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The backtrack Hölder gradient method with application to
min-max and min-min problems

Jérôme Bolte, Lilian Glaudin, Edouard Pauwels, Matthieu Serrurier

September 6, 2023

Abstract

We present a new algorithm to solve min-max or min-min problems out of the convex world. We
use rigidity assumptions, ubiquitous in learning, making our method – the backtrack Hölder algorithm
applicable to many optimization problems. Our approach takes advantage of hidden regularity properties
and allows us, in particular, to devise a simple algorithm of ridge type. An original feature of our method
is to come with automatic step size adaptation which departs from the usual overly cautious backtracking
methods. In a general framework, we provide convergence theoretical guarantees and rates. We apply
our findings on simple Generative Adversarial Network (GAN) problems obtaining promising numerical
results. It is worthwhile mentioning that a byproduct of our approach is a simple recipe for general
Hölderian backtracking optimization.

1 Introduction

The main motivation for our algorithmic developments and analyses relates to applications of adversarial
learning, introduced in [19], see also [3], which call for the development of algorithms addressing large
scale, smooth problems of the type

min
x∈Rd

max
y∈Y

L(x, y), (1.1)

where Y is a constraint set, and L is a given cost function. This structure happens to be ubiquitous
in optimization and game theory, but generally under assumptions that are not those met in learning.
In optimization it stems from the Lagrangian approach and duality theory [11, 7, 13], while in game
theory it comes from zero-sum 2-players games [36, 37, 25]. Dynamics for addressing (1.1) have thus
naturally two types. They may be built on strategic considerations, so that algorithms correspond to a
sequence of actions chosen by antagonistic players, see [25]. In general these methods are not favorable
to optimization because the contradictory interests of players induce oscillations and slowness in the
identification of optimal strategies. Optimization algorithms seem more interesting for our purposes
because they focus on the final result, i.e., finding an optimal choice x, regardless of the adversarial
strategy issues. In that respect, there are two possibilities: the variational inequality approach, see e.g.
[23, 28, 13] or [27, 22, 18] in learning, which treats minimization and maximization variables on an equal
footing. On the other hand, some methods break this symmetry, such as primal or augmented Lagrangian
methods. In these methods, a large number of explicit steps, implicit steps, or global minimization are
performed on one variable while the other is updated much more cautiously in an explicit incremental
way, see e.g., [7, 34].

Our work is written in this spirit: we assume that the inner-max argument is tractable, that is y solvable,
with a good precision, and we construct our algorithm on the following model:

yn = argmax y∈YL(xn, y),

xn+1 = xn − γn∇xL(xn, yn), γn > 0, n ≥ 0. (1.2)
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Note that we use equality sign for the argmax as we will be working under this assumption (see Assumption
4.2). This assumption ensures that the partial maximum is differentiable in the classical sense and allows to
deploy techniques from smooth optimization. Our analysis relies on exact partial maximum evaluation, we
leave the analysis of the impact of inexact evaluation as future research. As explained above, the rationale
is not new1, and is akin to many methods in the literature on learning where the global optimization is
performed approximately by multiple gradient steps [30, 31] or by clever revision steps, as in the "follow
the ridge" method [38].

Backtrack Hölder What is new then? This brings us to our main abstract contribution, which can be
applied beyond min-max structured problems and constitutes a result of independent interest. Surprisingly
we can provide theoretical grounds to devise large steps and thus obtain aggressive learning-rates with
very mild assumptions. Differential regularity of L does not directly translate into regularity of the inner
max in (1.1). However, one can exploit some hidden properties of the value function g = maxy L(·, y)
under widespread rigidity assumptions. Let us sketch the ideas of our approach. First, under a uniqueness
assumption on the maximizer, our method appears to be a gradient method on the value function for
“player I" ( “the generator" of Generative Adversarial Networks)

xn+1 = xn − γn∇g(xn).

Secondly, we use the fact that g has a locally Hölderian gradient2 whenever L is semialgebraic or analytic-
like, a situation which covers most of the problems met in practice. With such observations, our second
main contribution is an automatic learning-rate strategy based on a diagonal backtracking method for
objectives with Hölderian gradients. The term diagonal refers to the idea that the two parameters
describing Hölder regularity of the gradient vary together during the search process. The overall procedure
consists in applying this idea to the function g which results in an automatic learning-rate strategy for
algorithm (1.2) to solve problem (1.1). We call this approach “Backtrack Hölder methods for min-max".

Summary of the contributions

• An automatic diagonal step size strategy is devised for gradient descent on objective with qualitative
Hölderian gradient and unknown constant and exponent. This is of independent interest as it is not
specific to min-max problems.

• Under mild rigidity assumptions the value function g of the inner max in Problem (1.1) benefits
from a qualitative Hölderian gradient property. This results in a new algorithm “Backtrack Hölder
for min-max”, with automatic step size tuning, which is the main motivation for our developments.

• Our algorithms are shown to find ϵ critical points with at most O(ϵ−[2+c]) iterations, where c ≥ 0 is
related to the Hölderian regularity of the underlying function. Most importantly, we provide general
convergence guarantees to points (x∗, y∗) satisfying y∗ = argmax yL(x

∗, y) and ∇xL(x
∗, y∗) = 0.

This is done within a fairly general framework, since L is merely assumed semialgebraic while the
“best response" of player II is only required to be singled-valued.

• A byproduct of our work is a global convergence result for Hölderian gradient methods (without
backtracking) [6, 20, 29, 39].

• Our work is theoretical in essence. It is merely a first step towards convergence analysis of more
involved algoriths involving nonsmoothness or stochastic subsampling. We propose, however,
numerical experiments on learning problems, including “Sinkhorn GANs", [17, 16], which rely on
optimal transport losses regularized through the addition of an entropic term, and Wasserstein GANs
[3], which are natural extensions of GANs [19].

1It can be traced back to the origin of augmented Lagrangian methods, see e.g., [32]
2Recall that G : Rd 7→ Rd′ is locally Hölderian if for all bounded subset V ⊂ Rd, there exists β and ν positive such that

∥G(x)−G(y)∥ ≤ β∥x− y∥ν , whenever x, y ∈ V .
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2 A recipe for Hölderian gradient descent

We generalize some results of [5, 9] to the Hölderian setting.

2.1 Semialgebraic considerations

Our results often use semialgebraic assumptions which are pervasive in optimization and machine learning
[12].

Definition 2.1 (Semialgebraic sets and functions) (i) A subset S of Rm is a real semialgebraic set if
there exist two positive integers r and s, and, for every k ∈ {1, . . . , r}, l ∈ {1, . . . , s}, two real
polynomial functions Pkl, Qkl : Rm → R such that

S =
r⋃

k=1

s⋂
l=1

{x ∈ Rm : Pkl(x) < 0, Qkl(x) = 0}.

