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Abstract

We present a new algorithm to solve min-max or min-min problems out
of the convex world. We use rigidity assumptions, ubiquitous in learning,
making our method applicable to many optimization problems. Our ap-
proach takes advantage of hidden regularity properties and allows us to
devise a simple algorithm of ridge type. An original feature of our method
is to come with automatic step size adaptation which departs from the usual
overly cautious backtracking methods. In a general framework, we provide
convergence theoretical guarantees and rates. We apply our findings on
simple GAN problems obtaining promising numerical results.

1 Introduction

Adversarial learning, introduced in [18], see also [2], calls for the development of algorithms
addressing large scale, smooth problems of the type

min
x∈Rd

max
y∈Y

L(x, y), (1.1)

where Y is a constraint set, and L is a given cost function. This structure happens to be
ubiquitous in optimization and game theory, but generally under assumptions that are not
those met in learning. In optimization it stems from the Lagrangian approach and duality
theory, see e.g., [10, 6, 12], while in game theory it comes from zero-sum 2-players games,
see e.g., [35, 36, 24]. Dynamics for addressing (1.1) have thus naturally two types. They
may be built on strategic considerations, so that algorithms correspond to a sequence of
actions chosen by antagonistic players, see [24] and references therein. In general these
methods are not favorable to optimization because the contradictory interests of players
induce oscillations and slowness in the identification of optimal strategies. Optimization
algorithms seem more interesting for our purposes because they focus on the final result,
i.e., finding an optimal choice x, regardless of the adversarial strategy issues. In that respect,
there are two possibilities: the variational inequality approach which treat minimization and
maximization variables on an equal footing, see e.g. [22, 27, 12] or [26, 21, 17] in learning.
On the other hand, some methods break this symmetry, as primal or augmented Lagrangian
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methods. In those, a large number of explicit steps, implicit steps, or global minimization are
performed on one variable while the other is updated much more cautiously in an explicit
incremental way, see e.g., [6, 33].

Our work is written in this spirit: we assume that the under-max argument is tractable with
a good precision, and we construct our algorithm on the following model:

yn = argmax y∈YL(xn, y),

xn+1 = xn − γn∇xL(xn, yn), γn > 0, n ≥ 0.

As explained above, the rationale is not new2, and is akin to many methods in the literature
on learning where the global optimization is performed approximately by multiple gradient
steps [29, 30] or by clever revision steps, as in the "follow the ridge" method, see [37].

Backtrack Hölder What is new then? The surprising fact is that we can provide theoretical
grounds to devise large steps and thus obtain aggressive learning rates with few assumptions.
This is done by exploiting some hidden properties of the value function g = maxy L(·, y)
under widespread rigidity assumptions. Let us sketch the ideas of our approach. First, under
a uniqueness assumption on the maximizer, our method appears to be a gradient method on
the value function for “player I" ( “the generator" of GANs)

xn+1 = xn − γn∇g(xn).

Secondly, we use the fact that g has a locally Hölderian gradient3 whenever L is semi-
algebraic or analytic-like, a situation which covers most of the problems met in practice. With
such observations, we may then develop automatic learning rate strategies and a diagonal
backtracking method, that we call “Backtrack Hölder methods for min-max".

Contributions

• We provide new algorithms whose steps are tuned automatically: Backtrack Hölder
gradient and Backtrack Hölder for min-max methods.

• Our algorithms are shown to perform with O(ε−[2+c]) rate, where c is a cost incurred
by the diagonal backtracking process (which is negligible in practice), and to provide
general convergence guarantees to points (x∗, y∗) satisfying y∗ = argmax yL(x∗, y)
and ∇xL(x∗, y∗) = 0. This is done within a fairly general framework, since L is
merely assumed semi-algebraic while the “best response" of player II is only required
to be singled-valued.

• A byproduct of our work is a global convergence result for Hölder methods, which
were earlier investigated in the literature [5, 19, 28, 38].

• Our work is theoretical in essence. It is merely a first step towards more involved
research, regarding the effect of nonsmoothness or stochastic subsampling. We pro-
pose however numerical experiments on learning problems. First on the “Sinkhorn
GANs", [16, 15], which rely on optimal transport losses regularized through the
addition of an entropic term, and second on Wasserstein GANs [2] which are a
natural extensions of GANs [18].

2 Gradient algorithms à la Hölder

Our results often use semi-algebraic assumptions which are pervasive in optimization and
machine learning, see e.g. [11] and references therein.

Our method and proofs are presented in view of solving min-max problems, but the techniques
are identical for the min-min case. Rd,Rd′ are endowed with their Euclidean structure.

2It can be traced back to the origin of augmented Lagrangian methods, see e.g., [31]
3Recall that G : Rd 7→ Rd

′
is locally Hölderian if for all bounded subset V ⊂ Rd, there exists β and

ν positive such that ‖G(x)−G(y)‖ ≤ β‖x− y‖ν , whenever x, y ∈ V .
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2.1 Framework: a single valued best response and semi-algebraicity

Let Y ⊂ Rd′ be a nonempty closed semi-algebraic set, see Definition A.1 in Appendix.

Properties of the value function and its best response

Assumption 2.1 (Standing assumptions) L is a C1 semi-algebraic function on Rd × Rd′

such that (x, y) 7→ ∇xL(x, y) is jointly continuous. Furthermore, for any compact sets K1 ⊂ Rd
and K2 ⊂ Rd′ , there exist β1, β2 ∈ ]0,+∞[ such that, ∀x1, x2 ∈ K1, ∀y1, y2 ∈ K2,

‖∇xL(x1, y1)−∇xL(x2, y2)‖ ≤ β1‖x1 − x2‖+ β2‖y1 − y2‖. (2.1)

Borrowing the terminology from game theory, one defines the value function as g(·) =
maxy∈Y L(·, y) and the best response mapping p(·) = argmax y∈YL(·, y) for x ∈ Rd.

Assumption 2.2 (Well posedness) H1. p(x) is nonempty and single valued for every x ∈ Rd,
H2. p is continuous.

