecosystems, atmospheric 113 CO_2 variation also harbors signals from changes in atmospheric transport, air-sea CO_2 exchanges 114 and fossil fuel emissions. We therefore assessed their potential contributions to the change in R_{ACR} 115 T using atmospheric transport simulations based upon atmospheric transport model from the 116 Laboratoire de Météorologie Dynamique (LMDz) (Hourdin et al., 2006) (see Methods), and found 117 that their decadal changes would not contribute to the observed diminished temperature control on 118 ACR (Figure S8).

119

120 Which terrestrial carbon cycle processes caused the diminished negative temperature control on 121 the autumn carbon cycle in the north? This diminished effect could be only explained by an 122 enhanced temperature reliance of carbon uptake through vegetation photosynthesis and/or a 123 reduced temperature dependence of carbon loss through respiration. Analysis of satellite-based 124 vegetation index (GIMMS NDVI) (Tucker et al., 2005) as a proxy for vegetation production 125 showed that autumn NDVI is marginally significantly correlated with temperature in the earlier 126 period ($R = 0.50 \pm 0.15$), but became decoupled from temperature in the later period ($R = -0.37 \pm$ 127 0.14) (Figure S9). This weakened temperature dependence of vegetation production was, 128 nonetheless, also evident when considering satellite-based estimates of net primary productivity 129 (NPP) (Smith et al., 2016, Figure 2b), or satellite-independent estimates of gross primary 130 productivity (GPP) up-scaled from eddy flux towers (Jung et al., 2009)(Figure S10), thereby ruling 131 out its possibility in explaining the diminished temperature effect on ACR. For example, R_{NPP-T} and R_{GPP-T} decreased from 0.82 ± 0.06 and 0.88 ± 0.04 in the earlier period to 0.41 ± 0.23 and 0.43 ± 0.14 in the later period, respectively.

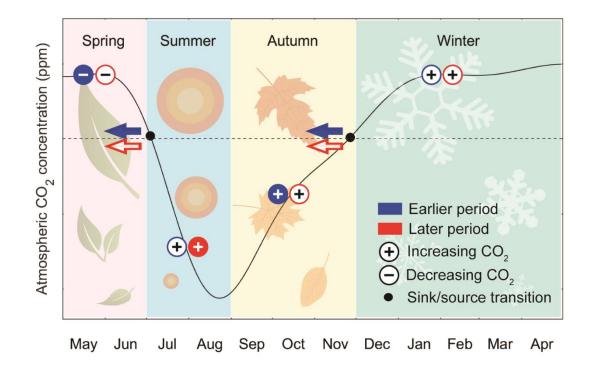

134

135 The heterotrophic respiration (HR), computed as the difference between NBP from Jena 136 CarboScope (or MACC) dataset and satellite-derived NPP, has significant partial correlations with 137 autumn temperature in the earlier period (Jena: $R_{HR-T} = 0.90 \pm 0.03$; MACC: $R_{HR-T} = 0.79 \pm 0.06$) 138 but not in the later period (Jena: $R_{HR-T} = 0.48 \pm 0.14$; MACC: $R_{HR-T} = 0.28 \pm 0.15$) (Figure 2c, 139 Figure S7b). Furthermore, we also analyzed simulated HR from eight models participating in the 140 historical climate carbon cycle model intercomparison project (TRENDY, see Methods), and found 141 that the strong HR-temperature correlation in the earlier period also became weak and non-142 significant during the later period across almost all of the models (Figure S11 and S12). Therefore, 143 we conclude that the diminished negative temperature effect on autumn carbon cycle during the 144 latest period is most likely due to diminished temperature dependence of respiratory losses. To 145 diagnose the potential mechanism responsible for the decrease in R_{HR-T} , we studied decadal changes 146 in simulated soil moisture content from TRENDY models, and found a widespread reduction in 147 soil moisture particularly over North America and Siberia, which was spatially coherent with the 148 decline in R_{HR-T} , suggesting the plausibility of a potential soil water effect (Figure S13).