(ii) A function f : A ⊂ Rm → Rn is semialgebraic if its graph
{
(x, λ) ∈ A× Rn

∣∣ f(x) = λ
}

is a
semialgebraic subset of Rm+n.

For illustrations of this notion in large-scale optimization and machine learning we refer to [4, 12].
One will also find in this work references, definitions and examples of globally subanalytic sets that are
necessary for our proofs to apply to Sinkhorn GANs (see Remark 5.1). The following result can be found,
for example, in [8].

Proposition 2.2 (Continuity and semialgebraicity implies Hölder continuity) Let f : Rd → Rd′
be a

semialgebraic continuous function. Then f is locally Hölder, i.e., for all compact sets K,

∃β ∈ ]0,+∞[ ,∃ ν ∈ ]0, 1] ,∀x, y ∈ K, ∥f(x)− f(y)∥ ≤ β∥x− y∥ν .

We recall below the Łojasiewicz inequality [24].

Definition 2.3 (Łojasiewicz inequality) A differentiable function f : Rn → R has the Łojasiewicz prop-
erty at x∗ ∈ Rn if there exist η, C ∈ ]0,+∞[ and θ ∈ ]0, 1[ such that for all x ∈ B(x∗, η),

C|f(x)− f(x∗)|θ ≤ ∥∇f(x)∥.

In this case the set B(x∗, η) is called a Łojasiewicz ball.

2.2 A convergence recipe for Hölder gradient methods

Let us recall and adapt to the Hölder case a few classical results for Lipschitz gradients. We first recall [39,
Lemma 1].

Lemma 2.4 (Hölder Descent Lemma) Let U ⊂ X be a nonempty convex set, let f : Rd → R be a C1

function, let ν ∈]0, 1], and let β ∈ ]0,+∞[. Suppose that

∀(x, y) ∈ U2, ∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥ν .

Then
∀(x, y) ∈ U2, f(y) ≤ f(x) + ⟨∇f(x), x− y⟩+ β

ν + 1
∥y − x∥ν+1.

Lemma 2.5 (Controlled descent) Let δ, θ ∈ ]0, 1[, let C, γ ∈ ]0,+∞[ and let x, y, x∗ ∈ Rd. Suppose that
the following hold:
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(a) f(x) ≥ f(x∗) and f(y) ≥ f(x∗),

(b) f(y) ≤ f(x)− δ
γ ∥y − x∥2,

(c) ∥∇f(x)∥ ≤ 1
γ ∥y − x∥,

(d) C(f(x)− f(x∗))θ ≤ ∥∇f(x)∥.

Then
δC(1− θ)∥y − x∥ ≤ (f(x)− f(x∗))1−θ − (f(y)− f(x∗))1−θ.

Proof. First, if y = x, then the inequality holds trivially. Second, if f(x) = f(x∗), then by the first two
items, y = x and the inequality holds also. Hence we may suppose that f(x)− f(x∗) > 0 and y ̸= x. We
have

Cγ

∥y − x∥
≤ C

∥∇f(x)∥
≤ (f(x)− f(x∗))−θ.

By concavity of s 7→ s1−θ, we have

(f(x)− f(x∗))1−θ − (f(y)− f(x∗))1−θ ≥ (1− θ)(f(x)− f(x∗))−θ(f(x)− f(y))

≥ Cγ(1− θ)

∥y − x∥
δ

γ
∥y − x∥2

≥ δC(1− θ)∥y − x∥,

which concludes the proof.

We combine a recipe idea from [9] with a trap argument from [5], extending the elements developed in
[1].

Theorem 2.6 (Recipe for convergence and the trapping phenomenon) Let f : Rd → R be a C1 func-
tion and let δ ∈ ]0, 1[. Consider (xn)n∈N in Rd and (γn)n∈N in ]0,+∞[ that satisfies

[a] (∀n ∈ N) f(xn+1) ≤ f(xn)−
δ

γn
∥xn+1 − xn∥2,

[b] (∀n ∈ N) ∥∇f(xn)∥ ≤ 1

γn
∥xn+1 − xn∥.

Then the following results hold:

(i) Assume that there exist x∗ ∈ Rd, θ ∈]0, 1[, η, C ∈ ]0,+∞[, and N ∈ N such that

C|f(x)− f(x∗)|θ ≤ ∥∇f(x)∥,∀x ∈ B(x∗, η),

xN ∈ B(x∗, η/2),

|f(xN )− f(x∗)|1−θ < δC(1− θ)η/2.

If f(xn) ≥ f(x∗) for all n ∈ N, then (xn)n≥N lies entirely in B(x∗, η).

(ii) Suppose that f is semialgebraic. Then if (xn)n∈N has a cluster point x∗ ∈ Rd, it converges to x∗.

Proof.

(i): By assumption, we have xN ∈ B(x∗, η/2) and

|f(xN )− f(x∗)|1−θ < δC(1− θ)η/2.

It follows from Lemma 2.5 that

δC(1− θ)∥xN+1 − xN∥ ≤ (f(xN )− f(x∗))1−θ − (f(xN+1)− f(x∗))1−θ.
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Let us prove by strong induction that for every n ≥ N , xn ∈ B(x∗, η). Assume n ≥ N + 1 and suppose
that for every integer N ≤ k ≤ n− 1, xk ∈ B(x∗, η). Lemma 2.5 yields

(∀k ∈ [N, . . . , n− 1]) δC(1− θ)∥xk+1 − xk∥ ≤ (f(xk)− f(x∗))1−θ − (f(xk+1)− f(x∗))1−θ.

Summing both sides over k yields

δC(1− θ)

n−1∑
k=N

∥xk+1 − xk∥ ≤ (f(xN )− f(x∗))1−θ − (f(xn)− f(x∗))1−θ

≤ (f(xN )− f(x∗))1−θ < δC(1− θ)η/2. (2.1)

Because

∥xn − x∗∥ ≤
n−1∑
k=N

∥xk+1 − xk∥+ ∥xN − x∗∥ < η/2 + η/2 = η,

we have xn ∈ B(x∗, η). We have proved thus that for every n ≥ N , xn ∈ B(x∗, η).

(ii): Since (f(xn))n∈N is nonincreasing by [a], we deduce that f(xn) converges and since x∗ is a cluster
point, f(xn) → f(x∗) and f(xn) ≥ f(x∗) for all n ∈ N. Since f is semialgebraic, f has the Łojasiewicz
property at x∗ [24]. Hence, let us define θ, C, and η as in Definition 2.3 relative to x∗. Since x∗ is a cluster
point and f(xn) → f(x∗), there exists N as in (i) above.