The first part of the assumption is satisfied whenever L(x, ·) is strictly concave, see e.g.
[25]. Note also that if L(x, ·) is concave, as in a dual optimal transport formulation, some
regularization techniques can be used to obtain uniqueness and preserve semi-algebraicity,
see e.g., [14]. As for the H2 continuity assumption, it is much less stringent than it may look:

Proposition 2.3 (Continuity of p) Suppose that Assumption 2.1 and Assumption 2.2-H1 are
satisfied, and that either Y is compact, or p is bounded on bounded sets. Then the best response
p is a continuous function, that is Assumption 2.2-H2 is fulfilled.

Combining these assumptions with Tarski-Seidenberg theorem and the properties of semi-
algebraic functions [7], we obtain the following.

Proposition 2.4 (Properties of p and g) Suppose that Assumption 2.1 and Assumption 2.2
are satisfied. Then

(i) g is differentiable and for all x̄ ∈ Rd, ∇g(x̄) = ∇xL(x̄, p(x̄)),

(ii) both the value function g and the best response p are semi-algebraic,

(iii) the gradient of the value function, ∇g, is locally Hölder.

Remark 2.5 Consider L(x, y) = xy, Y = [−1, 1], one sees that g(x) = maxy∈[−1,1] L(x, y) =
|x| while p(x) = sign x if x 6= 0 and p(0) = [−1, 1]. This shows that Assumption 2.2 is
a necessary assumption for g to be differentiable. One cannot hope in general for ∇g
to be locally Lipschitz continuous. For instance set Y = R+, L(x, y) = xy − 1

3y
3, then

g(x) = maxy∈R+ L(x, y) = 2
3x

3/2 with ∇g(x) =
√
x.

Comments and rationale of the method At this stage the principles of our strategy can be
made precise. We deal with problems which are dissymetric in structure: the argmax is easily
computable or approximable while the block involving the minimizing variable is difficult to
handle. This suggests to proceed as follows: one computes a best response mapping (even
approximately), the gradient of the value function becomes accessible via formula (i) in
Proposition 2.4, and thus a descent step can be taken. The questions are: which steps are
acceptable? Can they be tuned automatically? This is the object of the next sections.

2.2 Gradient descent for nonconvex functions with globally Hölderian gradient

The results of this section are self contained. We consider first the ideal case of a gradient
method on a globally Hölder function with known constants, see e.g. [28, 38]. We study
Algorithm 2, previously presented in [38] for which we prove sequential convergence.
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Assumption 2.6 (Global Hölder regularity) f : Rd → R is C1, semi-algebraic and

∀x1, x2 ∈ Rd, ‖∇f(x1)−∇f(x2)‖ ≤ β‖x1 − x2‖ν , with β > 0, ν ∈]0, 1]. (2.2)

Algorithm 1: Hölder gradient method
Input: ν ∈ ]0, 1], β ∈ ]0,+∞[ and γ ∈]0, (ν + 1)/β[
Initialization :x0 ∈ Rd
for n = 0, 1, . . . do

γn(xn) = γ
(
ν+1
β

)1/ν−1

‖∇f(xn)‖1/ν−1

xn+1 = xn − γn(xn)∇f(xn)

Proposition 2.7 (Convergence of the Hölder gradient method for nonconvex functions)
Under Assumption 2.6, consider a bounded sequence (xn)n∈N generated by Algorithm 1. Then
the following hold:

(i) the sequence (f(xn))n∈N is nonincreasing and converges,

(ii) the sequence (xn)n∈N converges to a critical point x∗ ∈ Rd of f , i.e., ∇f(x∗) = 0,

(iii) for every n ∈ N 4,

min
0≤k≤n

‖∇f(xk)‖ 1
ν+1 ≤

 f(x0)− f(x∗)

γ − γν+1
(

β
ν+1

)ν ( β

ν + 1

) 1−ν
ν

 1

n+ 1
= O

(
1

n

)
.

Choosing γ = ν+1
β

(
1

ν+1

)1/ν

, we obtain

min
0≤k≤n

‖∇f(xk)‖ 1
ν+1 ≤ (f(x)− f(x∗))β1/ν(ν + 1)

ν(n+ 1)
.

2.3 The “Backtrack Hölder” gradient algorithm and diagonal backtracking

In practice, the constants are unknown and the Hölderian properties are merely local. The
algorithm we present now (Algorithm 2), is in the spirit of the classical backtracking method,
see e.g., [6]. The major difference is that we devise a diagonal backtracking, to detect both
constants β, ν at once in a single searching pass.

Assumption 2.8 f : Rd → R is a C1 semi-algebraic function such that ∇f is locally Hölder.

In the following algorithm, α, γ > 0 are step length parameters, δ > 0 is a sufficient-decrease
threshold and ρ > 0 balances the search between the unknown exponent ν and the unknown
multiplicative constant β, see Assumption 2.6.

The following theorem provides convergence guarantees under local Hölder continuity
(Assumption 2.8 for Algorithm 2).

Theorem 2.9 (Convergence of Backtrack Hölder for nonconvex functions) Under As-
sumption 2.8, consider a bounded sequence (xn)n∈N generated by Algorithm 2. Then the
following hold:

(i) (γn)n∈N is well defined,

(ii) the sequence (f(xn))n∈N is nonincreasing and converges,

(iii) there exists x∗ ∈ Rd such that xn → x∗ and ∇f(x∗) = 0,

4This result is essentially present in [38]

4



Algorithm 2: Backtrack Hölder gradient method
Input: δ, α ∈ ]0, 1[ and γ, ρ ∈ ]0,+∞[
Initialization :x0 ∈ Rd, k−1 = 0
for n = 0, 1, . . . do

k = kn−1

γn(xn) = αk min{1, ‖∇f(xn)‖ρk}γ
while f(xn − γn(xn)∇f(xn)) > f(xn)− δγn(xn)‖∇f(xn)‖2 do

k = k + 1
γn(xn) = αk min{1, ‖∇f(xn)‖ρk}γ

kn = k
xn+1 = xn − γn(xn)∇f(xn)