149

We provide the evidence that autumnal warming no longer accelerates net carbon losses and advance the end of the carbon uptake period in boreal and arctic ecosystem as previously suggested (Piao et al., 2008; Ueyama et al., 2014), primarily through reducing positive decomposition responses to warming most likely due to a soil moisture shortage. The autumnal finding reveals the similar temperature-dependent shift in carbon cycle over the last 3 decades that is also found to occur in the main growing season (Peñuelas et al., 2017; Piao et al., 2017), suggesting a changing 156 paradigm for temperature control over ecosystem carbon cycling. However, the outcomes of these 157 shifts on net CO_2 exchanges are not consistent in the direction of their effect on atmospheric pCO2 158 and would thus partly compensate for each other. The autumnal respiratory acclimation has an 159 ameliorating impact on net CO₂ losses with rising temperatures, which could offset the negative 160 warming impact on net CO₂ uptake during the active growing season (Peñuelas et al., 2017; Piao 161 et al., 2017). It is therefore premature to conclude that the impact of temperature on annual carbon 162 cycle has fundamentally shifted towards the negative state, and highlights the importance of 163 incorporating how net carbon losses change with temperature during the dormant period in fully 164 understanding temperature impacts on net carbon uptake. Additional studies are still needed to 165 quantify whether these two opposing effects on carbon cycle will effectively neutralize each other, 166 particularly for arctic and boreal ecosystems where the majority of permafrost soil carbon is stored 167 and increasing old soil carbon will be respired to the atmosphere as a result of warming-induced 168 permafrost thaw (Schuur et al., 2015; Pries et al., 2016; Koven et al., 2011).

Figure 1. Temperature control on net carbon release during the dormant season. Here we define the dormant season as the period from September to next April (a), which consists of autumn (September to November, b) and winter (December to next April, c). The lines are time series of the detrended anomaly of net carbon release (green) and mean temperature across land ecosystems north of 50°N (red).



176 Figure 2. The relationship between ecosystem carbon fluxes and temperature in autumn. (a-177 c), the frequency distribution of the partial correlation coefficient of net biome production (NBP), 178 net primary productivity (NPP), and heterotrophic respiration (HR) with average temperature 179 during September to November across land ecosystem north of 50°N, whilst controlling for 180 precipitation and cloudiness during the earlier period (1982-1996, blue bar) and later period 181 (1997–2011, red bar), respectively. For each period, we randomly selected 12 years to generate the 182 frequency distribution of partial correlation coefficient. The shade illustrates the significance level 183 at P < 0.05 (magenta) and P < 0.10 (green), respectively. (**d-f**), the spatial distribution of the 184 changes in the partial correlation coefficient of NBP, NPP and HR with temperature for the two 185 periods, respectively. Here NBP is estimated from Jena CarboScope inversion system, the NPP is 186 estimated based on GIMMS NDVI, and HR was calculated as the difference between NBP and 187 NPP.

188

189 Figure 3. Schematic of the effect of warming on seasonal CO₂ uptake and release. In spring, 190 warming advances the source-to-sink transition date and increases CO₂ uptake that decreases 191 atmosphere CO_2 (Keeling et al., 1996), but which disappeared in the later period (1996–2012) 192 (Piao et al., 2017). In summer, the effect of warming on net CO₂ uptake became significantly 193 negative in the later period that increases atmosphere CO_2 (Peñuelas et al., 2017). On the contrary, 194 the widely recognized autumn warming-induced advancement in sink-to-source transition date and 195 acceleration in net CO₂ release (Piao et al., 2008) became diminished in the later period, which 196 could decrease build-up of atmospheric CO_2 . In contrast, the temperature effect on winter net CO_2 197 is significant during periods. release not both

198

199 Materials and Methods

200 Atmospheric CO₂ concentration

201 The CO₂ concentration records from Point Barrow (71°N, Alaska) cover the period from 1974 to 202 2014, and are derived from the National Oceanic and Atmospheric Administration (NOAA) Earth 203 System Research Laboratory (Thoning et al., 2014). The CO₂ concentration time series consist of 204 three types of signals: the long-term trend, the short-term variations, and the seasonal cycle. We 205 performed the following procedure to obtain detrended seasonal cycle of CO₂ concentration. First, 206 we fitted the daily CO_2 records using a function consisting of four harmonics and a quadratic 207 polynomial to separate the seasonal cycle from the long-term increasing trend (Thoning et al, 1989) 208 and obtain the residuals from this function fit. Second, we used a 1.5 month (or 1 month, see Figure S6) full-width half-maximum value (FWHM) averaging filter to remove the short-term variations 209 210 from the residuals and get a smoothed curve by adding the filtered residuals to the fitted function 211 in the first step. We also applied a 390-day FWHM averaging filter to derived residuals from the 212 first step and added the filtered residuals to the fitted long-term trend from quadratic polynomial 213 to obtain a de-seasonalized long-term trend. Finally, we calculated the difference between the 214 smoothed curve and the de-seasonalized long-term trend as the detrended seasonal CO₂ 215 concentration. As outlier records have strong influence on the fitting process, we repeatedly fitted 216 the CO_2 time series as described in the first step and discarded records lying outside five times of 217 standard deviation of the residuals until no outliers were found (Harris et al, 2000).