For every integer n ≥ N , it follows from (2.1) that

δC(1− θ)

n−1∑
k=N

∥xk+1 − xk∥ ≤ (f(xN )− f(x∗))1−θ ≤ (f(x0)− f(x∗))1−θ < +∞,

and hence the series converges, the increments are summable, and (xk)k∈N converges to x∗.

Remark 2.7 (Convergence and semialgebraicity) (a) Note that when f is semialgebraic, Theorem 2.6
describe two exclusive alternatives, for any sequence:

• either ∥xn∥ → ∞

• or (xn)n∈N converges to a critical point x∗.

Indeed, if we are not in the diverging case, there is a cluster point x∗ which must be a critical point.
Whence we are in the situation of (ii) above.
(b) If f is, in addition, coercive, i.e., lim∥x∥→+∞ f(x) = +∞, each Hölder gradient sequence converges
to a critical point since the first alternative is not possible because (f(xk))k∈N is non increasing so that
(xk)k∈N is bounded.

Remark 2.8 (Armijo line search) The two conditions in Theorem 2.6 are satisfied if one uses the classical
Armijo backtracking line search strategy (see e.g. [7]). This strategy only uses C1 smoothness of f . We
adapt this strategy in further sections to take advantage of qualitative Hölderian regularity of ∇f .

2.3 Gradient descent for nonconvex functions with globally Hölderian gradient

To illustrate our recipe, we consider first the ideal case of a gradient method on a globally Hölder function
with known constants [29, 39]. We study Algorithm 1, previously presented in [39] for which we prove
sequential convergence.

Assumption 2.9 (Global Hölder regularity) The function f : Rd → R is C1, semialgebraic, and

∀x1, x2 ∈ Rd, ∥∇f(x1)−∇f(x2)∥ ≤ β∥x1 − x2∥ν , with β > 0, ν ∈]0, 1]. (2.2)
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Algorithm 1: Hölder gradient method
Input: ν ∈ ]0, 1], β ∈ ]0,+∞[ and γ ∈]0, (ν + 1)/β[
Initialization :x0 ∈ Rd

for n = 0, 1, . . . do

γn(xn) = γ
(

ν+1
β

)1/ν−1

∥∇f(xn)∥1/ν−1

xn+1 = xn − γn(xn)∇f(xn)

Proposition 2.10 (Convergence of the Hölder gradient method for nonconvex functions) Under As-
sumption 2.9, consider a sequence (xn)n∈N generated by Algorithm 1. Then the following hold:

(i) the sequence (f(xn))n∈N is nonincreasing,

(ii) if the sequence (xn)n∈N has a cluster point, then it converges to a critical point x∗ ∈ Rd of f , i.e.,
∇f(x∗) = 0,

(iii) under the assumptions of (ii), for every 3 n ∈ N,

min
0≤k≤n

∥∇f(xk)∥
1
ν +1 ≤

 f(x0)− f(x∗)

γ − γν+1
(

β
ν+1

)ν ( β

ν + 1

) 1−ν
ν

 1

n+ 1
= O

(
1

n

)
.

Choosing γ = ν+1
β

(
1

ν+1

)1/ν
, we obtain

min
0≤k≤n

∥∇f(xk)∥
1
ν +1 ≤ (f(x)− f(x∗))β1/ν(ν + 1)

ν(n+ 1)
.

Proof. Let n ∈ N and set dn = ∇f(xn). For the clarity of the proof, the dependence of γn in xn is dropped.
Lemma 2.4 with U = Rd provides

f(xn+1) ≤ f(xn) + ⟨dn, xn+1 − xn⟩+
β

ν + 1
∥xn+1 − xn∥ν+1

≤ f(xn)−
1

γn
∥xn+1 − xn∥2 +

β

ν + 1
∥xn+1 − xn∥ν+1

= f(xn)−
1

γn

(
∥xn+1 − xn∥2 −

βγn
ν + 1

∥xn+1 − xn∥ν+1
)
. (2.3)

By definition of γn we have

γ1/ν
n = γ

(
ν + 1

β

)1/ν−1

∥xn+1 − xn∥1/ν−1

and thus

γn = γν

(
ν + 1

β

)1−ν

∥xn+1 − xn∥1−ν .

Set δ = 1− γν
(

β
ν+1

)ν
. Since γ < ν+1

β by hypothesis in Algorithm 1, we have δ > 0 and we deduce from
(2.3) that

f(xn+1) ≤ f(xn)−
1

γn

(
∥xn+1 − xn∥2 − γν

(
β

ν + 1

)ν

∥xn+1 − xn∥2
)

= f(xn)−
1− γν

(
β

ν+1

)ν
γn

∥xn+1 − xn∥2

= f(xn)−
δ

γn
∥xn+1 − xn∥2. (2.4)

3This result is essentially present in [39]
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Hence (f(xn))n∈N is nonincreasing, this proves (i). Since, for all n, ∥∇f(xn)∥ = ∥xn+1 − xn∥/γn and
(xn)n∈N has a cluster point, we can apply Theorem 2.6 and obtain that xn → x∗ ∈ Rd. Finally, it follows

from (2.4) that ∥xn+1−xn∥ → 0 and that ∥xn+1−xn∥ = γn∥∇f(xn)∥ = γ
(

ν+1
β

)1/ν−1

∥∇f(xn)∥1/ν → 0.
Hence x∗ is a critical point, which proves (ii).

For n fixed, we have using the definition of γn,

δ

γn
∥xn+1 − xn∥2 = δγn∥∇f(xn)∥2 = δγ

(
ν + 1

β

) 1
ν −1

∥∇f(xn)∥
1
ν +1.

Then it follows from (2.4) that

∥∇f(xn)∥
1
ν +1 ≤ 1

δγ

(
β

ν + 1

) 1−ν
ν

(f(xn)− f(xn+1)) (2.5)

whence

(n+ 1) min
k=0,...,n

∥∇f(xk)∥
1
ν +1 ≤

n∑
k=0

∥∇f(xk)∥
1
ν +1

≤ 1

γ − γν+1
(

β
ν+1

)ν ( β

ν + 1

) 1−ν
ν

(f(x0)− f(x∗)).

Choosing γ = ν+1
β

(
1

ν+1

)1/ν
, we obtain

γ − γν+1

(
β

ν + 1

)ν

=
ν + 1

β

(
1

ν + 1

)1/ν

−

(
ν + 1

β

(
1

ν + 1

)1/ν
)ν+1(

β

ν + 1

)ν

=
ν + 1

β

(
1

ν + 1

)1/ν (
1− 1

1 + ν

)
=

ν + 1

β

(
1

ν + 1

)1/ν (
ν

1 + ν

)
,

from which we deduce

(n+ 1) min
0≤k≤n

∥∇f(xk)∥
1
ν +1 ≤ (f(x)− f(x∗))(ν + 1)

ν

(
β

ν+1

) 1−ν
ν

ν+1
β

(
1

ν+1

)1/ν
= (f(x)− f(x∗))β1/ν ν + 1

ν
,

which proves (iii).