(iv) the while loop has a uniform finite bound k̄ := supn∈N kn < +∞. Moreover

min
0≤i≤n

‖∇f(xi)‖ = O

(
1

n
1

2+ρk̄

)
,

(v) suppose moreover that there exist β ∈ ]0,+∞[ and ν ∈]0, 1] such that ∇f is globally
(β, ν) Hölder. Then

sup
n∈N

kn ≤ 1 +
1

ν
max

 log
(

(1−δ)(ν+1)
γνβ

)
log(α)

,
1− ν
ρ

 . (2.3)

Remark 2.10 (Diagonal backtracking alternatives and comments) In the previous theo-
rem, we ask (kn)n∈N to be a nondecreasing sequence and (2.3) is actually a bound on the
total number of additional calls to the function in the while loop. In practice, this approach
might be too conservative and other strategies may provide much more aggressive steps at
the cost of additional calls to the function. We will use two variations to update (kn)n∈N:

• Initialize k to 0 for fine tuning to the price of longer inner loops (see Algorithm 8).

• For some iterations, decrease the value of k by 1 (see Algorithm 5 for example).

The parameters α, γ, δ, and ρ are made to tune finely the number of iterations spent on
estimating local Hölder constants.

In Theorem 2.9(v), we need to suppose that the gradient is globally Hölder contrary to
Assumption 2.8.

3 Backtrack Hölder for min-max problems

Gathering the results provided in Section 2.3, we provide here our main algorithm (Algo-
rithm 3).

Several comments are in order:

— The above contains an inner loop whose overhead cost becomes negligible as n→∞, this
allows one for automatic step size tuning. The form of Algorithm 3 is slightly different from
Algorithm 2 to avoid duplicate calls to the max-oracle required both to compute gradients
and evaluate functions.

— As described in Remark 2.10, the backtracking strategy is one among others and it is
adaptable to different settings. In this min-max case, the cost of the max-oracle may have
some impact: either it is costly and extra-flexibility is needed or it is cheap and it can be kept
as is. Two examples are provided in Sections 4.1 and 4.2.

— A direct modification of the above method, provides also an algorithm for
min
x∈Rd

min
y∈Y

L(x, y). (3.1)
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Algorithm 3: Monotone Backtrack Hölder for min-max
Input: δ, α ∈ ]0, 1[ and γ, ρ ∈ ]0,+∞[
Initialization :x0 ∈ Rd, y0 = arg maxz∈Y L(x0, z), k−1 = 0
for n = 0, 1, . . . do

k = kn−1

γn(xn) = γαk min{1, ‖∇xL(xn, yn)‖ρk}
x = xn − γn(xn)∇xL(xn, yn)
y = arg maxz∈Y L(x, z)
while L(x, y) > L(xn, yn)− δγn(xn)‖∇xL(xn, yn)‖2 do

k = k + 1
γn(xn) = γαk min{1, ‖∇xL(xn, yn)‖ρk}
x = xn − γn(xn)∇xL(xn, yn)
y = arg maxz∈X L(x, z)

kn = k, xn+1 = x, yn+1 = y.

— Algorithm 3 is a model algorithm corresponding to a monotone backtracking approach (i.e.,
the sequence (kn) is nondecreasing), but many other variants are possible, see Appendix D.
Algorithms 5 and 6 are for the min-min problem, with a non monotone backtracking and
the same guarantees. A heuristic version is also considered: it is Algorithm 8 where an
approximation of the argmax is used.

To benchmark our algorithms, we compare them to Algorithms 4, 6, and 7 in Appendix D,
with constant but finely tuned step sizes or with Armijo search.

Theorem 3.1 (Backtrack Hölder for min-max) Under Assumptions 2.1 and 2.2, consider
the sequences (xn)n∈N and (yn)n∈N generated by Algorithm 3. Suppose that (xn)n∈N is bounded.
Then

(i) The while loop has a uniform bound, i.e., supn∈N kn < +∞.

(ii) (xn)n∈N converges to x∗ in Rd and (yn)n∈N converges to y∗ ∈ Y , with ∇xL(x∗, y∗) = 0
and y∗ = argmax y∈YL(x∗, y).

(iii) Suppose that there exist β ∈ ]0,+∞[ and ν ∈]0, 1] such that ∇g is (β, ν) Hölder
everywhere. Then the cost of the while loop is bounded by

sup
n∈N

kn ≤ 1 +
1

ν
max

 log
(

(1−δ)(ν+1)
γνβ

)
log(α)

,
1− ν
ρ

 . (3.2)

Remark 3.2 In [18, Proposition 2], the authors mention an algorithm akin to what we
proposed, but without backtracking. They insist on the fact that if one had access to the max-
oracle, then one would be able to implement a gradient descent by using "sufficiently small
updates". Our theoretical results are an answer to this comment as we offer a quantitative
characterization of how small the step should be, as well as a backtracking estimation
technique.

4 Numerical experiments

We compare our method with constant step size algorithm and Armijo backtracking for
the Generative Adversarial Network (GAN) problem, first using Sinkhorn divergences and
second considering Wasserstein adversarial networks. Data lie in Rd = R2, the sam-
ple size is N = 1024 and we consider x1, . . . , xN ∈ Rd a fixed sample from a distribu-
tion Pd, which is a Gaussian mixture, see Figure 1, and z1, . . . , zN ∈ Z a fixed sample
from latent distribution Pz = U([0, 1] × [0, 1]), uniform on Z, where Z = [0, 1] × [0, 1].
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Figure 1: Data distribution x1, . . . , xN

We consider as generator G, a dense neural
network with three hidden layers contain-
ing respectively 64, 32, 16 neurons with a
ReLU activation between each layer. We
write G : Z × ΘG → X , with inputs in Z
and parameters θG ∈ ΘG where ΘG = Rq
with q the total number of parameters of the
network (2834 in our case).