218

We define the dormant season as the period from September to next April and calculated the changes in detrended CO_2 concentration during this period (CO_2 concentration in the last week of April in next year minus that in the first week of September) as the dormant season net carbon

222 release (CR). We also separate the dormant season into autumn (September to November) and 223 winter (December to next April) and calculated autumn carbon release (ACR) and winter carbon 224 release (WCR) as the changes of CO₂ concentration in autumn and winter, respectively. In addition, 225 the mean date when detrended seasonal CO_2 crosses zero line from the negative to positive value is around the 317th day of the year (DOY) during the period from 1974 to 2014. To test the 226 227 robustness of the analysis, we also defined autumn as the period from the first day of September to 228 DOY 317 and defined winter as the period from DOY 318 to the last day of April in next year and 229 calculated ACR and WCR accordingly. Furthermore, we also calculate CR from the weekly 230 atmospheric CO₂ concentration from the NOAA Earth System Research Laboratory at Barrow.

231

232 Climate dataset

We used the monthly climate dataset from the Climate Research Unit, University of East Anglia (CRU TS4.0 dataset) (Mitchell et al, 2005) in this study. This dataset covers the period from 1901 to 2015, with a spatial resolution of $0.5^{\circ} \times 0.5^{\circ}$. We selected mean temperature, precipitation and cloud cover for the analysis. We also used another climate dataset, which applied the WATer and global Change (WATCH) Forcing Data to the ERA-Interim dataset (<u>http://www.eu-</u> <u>watch.org/gfx_content/documents/README-WFDEI.pdf</u>) for the analysis and obtained similar results (Figure S5).

240

241 Vegetation production datasets

We used the Normalized Difference Vegetation Index (NDVI) retrieved from the third-generation of the Advanced Very High Resolution Radiometer (AVHRR) developed by the Global Inventory Modeling and Mapping Studies (GIMMS) group (version 3g.v0, available at https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0) as a proxy for vegetation activity (Tucker et al,
2005). The GIMMS NDVI dataset covers the period from 1982 to 2013, with a spatial resolution
of 0.083°×0.083°. We also used two vegetation production data: the monthly GIMMS net primary
production (NPP) dataset (Smith et al, 2016), and the gross primary productivity (GPP) up-scaled
from eddy flux towers using multi-tree ensemble approach (Jung et al, 2009).

250

251 Atmospheric CO₂ inversion data

252 We gathered two atmosphere CO₂ inversion products to investigate the response of terrestrial 253 carbon fluxes to warming. We used monthly net biome production (NBP) from the Jena CarboScope (http://www.bgc-jena.mpg.de/CarboScope/, version s81_v3.8) for the period from 254 255 1982 to 2011, with a spatial resolution of 3.75° latitude $\times 5^{\circ}$ longitude. The monthly net biome 256 production (NBP) from the Monitoring Atmospheric Composition and Climate (Chevallier et al, 257 2005) (MACC, version v14r2, http://copernicus-atmosphere.eu/) between 1979 and 2011 was also 258 used for the analysis. We calculated the heterotrophic respiration as the difference between 259 inversed NBP and satellite-based NPP.

260

261 Terrestrial ecosystem models

Simulation results of eight models from a historical climate carbon cycle model inter-comparison project (Trendy) were used in this study. These models are Community land Model Version 4.5 (CLM4.5), the Integrated Science Assessment Model (ISAM), the Joint UK Land Environment Simulator (JULES), Lund-Potsdam-Jena DGVM (LPJ), Lund-Postam-Jena General Ecosystem Simulator (LPJ-GUESS), the Land surface Processes and eXchanges (LPX), the Organizing Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE), and the Vegetation Integrative Simulator for Trace gases (VISIT). All the models used forcing data from CRUNCEP dataset, and the simulation setup follow the standard protocol described in the inter-comparison project (<u>http://dgvm.ceh.ac.uk/files/Trendy_protocol%20_Nov2011_0.pdf</u>). Here we used the S2 simulations, which consider the effect of climate change and rising CO₂ concentration on ecosystem carbon fluxes.