3 The “Backtrack Hölder” gradient algorithm and diagonal back-
tracking

In practice, the constants are unknown and the Hölderian properties are merely local. The algorithm we
present now (Algorithm 2), is in the spirit of the classical backtracking method, see e.g., [7]. The major
difference with classical approaches, is that we devise a diagonal backtracking, to detect both constants
β, ν at once, in a single searching pass. The term diagonal refers to the idea that the two parameters
describing Hölder regularity of the gradient vary together during the search process.
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Assumption 3.1 The function f : Rd → R is a C1 semialgebraic4.

This implies that ∇f is locally Hölder by Proposition 2.2.

In the following algorithm, α, γ > 0 are step length parameters, δ > 0 is a sufficient-decrease threshold
and ρ > 0 balances the search between the unknown exponent ν and the unknown multiplicative constant
β, see Assumption 2.9.

Algorithm 2: Backtrack Hölder gradient method
Input: δ, α ∈ ]0, 1[ and γ, ρ ∈ ]0,+∞[
Initialization :x0 ∈ Rd, k−1 = 0
for n = 0, 1, . . . do

k = kn−1

γn(xn) = αk min{1, ∥∇f(xn)∥ρk}γ
while f(xn − γn(xn)∇f(xn)) > f(xn)− δγn(xn)∥∇f(xn)∥2 do

k = k + 1
γn(xn) = αk min{1, ∥∇f(xn)∥ρk}γ

kn = k
xn+1 = xn − γn(xn)∇f(xn)

The following theorem provides convergence guarantees under local Hölder continuity (Assumption 3.1
for Algorithm 2). The first three items only use C1 smoothness of f and the quantitative decrease ensured
by line search in order to apply Theorem 2.6, while the quantitative estimates rely on the Hölderian
assumption and the specific form of the line search strategy.

Theorem 3.2 (Convergence of Backtrack Hölder for nonconvex functions) Under Assumption 3.1, con-
sider a sequence (xn)n∈N generated by Algorithm 2. Then the following hold:

(i) (γn)n∈N is well defined,

(ii) the sequence (f(xn))n∈N is nonincreasing,

(iii) if (xn)n∈N has a cluster point, then there exists x∗ ∈ Rd such that xn → x∗ and ∇f(x∗) = 0,

(iv) if (xn)n∈N has a cluster point, then the while-loop has a uniform finite bound k̄ := supn∈N kn < +∞.
Moreover

min
0≤i≤n

∥∇f(xi)∥ = O

(
1

n
1

2+ρk̄

)
.

(v) Suppose, in addition to (iv), that there exist β ∈ ]0,+∞[ and ν ∈]0, 1], such that ∇f is globally (β, ν)
Hölder. Then

sup
n∈N

kn ≤ 1 +
1

ν
max

 log
(

(1−δ)(ν+1)
γνβ

)
log(α)

,
1− ν

ρ

 . (3.1)

Proof. (i) : For every n ∈ N, we need to test for the existence of γ̃ > 0, such that

f(xn − γ̃∇f(xn)) ≤ f(xn)− δγ̃∥∇f(xn)∥2.

This test is obviously satisfied if ∇f(xn) = 0. Assuming the contrary, by using Taylor’s expansion on f , we
have as γ̃ → 0

f(xn − γ̃∇f(xn))

= f(xn)− γ̃∥∇f(xn)∥2 + o(γ̃) = f(xn)− δγ̃∥∇f(xn)∥2 + o(γ̃)− γ̃(1− δ)∥∇f(xn)∥2.
4The assumption could simply be that, on bounded sets, the restriction of f belongs to a polynomially bounded o-minimal

structure.
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Since δ < 1, for all small γ̃, the right hand side is smaller than f(xn)− δγ̃∥∇f(xn)∥2. This shows that the
test is satisfied by sufficiently small γ̃ and the while loop has to terminate.
(ii): It follows from Algorithm 2 that for every n ∈ N,

f(xn+1) ≤ f(xn)−
δ

γn
∥xn+1 − xn∥2, (3.2)

and hence the descent property holds.

(iii): One has ∥∇f(xn)∥ = 1
γn

∥xn+1 − xn∥. Since (xn)n∈N has a cluster point, we conclude by Theo-
rem 2.6(ii) that there exists x∗ ∈ Rd such that xn → x∗. This follows directly from (ii) and (3.2).

(iv): Since f is locally Hölder and xn → x∗ as n → ∞, there exist U ⊂ Rd, a convex neighborhood of x∗,
ν ∈ ]0, 1], and β ∈ ]0,+∞[ such that ∇f is (β, ν) Hölder on U and (xn)n≥N remains in U for N sufficiently
large.

Fix any K ∈ N such that

K ≥ max

 log
(

(1−δ)(ν+1)
γνβ

)
log(α)ν

,
1− ν

ρν

 . (3.3)

Then we also have

αK ≤ 1

γ

(
(1− δ)(ν + 1)

β

)1/ν

and ρK ≥ 1

ν
− 1.

Choosing any λ = αK min{1, ∥∇f(x)∥ρK}γ, we deduce that for any x ∈ U such that x− λ∇f(x) ∈ U ,

λν = αKν min{1, ∥∇f(x)∥ρKν}γν ≤
(
(1− δ)(ν + 1)

β

)
min{1, ∥∇f(x)∥ρKν}

≤
(
(1− δ)(ν + 1)

β

)
min{1, ∥∇f(x)∥1−ν}. (3.4)

We derive from Lemma 2.4 and (3.4) that for any x ∈ U

f(x− λ∇f(x)) ≤ f(x)− λ∥∇f(x)∥2 + β

ν + 1
λν+1∥∇f(x)∥ν+1

≤ f(x)− λ∥∇f(x)∥2

+
βλ

ν + 1

(1− δ)(ν + 1)

β
min{1, ∥∇f(x)∥1−ν}∥∇f(x)∥ν+1.