4.1 Sinkhorn GAN

We first consider training generative net-
work using Sinkhorn divergences as proposed in [16]. This is a min-min problem which
satisfies Assumption 2.2 (see also the remark in Equation 3.1). Sinkhorn algorithm [34, 14]
allows us to compute a very precise approximation of the min-oracle required by our al-
gorithm, we use it as an exact estimate. Note that the transport plan for the Sinkhorn
divergence is regularized by an entropy term whence the inner minimization problem has a
unique solution and the corresponding p is continuous. This is a perfect example to illustrate
our ideas. Consider the following probability measures

µ̄ =
1

N

N∑
i=1

δxi , (empirical target distribution),

µ(θG) =
1

N

N∑
i=1

δG(zi,θG), (empirical generator distribution).

We then define the Sinkhorn divergence between these two distributions.

Wε(µ̄, µ(θG)) = min
P∈RN×N+

Tr(PC(θG)T ) + ε

N∑
i,j=1

Pij log(Pij) ; P1N = 1N , P
T 1N = 1N


where ε > 0 is a regularization parameter, C(θG) = [‖G(zi, θG)− xj‖]i,j ∈ RN×N is the
pairwise distance matrix between target observations (xi)1≤i≤N and generated observations
(G(zi, θG))1≤i≤N . Here Tr is the trace, and 1N is the all-ones vector. The optimum is unique
thanks to the entropic regularization and the optimal transportation plan P can be efficiently
estimated with an arbitrary precision by Sinkhorn algorithm [34, 14].

Training our generative network amounts to solving the following min-min problem

min
θG
Wε(µ̄, µ(θG)).

Remark 4.1 (Global subanalyticity ensures Łojasiewicz inequality) The cost function of
the Sinkhorn GAN problem is not semi-algebraic due to log. However we never use the
logarithm in a neighborhood of 0 during the optimization process because of its infinite
slope. Hence the loss can actually be seen as globally subanalytic. Whence p, g are globally
subanalytic and the Łojasiewicz inequality as well as Hölder properties still hold, see [7, 3, 9]
for more on this.

Algorithmic strategies for Sinkhorn GAN The monotone diagonal backtracking is too
conservative for this case, so we use a variant described in Algorithm 5 instead. At each
step, the idea is to try to decrease k of 1 whenever possible, keeping some sufficient-decrease
property valid. Otherwise k is increased as in the monotone method, until sufficient decrease
of the value is ensured. This approach is particularly adapted to the Sinkhorn case, because
estimating the best response is cheap.

Note that, to propose a fair comparison and keep the same complexity between algorithms,
we count each call to the min-oracle, both in the outer and in the inner while loop, as
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an iteration step. The parameters used in this experiment for Algorithm 5 are γ = 1,
α = 0.5, δ = 0.25, δ+ = 0.95, and ρ = 0.5. We compare with Algorithm 4 presented in
Appendix D, which is a constant step size variant, we try with different step size parameters
γ ∈ {0.01, 0.05, 0.1}. We compare with the standard Armijo backtracking algorithm (see
Algorithm 6 in Appendix D) which uses a similar approach as in Algorithm 5 to tune the step
size parameter γn, but does not take advantage of the Hölder property. All algorithms are
initialized randomly with the same seed.

Figure 2: Left: Sinkhorn loss with respect to number of Sinkhorn max-oracle evaluation for
different gradient step rules. The x axis accounts for all oracle calls, not only the ones used
to actually perform gradient steps. Right: WGAN loss with respect to iteration number for
different gradient step rules.

We observe on the left part of Figure 2 that both Hölder and Armijo backtracking provide
decreasing sequence and avoid oscillations. Both algorithms converge faster than the constant
step size variant. Furthermore, since our algorithm can take into account the norm of the
gradient, the number of intern loop is smaller and that explain why the Non Monotone
Hölder backtracking is faster.

4.2 Wasserstein GAN

We treat the Wasserstein GAN (WGAN) heuristically with an approximation of the max-oracle
and use Algorithm 8 in Appendix D which matches this setting.

Consider a second neural network, called discriminator, D : Rd ×ΘD → R with inputs in Rd
and parameters θD ∈ ΘD whose architecture is the same as G (i.e., ΘD = ΘG) but with a
fullsort activation between each layer, see [1]. We consider the following problem

min
θG

max
θD

n∑
i=1

D(xi, θD)−
n∑
j=1

D(G(zj , θG), θD).

In order to implement the analogy with Kantorovitch duality in the context of GANs [2], one
has to ensure that the discriminator D is 1-Lipschitz, when seen as a function of its input
neurons. This is enforced using a specific architecture for the discrimintator network D. We
use Bjork orthonormalization and fullsort activation functions [1] which ensure that the
network is 1-Lipschitz without any restriction on its weight parameters θD.

For this problem, we use Algorithm 8, which is a heuristic modification of our method
designed to deal with the inner max. Both the argmax and max are indeed approximated by
gradient ascent. Algorithm 8 then implements the same bactracking idea which is evaluated
on the same to benchmark as in the previous section. Extra discussions are provided in the
Appendix. Doing so, the extra-cost induced by the while loop becomes negligible and we can
find the optimal value of k by exhaustive search. For this reason, in this heuristic context,
Hölder backtracking schemes have very little advantage compared to Armijo and we do not
report comparison. Detailed investigations for large scale networks is postponed to future
research. Since GAN’s training is delicate in practice [20], we provide comparison with
many step size choices for the constant step size algorithm. Algorithm 7 that the difference
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between Armijo method and ours As for Backtrack Hölder min-max, we use parameters
γ = 1, δ = 0.75, α = 0.75, and ρ = 0.20 for the Hölder backtracking algorithm and constant
step size parameter γ ∈ {0.001, 0.01, 0.05, 0.1, 0.5} for the constant step size variant. All
algorithms are initialized randomly with the same seed.

Figure 2 displays our results on the right. The optimal loss equals 0. One observes that
constant large steps are extremely oscillatory while small steps are stable but extremely slow.
Backtrack Hölder takes the best of the two world, oscillates much less and stabilizes closer to
the optimal loss value compared to constant step size variants.