273

274 Effects of atmospheric transport, air-sea CO₂ exchanges and fossil fuel emission on the 275 change in autumn net CO₂ release

276 To investigate the effects of atmospheric transport, air-sea CO₂ exchanges and fossil fuel emission 277 on the change in autumn net carbon release, we assessed the impact of year-to-year variations in 278 atmospheric transport, air-sea CO₂ exchange and fossil fuel emission on the observed changes on 279 autumn net carbon release between the early period (1979–1996) and the later period (1997–2012) 280 using atmospheric transport simulations. We used LMDz4, a 3D atmospheric tracer transport 281 model from the Laboratoire de Météorologie Dynamique (Hourdin et al., 2006), nudged with 282 ECMWF winds. As boundary conditions for transport simulations, we use land carbon fluxes over 283 1979–2012 from the land surface model ORCHIDEE (Krinner et al., 2005) that is driven by observed atmospheric CO₂ concentration and historical climate forcing from the CRU-NCEPv4 284 285 climate variables at 6-h resolution (Viovy and Ciais, 2014). For air-sea CO₂ exchanges, we use 286 simulations from a biogeochemical model PlankTOM5 combined with a global ocean general 287 circulation model NEMO (NEMO-PlankTOM5) that is forced by inputs of ions and compounds 288 from river, sediment and dust for the PlankTOM5 model, and daily wind and precipitation from 289 the NCEP reanalysis for the NEMO model (Buitenhuis et al., 2010). For fossil fuel CO₂ emissions, 290 the monthly global time series was derived from the Carbon Dioxide Information Analysis Center 291 (CDIAC) website (http://cdiac.esd.ornl.gov) (Andres et al,2011).

293 To assess whether changes in atmospheric transport can influence the observed change in ACR, 294 we perform the transport modeling experiment in which land and air-sea CO₂ exchanges are fixed 295 at the year 1979 but the atmospheric transport allows to be varying according to ECMWF wind 296 fields (refer to WCC hereafter). For air-sea CO_2 exchange, we conduct the modeling experiment 297 where the atmospheric transport and land carbon fluxes are fixed at year 1979 but air-sea CO_2 298 exchanges vary according to simulations from NEMO-PlankTOM5 (WAC simulation). To assess 299 the effect from fossil fuel emission, we conducted the modeling experiment where the land and air-300 sea CO₂ exchanges fixed at the year 1979, but transport the year-to-year varying fossil fuel 301 emission (WCF simulation).

302

303 Analysis

304 We performed partial correlation analysis between net carbon release during the dormant season 305 (autumn and winter) with temperature whilst statistically controlling for precipitation and cloud 306 cover (R_{CR-T} , R_{ACR-T} , and R_{WCR-T}). The climate variables are averaged over the region north of 50°N. 307 and we only considered the pixels where the annual NDVI greater than 0.1. The partial correlation 308 analysis was performed for the earlier period (1974-1996) and later period (1997-2014) 309 respectively. All variables are detrended before the partial correlation analysis. For a more robust 310 analysis, we also performed the partial correlation analysis through randomly selecting 12 years 311 from the time series among the corresponding period to generate a frequency distribution of the 312 partial correlation coefficient. We also conducted a two-sample *t*-test to determine whether the 313 partial correlation coefficient is statistically significant. To test if the shift of R_{ACR-T} is influenced 314 by atmospheric transport, we calculated ACR from the WCC simulation, which all factors except 315 wind field are fixed to year 1979, to denote the effect from atmospheric transport. To test if the

- 316 shift of R_{ACR-T} is influenced by the transport of air-sea CO₂ and fossil fuel emission, we calculated
- 317 the air-sea CO₂ and fossil fuel induced ACR by calculating the difference between the WAC (WCF)
- and the WCC simulation. Then we conducted the partial correlation analysis on the WAC (WCF)
- 319 induced ACR. To investigate the driver of the shift of R_{ACR-T} , we also performed the same analysis
- 320 to the satellite-derived NDVI (R_{NDVI-T}), the satellite-based NPP (R_{NPP-T}), the flux-tower based GPP
- 321 (R_{GPP-T}), the inversed NBP (R_{NBP-T}) and the HR calculated from NBP and NPP (R_{HR-T}).