Since min{1, ∥∇f(x)∥1−ν}∥∇f(x)∥ν+1 ≤ ∥∇f(x)∥2, we have for all x ∈ U such that x− λ∇f(x) ∈ U ,

f(x− λ∇f(x)) ≤ f(x)− λ∥∇f(x)∥2 + (1− δ)λ∥∇f(x)∥2

= f(x)− δλ∥∇f(x)∥2. (3.5)

Fix any N0 ∈ N large enough such that xN ∈ U for all N ≥ N0. Suppose that K = kN0
satisfies

(3.3), then for all N ≥ N0 we may consider equation (3.5) with x = xN , λ = γN , noting that xN+1 =
xN − γN∇f(xN ) ∈ U . This is exactly the negation of the condition to enter the while-loop of Algorithm 2.
Hence, by a simple recursion, the algorithm never enters the while-loop after step N0 and we have
kN = kN0 for all N ≥ N0. On the other hand, if kN0 does not satisfy (3.3), then since k is incremented by
1 at each execution of the while loop, using the fact that (3.3) implies (3.5), it must hold that

kN ≤ 1 + max

 log
(

(1−δ)(ν+1)
γνβ

)
log(α)ν

,
1− ν

ρν

 .
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In all cases, it follows from the monotonicity of kN in N that for all N ∈ N,

kN ≤ 1 + max

kN0
,
log
(

(1−δ)(ν+1)
γνβ

)
log(α)ν

,
1− ν

ρν

 , (3.6)

hence (kn)n∈N is bounded.

Now we use (3.2) and (ii) which ensures that

∥xn+1 − xn∥2

γn
= γn∥∇f(xn)∥2 = αkn min{∥∇f(xn)∥2, ∥∇f(xn)∥ρkn+2}γ

is summable and thus tends to 0 as n → ∞. Using the fact that (kn)n∈N is bounded, in any case we have,
∇f(xn) → 0 as n → ∞.

It follows for n large enough that ∥∇f(xn)∥ ≤ 1, from the while loop condition and the fact that
k̄ := supn∈N kn < +∞, that

δαk̄∥∇f(xn)∥2+ρk̄γ ≤ δαkn∥∇f(xn)∥2+ρknγ = δγn(xn)∥∇f(xn)∥2 ≤ f(xn)− f(xn+1).

Using the convergence of (f(xn))n∈N, and by summing the previous equation and taking the minimum,
we obtain that min0≤i≤n ∥∇f(xi)∥2+ρk̄ = O(1/n).

(v): The result follows from (3.6) with kN0
= 0, since in this case the same reasoning can be applied for

all N ∈ N with U = Rd.

Remark 3.3 (Diagonal backtracking alternatives and comments) In the previous theorem, (kn)n∈N is
required to be a nondecreasing sequence and (3.1) is actually a bound on the total number of additional
calls to the function in the while-loop. In practice, this approach might be too conservative and other
strategies may provide much more aggressive steps at the cost of additional calls to the function. We will
use two variations to update (kn)n∈N:

• Initialize k to 0 for fine tuning to the price of longer inner loops (see Algorithm 8).

• For some iterations, decrease the value of k by 1 (see Algorithm 5 for example).

In Theorem 3.2(v), we need to suppose that the gradient is globally Hölder contrary to Assumption 3.1.
Note that the cluster point assumption on the sequence (xn)n∈N in Proposition 2.10 and Theorem 3.2 are
automatically satisfied if f has compact sublevel sets thanks to the decrease property.

4 Backtrack Hölder for min-max problems

Our method and proofs are presented in the context of solving min-max problems, but the techniques are
identical for the min-min case. We assume that Rd,Rd′

are endowed with their Euclidean structure.

4.1 Framework: semialgebraicity and a single valued best response

Let Y ⊂ Rd′
be a nonempty closed semialgebraic set, see Definition 2.1.

Properties of the value function and its best response

Assumption 4.1 (Standing assumptions) The function L is a C1 semialgebraic function on Rd × Rd′
and

(x, y) 7→ ∇xL(x, y) is jointly continuous. Furthermore, for any compact sets K1 ⊂ Rd and K2 ⊂ Rd′
, there

exist β1, β2 ∈ ]0,+∞[ such that, ∀x1, x2 ∈ K1, ∀y1, y2 ∈ K2,

∥∇xL(x1, y1)−∇xL(x2, y2)∥ ≤ β1∥x1 − x2∥+ β2∥y1 − y2∥. (4.1)
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Borrowing the terminology from game theory, one defines the value function as g(·) = maxy∈Y L(·, y) and
the best response mapping p(·) = argmax y∈YL(·, y) for x ∈ Rd.

Assumption 4.2 (Well posedness) H1. The response map p(x) is nonempty and single valued for every
x ∈ Rd,
H2. p is continuous.

The first part of the assumption is satisfied whenever L(x, ·) is strictly concave, see e.g. [26]. Note also
that if L(x, ·) is concave, as in a dual optimal transport formulation, some regularization techniques can
be used to obtain uniqueness and preserve semialgebraicity, see e.g., [15]. The continuity assumption H2,
it is much less stringent than it may look as evidenced by the following result:

Proposition 4.3 (Continuity of p) Suppose that Assumption 4.1 and Assumption 4.2-H1 are satisfied, and
that either Y is compact, or p is bounded on bounded sets. Then the best response p is a continuous function,
that is Assumption 4.2-H2 is fulfilled.

Proof. Let us proceed with the case when Y is compact; the other case is similar. Let (xn)n∈N be a sequence
such that xn → x∗ ∈ Rd. We need to prove that p(xn) → p(x∗). For every n ∈ N, set yn = p(xn) and since
Y is compact, let y∗ ∈ Y a cluster point of (yn)n∈N. Since g and L are continuous we have g(xn) → g(x∗)
and L(xnk

, ynk
) → L(x∗, y∗). Since p(xnk

) = ynk
one has L(xnk

, ynk
) ≥ L(x, ynk

) for all x in Rd. Thus at
the limit L(x∗, y∗) ≤ L(x, y∗) for all x in Rd. This implies that L(x∗, y∗) = g(x∗), and so, by uniquennes
of the argmax, p(x∗) = y∗. Whence p is continuous.

Combining these assumptions with Tarski-Seidenberg theorem and the properties of semialgebraic functions
[8], we obtain the following.

Proposition 4.4 (Properties of p and g) Suppose that Assumption 4.1 and Assumption 4.2 are satisfied.
Then

(i) g is differentiable and for all x̄ ∈ Rd, ∇g(x̄) = ∇xL(x̄, p(x̄)),

(ii) both the value function g and the best response p are semialgebraic,

(iii) the gradient of the value function, ∇g, is locally Hölder.

Proof. (i): This is a consequence of [33, Theorem 10.31].

(ii): According to the definition of a semi-agebraic function, we need to prove that their graph is
semialgebraic.