Broader impact

The authors think that this work is essentially theoretical and that this section does not apply.
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A Extra-material

Definition A.1 (Semi-algebraic sets and functions) (i) A subset S of Rm is a real
semi-algebraic set if there exist r and s two positive integers, and, for every
k ∈ {1, . . . , r}, l ∈ {1, . . . , s}, two real polynomial functions Pkl, Qkl : Rm → R
such that

S =

r⋃
k=1

s⋂
l=1

{x ∈ Rm : Pkl(x) < 0, Qkl(x) = 0}

(ii) A function f : A ⊂ Rm → Rn is semi-algebraic if its graph{
(x, λ) ∈ A× Rn

∣∣ f(x) = λ
}

is a semi-algebraic subset of Rm+n.

For illustrations of this notion in large scale optimization and machine learning we refer to
[3, 11].

One will also find in this work references, definitions and examples of globally subanalytic
sets that are necessary for our proofs on Sinkhorn GANs.

B Proofs

Proof of Proposition 2.3 Let us proceed with the case when Y is compact; the other
case is similar. Let (xn)n∈N be a sequence such that xn → x∗ ∈ Rd. We need to prove
that p(xn) → p(x∗). For every n ∈ N, set yn = p(xn) and since Y is compact, let y∗ ∈ Y
a cluster point of (yn)n∈N. Since g and L are continuous we have g(xn) → g(x∗) and
L(xnk , ynk)→ L(x∗, y∗). Since p(xnk) = ynk one has L(xnk , ynk) ≥ L(x, ynk) for all x in Rd.
Thus at the limit L(x∗, y∗) ≤ L(x, y∗) for all x in Rd. This implies that L(x∗, y∗) = g(x∗),
and so, by uniquennes of the argmax, p(x∗) = y∗. Whence p is continuous.

Proof of Proposition 2.4 (i) This is a consequence of [32, Theorem 10.31].

Proof of Proposition 2.4 (ii) According to the definition of a semi-agebraic function, we
need to prove that their graph is semi-algebraic.

For g: the

epi g =
{

(x, ξ) ∈ Rd × R
∣∣ g(x) ≤ ξ

}
=
{

(x, ξ) ∈ Rd × R
∣∣ (∀y ∈ Y) L(x, y) ≤ ξ

}
and its complement set is

{
(x, ξ) ∈ Rd × R

∣∣ (∃ y ∈ Y) L(x, y) > ξ
}

which is the projection
of {

(x, ξ, y) ∈ Rd × R× Rd
′ ∣∣ L(x, y) > ξ

} ⋂
Rd × R× Y.

As a conclusion it is semi-algebraic by Tarski-Seidenberg principle. The same being true for
the hypograph, g is semi-algebraic.

For p: graph p =
{

(x, y) ∈ Rd × Y
∣∣ (∀y′ ∈ Y) L(x, y) ≥ L(x, y′)

}
. Then graph p is defined

from a first-order formula and the conclusion follows from [13, Theorem 2.6].

Proof of Proposition 2.4 (iii) Using Assumption 2.2 H2 and (ii), p is continuous and
semi-algebraic so using Proposition C.1, p is locally Hölder. Similarly Assumption 2.2 H2, (i)
and (ii) ensure that ∇g is also continuous ans semi-algebraic and the result follows again
from Proposition C.1.

Proof of Proposition 2.7 Let n ∈ N and set dn = ‖∇f(xn)‖. For the clarity of the proof, the
dependence of γn in xn is dropped.

Lemma C.3 with U = Rd provides

f(xn+1) ≤ f(xn) + 〈dn, xn+1 − xn〉+
β

ν + 1
‖xn+1 − xn‖ν+1

≤ f(xn)− 1

γn
‖xn+1 − xn‖2 +

β

ν + 1
‖xn+1 − xn‖ν+1

= f(xn)− 1

γn

(
‖xn+1 − xn‖2 −

βγn
ν + 1

‖xn+1 − xn‖ν+1
)
. (B.1)
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By definition of γn we have

γ1/ν
n = γ

(
ν + 1

β

)1/ν−1

‖xn+1 − xn‖1/ν−1

and thus

γn = γν
(
ν + 1

β

)1−ν

‖xn+1 − xn‖1−ν .

Set δ = 1− γν
(

β
ν+1

)ν
. Since γ < ν+1

β by hypothesis in Algorithm 1, we have δ > 0 and we
deduce from (B.1) that

f(xn+1) ≤ f(xn)− 1

γn

(
‖xn+1 − xn‖2 − γν

(
β

ν + 1

)ν
‖xn+1 − xn‖2

)

= f(xn)−
1− γν

(
β
ν+1

)ν
γn

‖xn+1 − xn‖2

= f(xn)− δ

γn
‖xn+1 − xn‖2. (B.2)

Hence (f(xn))n∈N is nonincreasing and since (xn)n∈N is bounded, (f(xn))n∈N is also
bounded and converges, this proves (i). Since, for all n, ‖∇f(xn)‖ = ‖xn+1 − xn‖/γn
and (xn)n∈N bounded we can apply Theorem C.5 and obtain that xn → x∗ ∈ Rd. Fi-
nally, it follows from (B.2) that ‖xn+1 − xn‖ → 0 and that ‖xn+1 − xn‖ = γn‖∇f(xn)‖ =

γ
(
ν+1
β

)1/ν−1

‖∇f(xn)‖1/ν → 0. Hence x∗ is a critical point, which proves (ii).

For n fixed, we have

δ

γn
‖xn+1 − xn‖2 = δγn‖∇f(xn)‖2 = δγ

(
ν + 1

β

) 1
ν−1

‖∇f(xn)‖ 1
ν+1.

Then it follows from (B.2) that

‖∇f(xn)‖ 1
ν+1 ≤ 1

δγ

(
β

ν + 1

) 1−ν
ν

(f(xn)− f(xn+1)) (B.3)

whence

(n+ 1) min
k=0,...,n

‖∇f(xk)‖ 1
ν+1 ≤

n∑
k=0

‖∇f(xk)‖ 1
ν+1

≤ 1

γ − γν+1
(

β
ν+1

)ν ( β

ν + 1

) 1−ν
ν

(f(x0)− f(x∗)).