322 **References**

323	1.	IPCC.	Climate	Change	2013:	The	Physical	Science	Basis:	Summary	for	Policy	makers.	(eds

- 324 Stocker, T. F. et al.) (Cambridge University Press, Cambridge, 2013).
- 325 2. Lafleur, P. M & Humphreys, E. R. Spring warming and carbon dioxide exchange over low
- Arctic tundra in central Canada. *Glob. Change Biol.* **14**, 740-756 (2007)
- 327 3. Richardson, A. D. *et al.* Influence of spring phenology on seasonal and annual carbon balance
 328 in two contrasting New England forests. *Tree Physiol.* 29, 321-221 (2009)
- 4. Piao, S. L. *et al.* Weakening temperature control on the interannual variations of spring carbon
 uptake across northern lands. *Nat. Clim. Change* 7, 359-363 (2017)
- 331 5. Piao, S. L. *et al.* Net carbon dioxide losses of northern ecosystems in response to autumn
 332 warming. *Nature* 451, 49-52 (2008)
- 333 6. Peñuelas, J. *et al.* Shifting from a fertilization-dominated to a warming-dominated period.
 334 Nature Ecology and Evolution, in press
- 335 7. McGuire, A. D. *et al.* Sensitivity of the carbon cycle in the Arctic to climate change. *Ecol.*336 *Monogr.* **79** (4), 523-555 (2009)
- 8. Pan, Y. D. *et al.* A large and persistent carbon sink in the world's forests. *Science* 333 (6045),
 988-993 (2011)
- Beer, C. *et al.* Terrestrial gross carbon dioxide uptake: global distribution and covariation with
 climate. *Science* 329 (5993), 834-838 (2010)
- 341 10. Keenan, T. F. *et al.* Net carbon uptake has increased through warming-induced changes in
 342 temperate forest phenology. *Nat. Clim. Change* 4, 598-604 (2014)

- 343 11. Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedback.
 344 *Nature* 451,289-292 (2008)
- 345 12. Ahlström, A. *et al.* Robustness and uncertainty in terrestrial ecosystem carbon response to
 346 CMIP5 climate change projections. *Environ. Res. Lett.* 7 (4), 044008 (9pp) (2012)
- 347 13. Cox, P. M. *et al.* Acceleration of global warming due to carbon-cycle feedbacks in a coupled
 348 climate model, *Nature* 408, 184-187
- 349 14. Friedlingstein, P. et al. Positive feedback between future climate change and the carbon cycle,
- 350 Geophys. Res. Lett., 28 (8), 1543-1546
- 351 15. Guerlet, S. *et al.* Reduced carbon uptake during the 2010 Northern Hemisphere summer from
 352 GOSAT. *Geophys. Res. Lett.*, 40 (10), 2378-2383 (2013)
- 353 16. Wang, T. *et al.* Controls on winter ecosystem respiration in temperate and boreal ecosystems.
 354 *Biogeosciences* 8, 2009-2025 (2011)
- 17. Commane, R. *et al.* Carbon dioxide sources from Alaska driven by increasing early winter
 respiration from Arctic tundra. *Proc. Natl. Acad. Sci. USA* 114 (21), 5361-5366 (2017).
- 18. Piao, S. L. *et al.* Evidence for a weakening relationship between interannual temperature
 variability and northern vegetation acitivity. *Nat. Commun.* 5018 doi: 10.1038/ncomms6018
 (2014)
- 360 19. Ballantyne, A. *et al.* Accelerating net terrestrial carbon uptake during the warming hiatus due
 361 to reduced respiration, *Nat. Clim. Change* 7, 148-152 (2017)
- 362 20. Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increasing activity of northern vegetation inferred
- 363 from atmospheric CO₂ measurements. *Nature* **382**, 146-149 (1996)