For g:
epi g =

{
(x, ξ) ∈ Rd × R

∣∣ g(x) ≤ ξ
}
=
{
(x, ξ) ∈ Rd × R

∣∣ (∀y ∈ Y) L(x, y) ≤ ξ
}
,

and its complement set is
{
(x, ξ) ∈ Rd × R

∣∣ (∃ y ∈ Y) L(x, y) > ξ
}

which is the projection of{
(x, ξ, y) ∈ Rd × R× Rd′ ∣∣ L(x, y) > ξ

} ⋂
Rd × R× Y.

As a conclusion it is semialgebraic by Tarski-Seidenberg principle. The same being true for the hypograph,
g is semialgebraic.

For p: graph p =
{
(x, y) ∈ Rd × Y

∣∣ (∀y′ ∈ Y) L(x, y) ≥ L(x, y′)
}

. Then graph p is defined from a first-
order formula and the conclusion follows from [14, Theorem 2.6].

(iii): Using Assumption 4.2 H2 and (ii), p is continuous and semialgebraic so using Proposition 2.2,
p is locally Hölder. Similarly Assumption 4.2 H2, (i) and (ii) ensure that ∇g is also continuous and
semialgebraic and the result follows again from Proposition 2.2.

Remark 4.5 Consider L(x, y) = xy, Y = [−1, 1], one sees that g(x) = maxy∈[−1,1] L(x, y) = |x| while
p(x) = sign x if x ̸= 0 and p(0) = [−1, 1]. This shows that Assumption 4.2 is a necessary assumption for g
to be differentiable. One cannot hope in general for ∇g to be locally Lipschitz continuous. For instance set
Y = R+, L(x, y) = xy − 1

3y
3, then g(x) = maxy∈R+ L(x, y) = 2

3x
3/2 with ∇g(x) =

√
x.
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Comments and rationale of the method At this stage the principles of our strategy can be made
precise. We deal with problems that are unsymmetric in structure: the argmax is easily computable or
approximable while the block involving the minimizing variable is difficult to handle. This suggests to
proceed as follows: one computes a best response mapping, the gradient of the value function becomes
accessible via formula (i) in Proposition 4.4, and thus a descent step can be taken. The questions are:
which steps are acceptable? Can they be tuned automatically? This is the object of the next sections.

Gathering the results provided in Section 3, we provide here our main algorithm (Algorithm 3).

Algorithm 3: Monotone Backtrack Hölder for min-max
Input: δ, α ∈ ]0, 1[ and γ, ρ ∈ ]0,+∞[
Initialization :x0 ∈ Rd, y0 = argmaxz∈Y L(x0, z), k−1 = 0
for n = 0, 1, . . . do

k = kn−1

γn(xn) = γαk min{1, ∥∇xL(xn, yn)∥ρk}
x = xn − γn(xn)∇xL(xn, yn)
y = argmaxz∈Y L(x, z)
while L(x, y) > L(xn, yn)− δγn(xn)∥∇xL(xn, yn)∥2 do

k = k + 1
γn(xn) = γαk min{1, ∥∇xL(xn, yn)∥ρk}
x = xn − γn(xn)∇xL(xn, yn)
y = argmaxz∈X L(x, z)

kn = k, xn+1 = x, yn+1 = y.

Several comments are in order:

— Algorithm 3 contains an inner loop whose overhead cost becomes negligible as n → ∞, which allows
for automatic step size tuning. The form of Algorithm 3 is slightly different from Algorithm 2 to avoid
duplicate calls to the max-oracle required both to compute gradients and evaluate functions.

— As described in Remark 3.3, the backtracking strategy is one among others and it is adaptable to different
settings. In this min-max case, the cost of the max-oracle may have some impact: either it is costly and
extra-flexibility is needed or it is cheap and it can be kept as is. Two examples are provided in Sections 5.1
and 5.2.

— A direct modification of the above method provides also an algorithm for

min
x∈Rd

min
y∈Y

L(x, y). (4.2)

— Algorithm 3 is a model algorithm corresponding to a monotone backtracking approach (i.e., the sequence
(kn) is nondecreasing), but many other variants are possible; see Section 5.3. Algorithms 5 and 6 are for
the min-min problem, with a non monotone backtracking and the same guarantees. A heuristic version is
also considered: it is Algorithm 8 where an approximation of the argmax is used.

To benchmark our algorithms, we compare them to Algorithms 4, 6, and 7 in Section 5.3, with constant
but finely tuned step sizes or with Armijo search.

Theorem 4.6 (Backtrack Hölder for min-max) Under Assumptions 4.1 and 4.2, consider the sequences
(xn)n∈N and (yn)n∈N generated by Algorithm 3. Suppose that (xn)n∈N has a cluster point. Then

(i) The while-loop has a uniform bound, i.e., supn∈N kn < +∞.

(ii) (xn)n∈N converges to x∗ in Rd and (yn)n∈N converges to y∗ ∈ Y, with ∇xL(x
∗, y∗) = 0 and y∗ =

argmax y∈YL(x
∗, y).
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(iii) Suppose that there exist β ∈ ]0,+∞[ and ν ∈]0, 1] such that ∇g is (β, ν) Hölder everywhere. Then the
cost of the while-loop is bounded by

sup
n∈N

kn ≤ 1 +
1

ν
max

 log
(

(1−δ)(ν+1)
γνβ

)
log(α)

,
1− ν

ρ

 . (4.3)

Proof. Recall that g(·) = maxy∈Y L(·, y) and p(·) = argmax y∈YL(·, y). It follows from Proposition 4.4
that for every n ∈ N, ∇xL(xn, yn) = ∇g(xn). We derive from Proposition (iii) that ∇g is locally Hölder.
It turns out that Algorithm 3 applied to L is the same as Algorithm 2 applied to g. Thus Theorem 3.2
ensures the convergence of (xn)n∈N to a critical point x∗ ∈ Rd of g. Furthermore, it follows from the
continuity of p that yn → y∗ = p(x∗). We conclude that (xn, yn)n∈N converges to a critical point of L,
satisfying y∗ = argmax y∈YL(x

∗, y). Finally, since for every n ∈ N, ∇g(xn) = ∇xL(xn, yn), we conclude
by Theorem 3.2(v).

Remark 4.7 In [19, Proposition 2], the authors mention an algorithm akin to what we proposed, but
without backtracking. They mention the fact that if one had access to the max-oracle, then one would be
able to implement a gradient descent by using "sufficiently small updates". Our theoretical results are an
answer to this comment as we offer a quantitative characterization of how small the steps should be, as
well as a backtracking estimation technique.

5 Numerical experiments

We compare our method with constant step size algorithm and Armijo backtracking for the Generative
Adversarial Network (GAN) problem, first using Sinkhorn divergences and second considering Wasserstein
adversarial networks. Data lie in Rd = R2, the sample size is N = 1024 and we consider x1, . . . , xN ∈ Rd

a fixed sample from a distribution Pd, which is a Gaussian mixture, see Figure 1, and z1, . . . , zN ∈ Z
a fixed sample from latent distribution Pz = U([0, 1] × [0, 1]), uniform on Z, where Z = [0, 1] × [0, 1].