Choosing γ = ν+1
β

(
1

ν+1

)1/ν

, we obtain

γ − γν+1

(
β

ν + 1

)ν
=
ν + 1

β

(
1

ν + 1

)1/ν

−

(
ν + 1

β

(
1

ν + 1

)1/ν
)ν+1(

β

ν + 1

)ν
=
ν + 1

β

(
1

ν + 1

)1/ν (
1− 1

1 + ν

)
=
ν + 1

β

(
1

ν + 1

)1/ν (
ν

1 + ν

)
.

from which we deduce

(n+ 1) min
0≤k≤n

‖∇f(xk)‖ 1
ν+1 ≤ (f(x)− f(x∗))(ν + 1)

ν

(
β
ν+1

) 1−ν
ν

ν+1
β

(
1

ν+1

)1/ν

= (f(x)− f(x∗))β1/ν ν + 1

ν
,
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which proves (iii).

Proof of Theorem 2.9 (i) : For every n ∈ N, by using Taylor expansion, the test implies

(∀γ̃ ∈ ]0,+∞[) − γ̃‖∇f(xn)‖2 + o(γ̃) ≤ −δγ̃‖∇f(xn)‖2,

thus

(∀γ̃ ∈ ]0,+∞[)
o(γ̃)

γ̃
≤ (1− δ)‖∇f(xn)‖2

which is satisfied for γ̃ small.
(ii): It follows from Algorithm 2 that for every n ∈ N,

f(xn+1) ≤ f(xn)− δ

γn
‖xn+1 − xn‖2 (B.4)

so the descent property holds.

(iii): One has ‖∇f(xn)‖ ≤ 1
γn
‖xn+1 − xn‖. Since (xn)n∈N is bounded, we conclude by

Theorem C.5(ii) that there exists x∗ ∈ Rd such that xn → x∗. This follows directly from (ii)
and (B.4).

(iv): Since f is locally Hölder, there exist U ⊂ Rd, a convex neighborhood of x∗, ν ∈ ]0, 1],
and β ∈ ]0,+∞[ such that ∇f is (β, ν) Hölder on U and (xn)n≥N remains in U for N
sufficiently large.

Fix any K ∈ N such that

K ≥ max

 log
(

(1−δ)(ν+1)
γνβ

)
log(α)ν

,
1− ν
ρν

 (B.5)

then we also have

αK ≤ 1

γ

(
(1− δ)(ν + 1)

β

)1/ν

and ρK ≥ 1

ν
− 1.

We deduce that for any x ∈ U such that x− λ∇f(x) ∈ U ,

λν := αKν min{1, ‖∇f(x)‖ρKν}γν ≤
(

(1− δ)(ν + 1)

β

)
min{1, ‖∇f(x)‖ρKν}

≤
(

(1− δ)(ν + 1)

β

)
min{1, ‖∇f(x)‖1−ν}. (B.6)

We derive from Lemma C.3 and (B.6) that for any x ∈ U

f(x− λ∇f(x)) ≤ f(x)− λ‖∇f(x)‖2 +
β

ν + 1
λν+1‖∇f(x)‖ν+1

≤ f(x)− λ‖∇f(x)‖2

+
βλ

ν + 1

(1− δ)(ν + 1)

β
min{1, ‖∇f(x)‖1−ν}‖∇f(x)‖ν+1.

Since min{1, ‖∇f(x)‖1−ν}‖∇f(x)‖ν+1 ≤ ‖∇f(x)‖2, we have for all x ∈ U such that x −
λ∇f(x) ∈ U ,

f(x− λ∇f(x)) ≤ f(x)− λ‖∇f(x)‖2 + (1− δ)λ‖∇f(x)‖2

= f(x)− δλ‖∇f(x)‖2. (B.7)

Fix any N0 ∈ N large enough such that xN ∈ U for all N ≥ N0. Suppose that K = kN0

satisfies (B.5), then for all N ≥ N0 we may consider equation (B.7) with x = xN , λ = γN ,
noting that xN+1 = xN − γN∇f(xN ) ∈ U . This is exactly the negation of the condition to
enter the while loop of Algorithm 2. Hence, by a simple recursion, the algorithm never enters
the while loop after step N0 and we have kN = kN0

for all N ≥ N0. On the other hand, if
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kN0 does not satisfy (B.5), then since k is incremented by 1 at each execution of the while
loop, using the fact that (B.5) implies (B.7), it must hold that

kN ≤ 1 + max

 log
(

(1−δ)(ν+1)
γνβ

)
log(α)ν

,
1− ν
ρν

 .

In all cases, we have using monotonicity of kN in N that for all N ∈ N,

kN ≤ 1 + max

kN0
,

log
(

(1−δ)(ν+1)
γνβ

)
log(α)ν

,
1− ν
ρν

 , (B.8)

hence (kn)n∈N is bounded.

Now we use (B.4) and (ii) which ensures that

‖xn+1 − xn‖2

γn
= γn‖∇f(xn)‖2

is summable and thus tends to 0 as n→∞, whence, either (γn)n∈N or (‖∇f(xn)‖2)n∈N tends
to zero. Using the fact that (kn)n∈N is bounded, in any case we have, ∇f(xn)→ 0 as n→∞.

It follows for n large enough that ‖∇f(xn)‖ ≤ 1, from the while loop condition and the fact
that k̄ := supn∈N kn < +∞, that

δαk̄‖∇f(xn)‖2+ρk̄γ ≤ δαkn‖∇f(xn)‖2+ρknγ = δγn(xn)‖∇f(xn)‖2 ≤ f(xn)− f(xn+1).

Using the convergence of (f(xn))n∈N, and by summing the previous equation and taking the
minimum, we obtain that min0≤i≤n ‖∇f(xi)‖2+ρk̄ = O(1/n).