- 364 21. Oechel, W. C. *et al.* Acclimation of ecosystem CO₂ exchange in the Alaskan Arctic in response
 365 to decadal climate warming. *Nature* 406, 978-981 (2000)
- 366 22. Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models:
 367 incorporating acclimation to temperature and CO₂. *Glob. Change Biol.* **19** (1), 45-63 (2013)
- 368 23. Miller J. B. Carbon cycle: sources, sinks and seasons. *Nature* **451**, 26-27 (2008)
- 369 24. Hourdin, F. *et al.* The LMDZ4 general circulation model: climate performance and sensitivity
 370 to parametrized physics with emphasis on tropical convection. *Clim. Dynam.* 27, 787-813
 371 (2006).
- 372 25. Tucker, C. J. *et al.* An extended AVHRR 8-km NDVI dataset compatible with MODIS and
 373 SPOT vegetation NDVI data. *Int. J. Remote Sens.* 26, 4485-4498 (2005)
- 374 26. Smith, W. K. *et al.* Large divergence of satellite and Earth system model estimates of global
 375 terrestrial CO₂ fertilization. *Nat. Clim. Change* 6, 306-310 (2016)
- 376 27. Jung, M., Reichstein, M. & Bondeau, A. Towards global empirical upscaling of FLUXNET
- eddy covariance observations: validation of a model tree ensemble approach using a biosphere
 model. *Biogeosciences* 6, 2001-2013 (2009).
- 28. Ueyama, M., Iwata, H. & Harazono, Y. Autumn warming reduces the CO₂ sink of a black
 spruce forest in interior Alaska based on a nine-year eddy covariance measurement. *Glob. Change Biol.* 20, 1161-1173 (2014)
- 382 29. Schuur, E.A.G. *et al.* Climate change and the permafrost carbon feedback. *Nature* 520, 171383 179 (2015).

384	30. Pries,	C.	E.	H.	et	al.	Old	soil	carbon	losses	increase	with	ecosystem	respiration	in
385	experi	men	tall	y th	awe	ed tu	ndra.	Nat.	Clim. C	hange 6	5, 214-218	(2016	5)		

- 386 31. Koven C. D., Ringeval B, Friedlingstein P, *et al.* Permafrost carbon-climate feedbacks
 387 accelerate global warming. *Proc. Natl. Acad. Sci. USA* 108 (36), 14769-14774 (2011).
- 388 32. Thoning, K. W., Kitzis, D. R. & Crotwell, A. Atmospheric Carbon Dioxide Dry Air Mole
- 389 Fractions from Quasi-Continuous Measurements at Barrow, Alaska (NOAA ESRL Global
- Monitoring Division, 2014); <u>ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/in-</u>
 <u>situ/surface/brw/co2_brw_surface-insitu_1_ccgg_DailyData.txt</u>
- 33. Thoning, K.W., Tans, P. P. & Komhyr, W. D. Atmospheric carbon dioxide at Mauna Loa
 observatory. 2. Analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res. 94, 8549-
- **394 8565** (1989).
- 34. Harris, J. M. *et al.* An interpretation of trace gas correlations during Barrow, Alaska, winter
 dark periods, 1986-1997. *J. Geophys. Res.* 105, 17267-17278 (2000).
- 397 35. Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly
- 398 climate observations and associated high-resolution grids. *Int. J. Climatol.* **25**, 693-712 (2005).
- 36. Chevallier, F. *et al.* Inferring CO₂ sources and sinks from satellite observations: Method and
 application to TOVS data. *J. Geophys. Res.* 110, D24309 (2005)
- 401 37. Hourdin, F. *et al.* The LMDZ4 general circulation model: climate performance and sensitivity
 402 to parametrized physics with emphasis on tropical convection. *Clim. Dynam.* 27, 787-813
 403 (2006).
- 404 38. Krinner, G. et al. A dynamic global vegetation model for studies of the couped atmosphere-
- 405 biosphere system. *Global Biogeochem. Cy.* **19** (**1**), DOI: 10.1029/2003GB002199. (2005)

- 406 39. Viovy, N. & Ciais, P. CRUNCEP data set for 1901-2012 Tech. Rep. V. 4 (Laboratoire des
 407 Sciences du Climat et de l'Environnement, 2014);
 408 <u>https://www.earthsystemgrid.org/browse/viewActivity.html?activityId=ff9d6ffbf0b9-11e2-</u>
 409 aa24-00c0f03d5b7c
- 410 40. Buitenhuis, E. T. *et al.* Biogeochemical fluxes through microzooplankton. *Global Biogeochem.*
- 411 *Cy.* **24(4)**, DOI: 10.1029/2009GB003601 (2010)
- 412 41. Andres, R. J. *et al.* Monthly, global emissions of carbon dioxide from fossil fuel consumption.
- 413 *Tellus B* **63**, 309-327 (2011)