Figure 1: Data distribution x1, . . . , xN

We consider for the generator G, a dense neural net-
work with three hidden layers containing respec-
tively 64, 32, 16 neurons with a ReLU activation
between each layer. We write G : Z × ΘG → X ,
with inputs in Z and parameters θG ∈ ΘG where
ΘG = Rq with q the total number of parameters of
the network (2834 in our case).

5.1 Sinkhorn GAN

We first consider training generative a network
using Sinkhorn divergences as proposed in [17]. This is a min-min problem which satisfies Assumption 4.2,
except for semialgebraicity (see also the remark in Equation 4.2). As detailed in Remark 5.1 even if the
semialgebraic assumption does not hold, the local Hölderian properties which we require still hold which
is sufficient to apply the results of Theorem 3.2 and Proposition 2.10. Sinkhorn algorithm [35, 15] allows
us to compute a very precise approximation of the min-oracle required by our algorithm, we use it as an
exact estimate. Note that the transport plan for the Sinkhorn divergence is regularized by an entropy term
whence the inner minimization problem has a unique solution and the corresponding p is continuous. This
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is a perfect example to illustrate our ideas. Consider the following probability measures

µ̄ =
1

N

N∑
i=1

δxi
, (empirical target distribution),

µ(θG) =
1

N

N∑
i=1

δG(zi,θG), (empirical generator distribution).

We then define the Sinkhorn divergence between these two distributions as

Wϵ(µ̄, µ(θG)) = min
P∈RN×N

+

Tr(PC(θG)
T ) + ϵ

N∑
i,j=1

Pij log(Pij) ; P1N = 1N , PT 1N = 1N


where ϵ > 0 is a regularization parameter, C(θG) = [∥G(zi, θG)− xj∥]i,j ∈ RN×N is the pairwise distance
matrix between target observations (xi)1≤i≤N and generated observations (G(zi, θG))1≤i≤N . Here Tr is
the trace, and 1N is the all-ones vector. The optimum is unique thanks to the entropic regularization and
the optimal transportation plan P can be efficiently estimated with an arbitrary precision by the Sinkhorn
algorithm [35, 15].

Training our generative network amounts to solving the following min-min problem

min
θG

Wϵ(µ̄, µ(θG)). (5.1)

Remark 5.1 (Global subanalyticity ensures Łojasiewicz inequality) The cost function of the Sinkhorn
GAN problem (5.1) is not semialgebraic due to the log function. However, we never use the logarithm in a
neighborhood of 0 during the optimization process because of its infinite slope. Therefore the loss acts as
a globally subanalytic function during the process. Hence p, g are globally subanalytic and the Łojasiewicz
inequality as well as Hölder properties still hold, see [8, 4, 10] for more on this.

Algorithmic strategies for Sinkhorn GAN The monotone diagonal backtracking is too conservative for
this case, so we use a variant described in Algorithm 5 instead. At each step, the idea is to try to decrement
k by 1 whenever possible, keeping some sufficient-decrease property valid. Otherwise k is increased as
in the monotone method, until sufficient decrease of the value is ensured. This approach is particularly
adapted to the Sinkhorn case, because estimating the best response is cheap.

Note that, to propose a fair comparison and keep the same complexity between algorithms, we count
each call to the min-oracle, both in the outer and in the inner while loop, as an iteration step. The
parameters used in this experiment for Algorithm 5 are γ = 1, α = 0.5, δ = 0.25, δ+ = 0.95, and ρ = 0.5.
We compare with Algorithm 4, which is a constant step size variant, with different step-size parameters
γ ∈ {0.01, 0.05, 0.1}. We compare with the standard Armijo backtracking algorithm (see Algorithm 6),
which uses a similar approach as in Algorithm 5, to tune the step size parameter γn, but does not take
advantage of the Hölder property. All algorithms are initialized randomly with the same seed.

We observe on the left part of Figure 2 that both Hölder and Armijo backtracking provide decreasing
sequence and avoid oscillations. Both algorithms converge faster than the constant step size variant.
Furthermore, since our algorithm can take into account the norm of the gradient, the number of inner-
loop iterations is smaller than Armijo backtracking, and that explain why the Non Monotone Hölder
backtracking is faster.

5.2 Wasserstein GAN

We treat the Wasserstein GAN (WGAN) heuristically with an approximation of the max-oracle and use
Algorithm 8, which matches this setting.
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Figure 2: Left: Sinkhorn loss with respect to number of Sinkhorn max-oracle evaluation for different
gradient step rules. The x axis accounts for all oracle calls, not only the ones used to actually perform
gradient steps. “Hölder” and “Armijo”, refer to the proposed Hölder backtracking and Armijo backtracking
schemes described in Algorithm 5 and 6 while “gamma” referes to the constant step size variant in
Algorithm 4. Right: WGAN loss with respect to iteration number for different gradient step rules. “Hölder”
refers to the heuristic extension of the proposed method in Algorithm 8, while “gamma” referes to constant
step sizes in Algorithm 7.

Consider a second neural network, called discriminator, D : Rd×ΘD → R with inputs in Rd and parameters
θD ∈ ΘD whose architecture is the same as G (i.e., ΘD = ΘG) but with a fullsort activation between each
layer, see [2]. We consider the following problem

min
θG

max
θD

n∑
i=1

D(xi, θD)−
n∑

j=1

D(G(zj , θG), θD). (5.2)

In order to implement the analogy with Kantorovitch duality in the context of GANs [3], one has to ensure
that the discriminator D is 1-Lipschitz, when seen as a function of its input neurons. This is enforced using
a specific architecture for the discrimintator network D. We use Bjork orthonormalization and fullsort
activation functions [2], which ensure that the network is 1-Lipschitz without any restriction on its weight
parameters θD.

For this problem, we use Algorithm 8, which is a heuristic modification of our method designed to deal
with the inner max. Both the argmax and max are indeed approximated by gradient ascent. Algorithm 8
then implements the same bactracking idea which is evaluated on the benchmark of the previous section.
Doing so, the extra-cost incurred by the while-loop becomes negligible and we can find the optimal value
of k by exhaustive search. For this reason, in this heuristic context, Hölder backtracking schemes have
very little advantage compared to Armijo and we do not report comparison. Detailed investigations
for large scale networks is postponed to future research. Since GAN’s training is delicate in practice
[21], we provide comparison with many step size choices for the constant step size algorithm. As for
Backtrack Hölder min-max, we use parameters γ = 1, δ = 0.75, α = 0.75, and ρ = 0.20 for the Hölder
backtracking algorithm and constant step size parameter γ ∈ {0.001, 0.01, 0.05, 0.1, 0.5} for the constant
step size variant. All algorithms are initialized randomly with the same seed.