(v): The result follows from (B.8) with kN0
= 0, since in this case the same reasoning can be

applied for all N ∈ N with U = Rd.
Proof of Theorem 3.1 Recall that g(·) = maxy∈Y L(·, y) and p(·) = argmax y∈YL(·, y). It
follows from Proposition 2.4 that for every n ∈ N, ∇xL(xn, yn) = ∇g(xn). We derive
from Proposition (iii) that ∇g is locally Hölder. It turns out that Algorithm 3 applied to
L is the same as Algorithm 2 applied to g. Thus Theorem 2.9 ensures the convergence
of (xn)n∈N to a critical point x∗ ∈ Rd of g. Furthermore, it follows from the continuity of
p that yn → y∗ = p(x∗). We conclude that (xn, yn)n∈N converges to a critical point of L,
satisfying y∗ = argmax y∈YL(x∗, y). Finally, since for every n ∈ N, ∇g(xn) = ∇xL(xn, yn),
we conclude by Theorem 2.9(v).

C Lemmas

Proposition C.1 (Continuity and semi-algebraicity implies Hölder continuity) [7] Let
f : Rd → Rd′ be a semi-algebraic continuous function, then f is locally Hölder, i.e., for all
compact set K,

∃β ∈ ]0,+∞[ ,∃ ν ∈ ]0, 1] ,∀x, y ∈ K, ‖f(x)− f(y)‖ ≤ β‖x− y‖ν .

We recall below the Łojasiewicz inequality, see e.g [23] and references therein.

Definition C.2 (Łojasiewicz inequality) A differentiable function f : Rn → R has the Ło-
jasiewicz property at x∗ ∈ Rn if there exist η, C ∈ ]0,+∞[ and θ ∈ ]0, 1[ such that for all
x ∈ B(x∗, η), the following inequality is satisfied

C|f(x)− f(x∗)|θ ≤ ‖∇f(x)‖.

In this case the set B(x∗, η) is called a Łojasiewicz ball.
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Lemma C.3 (Hölder Descent Lemma) [38, Lemma 1] Let U ⊂ X be a nonempty convex set,
let f : Rd → R be a C1 function, let ν ∈]0, 1], and let β ∈ ]0,+∞[. Suppose that

∀(x, y) ∈ U2, ‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖ν .
Then

∀(x, y) ∈ U2, f(x) ≤ f(y) + 〈∇f(x), x− y〉+
β

ν + 1
‖y − x‖ν+1.

Lemma C.4 (Controlled descent) Let δ, θ ∈ ]0, 1[, let C ∈ ]0,+∞[ and let x, y, x∗ ∈ Rd
Suppose that the following hold:

(a) f(x) ≥ f(x∗) et f(y) ≥ f(x∗),

(b) f(y) ≤ f(x)− δ
γ ‖y − x‖

2,

(c) ‖∇f(x)‖ ≤ 1
γ ‖y − x‖,

(d) C(f(x)− f(x∗))θ ≤ ‖∇f(x)‖.

Then
δC(1− θ)‖y − x‖ ≤ (f(x)− f(x∗))1−θ − (f(y)− f(x∗))1−θ.

Proof. First, if y = x, then the inequality holds trivially. Second, if f(x) = f(x∗), then by the
first two items, y = x and the inequality holds also. Second, also. Hence we may suppose
that f(x)− f(x∗) > 0 and y 6= x. We have

Cγ

‖y − x‖
≤ C

‖∇f(x)‖
≤ (f(x)− f(x∗))−θ.

By concavity of s 7→ s1−θ, we have

(f(x)− f(x∗))1−θ − (f(y)− f(x∗))1−θ ≥ (1− θ)(f(x)− f(x∗))−θ(f(x)− f(y))

≥ Cγ(1− θ)
‖y − x‖

δ

γ
‖y − x‖2

≥ δC(1− θ)‖y − x‖,
which concludes the proof.

We slightly adapt the recipe from [8] and add a trap argument from [4].

Theorem C.5 (Recipe for convergence [8] and the trapping phenomenon) Let
f : Rd → R be a C1 function and let δ ∈ ]0, 1[. Consider (xn)n∈N in Rd and (γn)n∈N
in ]0,+∞[ that satisfies

[a] (∀n ∈ N) f(xn+1) ≤ f(xn)− δ

γn
‖xn+1 − xn‖2,

[b] (∀n ∈ N) ‖∇f(xn)‖ ≤ 1

γn
‖xn+1 − xn‖.

Then the following results hold:

(i) Assume that there exist x∗ ∈ Rd, θ ∈]0, 1[, η, C ∈ ]0,+∞[, and N ∈ N such that

C|f(x)− f(x∗)|θ ≤ ‖∇f(x)‖,∀x ∈ B(x∗, η),

xN ∈ B(x∗, η/2),

|f(xN )− f(x∗)|1−θ < δC(1− θ)η/2.
If f(xn) ≥ f(x∗) for all n ∈ N, then (xn)n≥N lies entirely in B(x∗, η).

(ii) Suppose that f is semi-algebraic. Then if (xn)n∈N has a cluster point x∗ ∈ Rd, then it
converges to x∗.
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Proof.

(i): By assumption, we have xN ∈ B(x∗, η/2) and

|f(xN )− f(x∗)|1−θ < δC(1− θ)η/2.

It follows from Lemma C.4 that

δC(1− θ)‖xN+1 − xN‖ ≤ (f(xN )− f(x∗))1−θ − (f(xN+1)− f(x∗))1−θ.

Let us prove by strong induction that for every n ≥ N , xn ∈ B(x∗, η). Assume n ≥ N + 1
and suppose that for every integer N ≤ k ≤ n− 1, xk ∈ B(x∗, η). Lemma C.4 yields

(∀k ∈ [N, . . . , n− 1]) δC(1− θ)‖xk+1 − xk‖ ≤ (f(xk)− f(x∗))1−θ − (f(xk+1)− f(x∗))1−θ.

By summing we have

δC(1− θ)
n−1∑
k=N

‖xk+1 − xk‖ ≤ (f(xN )− f(x∗))1−θ − (f(xn)− f(x∗))1−θ

≤ (f(xN )− f(x∗))1−θ < δC(1− θ)η/2. (C.1)

Since

‖xn − x∗‖ ≤
n−1∑
k=N

‖xk+1 − xk‖+ ‖xN − x∗‖ < η/2 + η/2 = η

we have xn ∈ B(x∗, η). We have proved that for every n ≥ N , xn ∈ B(x∗, η).