Figure 2 displays our results on the right. The optimal loss equals 0. One observes that constant large
steps are extremely oscillatory while small steps are stable but extremely slow. Backtrack Hölder takes the
best of the two world, oscillates much less and stabilizes with a smaller loss value compared to constant
step size variants. In Algorithm 8 the partial maximum is only apporximated. In practice, the algorithm
alternates between gradients steps on the maximization and minimization problems. Therefore, at early
stages of the algorithm, one may find objective values below the optimal threshold because of the bad
quality of the maximization process. For later iterations, the maximization process stabilizes and so does
the the min-max loss. This is an intrinsic difficulty in GAN problems where the size of the objects involved
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does not allow for exact evaluation of partial maximizers. The proposed experiment is a mere heuristic
at this stage and the corresponding convergence analysis is a hard question which we leave for future
research.

5.3 Numerical Experiments: technical complements

The experiments presented in Sections 5.1 & 5.2 do not directly relate to the min-max algorithms as
presented in Section 4. Indeed, the Sinkhorn GAN problem uses a regularized primal formulation of
optimal transport and is therefore written as a min-min problem. The arguments described in Section 4
apply mutatis mutandis to this setting. The benchmark corresponds to the following algorithms: constant
step-size, Hölder backtracking and Armijo backtracking. Secondly, in the Wasserstein GAN example, the
argmax cannot be evaluated exactly and is approximated by gradient ascent, an operation which is very
costly. In this context, we propose a heuristic variation on our backtracking strategy which only require
one approximate partial maximization at each step.

5.3.1 Sinkhorn GAN

Sinkhorn GAN is a min-min problem, thus our model must be slightly adapted. First, we start with
Algorithm 4 below which is a constant step size algorithm. Due to the specific setting of Sinkhorn problem,
the argmin may be computed exactly. The next algorithm is a Backtrack Hölder method for the min-min

Algorithm 4: Constant step size gradient method for min-min
Input: γ ∈ ]0,+∞[
Initialization :x0 ∈ Rd

for n = 0, 1, . . . do
yn = argmin y∈YL(xn, y)
xn+1 = xn − γ∇xL(xn, yn)

problem. For gaining efficiency, we introduce a new rule in Algorithm 5, which maintains the sufficient
decrease property, without the monotonicity of (kn)n∈N. This allows for a possible adaption to local
smoothness, taking larger steps for some iterations. All the results of Theorem 4.6 apply to this algorithm
when applied to the Sinkhorn GAN problem.

Algorithm 5: Non Monotone Backtrack Hölder for min-max
Input: N ∈ N,γ, ρ ∈ ]0,+∞[, and α, δ, δ+ ∈ ]0, 1[
Initialization :k−1 = 1, n = 0, and x0 ∈ Rd

for n < N do
k = kn−1

γn(xn) = γαk min{1, ∥∇xL(xn, yn)∥ρk}
x = xn − γn(xn)∇xL(xn, yn)
y = argminz∈Y L(x, z)
if L(x, y) < L(xn, yn)− δ+γn(xn)∥∇f(xn)∥2 then

k = k − 1

while L(x, y) > L(xn, yn)− δγn(xn)∥∇xL(xn, yn)∥2 do
k = k + 1
γn(xn) = γαk min{1, ∥∇xL(xn, yn)∥ρk}
x = xn − γn(xn)∇xL(xn, yn)
y = argminz∈X L(x, z)

kn = k, xn+1 = x, yn+1 = y.

16



We also present an Armijo search process for this problem in Algorithm 6. It has a structure similar to the
“Non Monotone Hölder Backtrack" but with a much less clever update for γn.

Algorithm 6: Non Monotone Armijo for min-max
Input: N ∈ N,γ, ρ ∈ ]0,+∞[, and α, δ, δ+ ∈ ]0, 1[
Initialization :k−1 = 1, n = 0, and x0 ∈ Rd

for n < N do
k = kn−1

γn(xn) = γαk

x = xn − γn(xn)∇xL(xn, yn)
y = argminz∈Y L(x, z)
if L(x, y) < L(xn, yn)− δ+γn(xn)∥∇f(xn)∥2 then

k = k − 1

while L(x, y) > L(xn, yn)− δγn(xn)∥∇xL(xn, yn)∥2 do
k = k + 1
γn(xn) = γαk

x = xn − γn(xn)∇xL(xn, yn)
y = argminz∈X L(x, z)

kn = k, xn+1 = x, yn+1 = y.

5.3.2 Wasserstein GAN

As explained in Section 5.2, this problem does not formally match our setting. In particular, the argmax
cannot be computed fast, so we use a gradient ascent to provide an approximation expressed by using the
sign ≈. We also provide a constant step size method (Algorithm 7) to benchmark our algorithm.

Algorithm 7: Heuristic gradient method for min-max with constant step size
Input: γ ∈ ]0,+∞[
Initialization :x0 ∈ Rd

for n = 0, 1, . . . do
yn ≈ argmax y∈YL(xn, y)
xn+1 = xn − γ∇xL(xn, yn)

Besides, since the max is not easily accessible, we modify the while-loop by using yn instead of the exact
argmax to validate the sufficient decrease. This approach gives Algorithm 8. This is an heuristic approach
which we consider here in order to provide experimental results on a real Wasserstein GAN problem.
Indeed the maximization oracle is replaced by gradient ascent steps and the backtracking loop does not
correspond to the one which was studied in Theorem 4.6. Besides, contrary to Sinkhorn GANs, nothing
ensures that the inner maximum is uniquely attained in (5.2). This provides an initial motivation regarding
further research on the topic. Let us emphasize that the training of Wasserstein GANs is a challenging task
in practice and is also difficult to analyse from a theoretical perspective as the models considered in most
application are very large and complex.
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Algorithm 8: Heuristic Hölder Backtrack for min-max
Input: γ, ρ ∈ ]0,+∞[ and δ, α ∈ ]0, 1[
Initialization :x0 ∈ Rd

for n = 0, 1, . . . do
yn ≈ argmax y∈YL(xn, y)
k = 0
γn(xn) = γ
while L(xn − γn(xn)∇xL(xn, yn), yn) > L(xn, yn)− δγn(xn)∥∇xL(xn, yn)∥2 do

k = k + 1
γn(xn) = γαk min{1, ∥∇xL(xn, yn)∥kρ}

kn = k
xn+1 = xn − γn(xn)∇xL(xn, yn)
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