(ii): Since (f(xn))n∈N is nonincreasing by [a], we deduce that f(xn)→ f(x∗) and f(xn) ≥
f(x∗). Since f is semi-algebraic, f has the Łojasiewicz property at x∗ [23]. Hence, let
us define θ, C, and η as in Definition C.2 relative to x∗. Since x∗ is a cluster point and
f(xn)→ f(x∗), there exists N as in (i) above.

For every integer n ≥ N , it follows from (C.1) that

δC(1− θ)
n−1∑
k=N

‖xk+1 − xk‖ ≤ (f(xN )− f(x∗))1−θ ≤ (f(x0)− f(x∗))1−θ < +∞

hence the serie converges, increments are summable and (xk)k∈N converges to x∗.

Remark C.6 (Convergence and semi-algebraicity) (a) Note that when f is semi-algebraic,
we have in fact an alternative, for any sequence:

• either ‖xn‖ → ∞

• or (xn)n∈N converges to a critical point x∗.

Indeed if we are not in the diverging case, there is a cluster point x∗ which must be a critical
point. Whence we are in the situation of (ii) above.
(b) If f is, in addition, coercive, i.e., lim‖x‖→+∞ f(x) = +∞, each Hölder gradient sequence
converges to a critical point since the first alternative is not possible because (f(xk))k∈N is
non increasing so that (xk)k∈N is bounded.

D Numerical Experiments : Complements

In practice, it can be difficult to calculate the argmax (or the argmin) or to perform rigorously
the internal while loop, we propose two algorithms to simplify this implementation aspect.
We also present the constant step size algorithm that we use to assess the efficiency of our
method.
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Algorithm 4: Constant step size gradient method for min-max
Input: γ ∈ ]0,+∞[
Initialization :x0 ∈ Rd
for n = 0, 1, . . . do

yn = argmin y∈YL(xn, y)
xn+1 = xn − γ∇xL(xn, yn)

D.1 Sinkhorn GAN

Sinkhorn GAN is a min-min problem, thus our model must be slightly adapted. First, we start
with Algorithm 4 below which is a constant step size algorithm. Due to the specific setting of
Sinkhorn problem, the argmin may be computed exactly. The next algorithm is a Backtrack
Hölder method for the min-min problem. For gaining efficiency, we introduce a new rule in
Algorithm 5, which maintains the sufficient decrease property, without the monotonicity of
(kn)n∈N.

Algorithm 5: Non Monotone Backtrack Hölder for min-max
Input: N ∈ N,γ, ρ ∈ ]0,+∞[, and α, δ, δ+ ∈ ]0, 1[
Initialization :k−1 = 1, n = 0, and x0 ∈ Rd
while n < N do

k = kn−1

n = n+ 1
γn(xn) = αk min{1, ‖∇L(xn, yn)‖ρk}γ
if miny L(xn − γn(xn)∇f(xn), y) < miny L(xn, y)− δ+γn(xn)‖∇f(xn)‖2 then

k = k − 1

while miny L(xn − γn(xn)∇f(xn), y) > miny L(xn, y)− δγn(xn)‖∇L(xn, yn)‖2 do
k = k + 1
n = n+ 1
γn(xn) = αk min{1, ‖∇L(xn, yn)‖ρk}γ

kn = k
xn+1 = xn − γn(xn)∇L(xn, yn)

We also present an Armijo search process for this problem in Algorithm 6. It has a structure
similar to the “Non Monotone Hölder Backtrack" but with a much less clever update for γn.

Algorithm 6: Non Monotone Armijo for min-max
Input: N ∈ N,γ, ρ ∈ ]0,+∞[, and α, δ, δ+ ∈ ]0, 1[
Initialization :k−1 = 1, n = 0, and x0 ∈ Rd
while i < N do

k = kn−1

n = n+ 1
γn(xn) = αk min{1, ‖∇L(xn, yn)‖ρk}γ
if miny L(xn − γn(xn)∇f(xn), y) < miny L(xn, y)− δ+γn(xn)‖∇f(xn)‖2 then

k = k − 1

while miny L(xn − γn(xn)∇f(xn), y) > miny L(xn, y)− δγn(xn)‖∇L(xn, yn)‖2 do
k = k + 1
n = n+ 1
γn(xn) = αk min{1, ‖∇L(xn, yn)‖ρk}γ

kn = k
xn+1 = xn − γn(xn)∇L(xn, yn)
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D.2 Wasserstein GAN

As explained in Section 4.2, this problem does not formally match our setting. In particular,
the argmax cannot be computed fast, so we use a gradient ascent to provide an approximation
expressed by using the sign ≈. We also provide a constant step size method (Algorithm 7) to
benchmark our algorithm.

Algorithm 7: Heuristic gradient method for min-max with constant step size
Input: γ ∈ ]0,+∞[
Initialization :x0 ∈ Rd
for n = 0, 1, . . . do

yn ≈ argmax y∈YL(xn, y)
xn+1 = xn − γ∇xL(xn, yn)

Besides, since the max is not easily accessible, we modify the while loop by using yn instead
of the exact argmax to validate the sufficient decrease. This approach gives Algorithm 8.

Algorithm 8: Heuristic Hölder Backtrack for min-max
Input: γ, ρ ∈ ]0,+∞[ and δ, α ∈ ]0, 1[
Initialization :x0 ∈ Rd
for n = 0, 1, . . . do

yn ≈ argmax y∈YL(xn, y)
k = 0
γn(xn) = γ
while L(xn − γn(xn)∇xL(xn, yn), yn) > L(xn, yn)− δγn(xn)‖∇xL(xn, yn)‖2 do

k = k + 1
γn(xn) = γαk min{1, ‖∇xL(xn, yn)‖kρ}

kn = k
xn+1 = xn − γn(xn)∇xL(xn, yn)
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