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Abstract: The asymptotic behaviour of Linear Spectral Statistics (LSS)
of the smoothed periodogram estimator of the spectral coherency matrix
of a complex Gaussian high-dimensional time series (yn)n∈Z with inde-
pendent components is studied under the asymptotic regime where the
sample size N converges towards +∞ while the dimension M of y and the
smoothing span of the estimator grow to infinity at the same rate in such
a way that M

N
→ 0. It is established that, at each frequency, the estimated

spectral coherency matrix is close from the sample covariance matrix of
an independent identically NC(0, IM ) distributed sequence, and that its
empirical eigenvalue distribution converges towards the Marcenko-Pastur
distribution. This allows to conclude that each LSS has a deterministic be-
haviour that can be evaluated explicitly. Using concentration inequalities,
it is shown that the order of magnitude of the supremum over the frequen-
cies of the deviation of each LSS from its deterministic approximation is

of the order of 1
M

+
√
M
N

+ (M
N

)3 where N is the sample size. Numerical
simulations supports our results.
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1. Introduction

1.1. The addressed problem and the results

We consider a M–variate zero-mean complex Gaussian stationary time series 1

(yn)n∈Z and assume that the samples y1, . . . ,yN are available. We introduce

the traditional frequency smoothed periodogram estimate Ŝ(ν) of the spectral
density of y at frequency ν defined by

Ŝ(ν) =
1

B + 1

B/2∑
b=−B/2

ξy

(
ν +

b

N

)
ξy

(
ν +

b

N

)∗
(1.1)

where B is an even integer, which represents the smoothing span, and

ξy(ν) =
1√
N

N∑
n=1

yne
−2iπ(n−1)ν (1.2)

is the renormalized Fourier transform of (yn)n=1...,N . The corresponding esti-
mated spectral coherency matrix is defined as:

Ĉ(ν) = diag
(
Ŝ(ν)

)− 1
2

Ŝ(ν)diag
(
Ŝ(ν)

)− 1
2

(1.3)

where diag(Ŝ(ν)) = Ŝ(ν) � IM , with � denoting the Hadamard product (ie.
entrywise product) and IM is the M–dimensional identity matrix. Under the
hypothesis H0 that the M components (y1,n)n∈Z, . . . , (yM,n)n∈Z of y are mutu-
ally uncorrelated, we evaluate the behaviour of certain Linear Spectral Statistics
(LSS) of the eigenvalues of Ĉ(ν) in asymptotic regimes where N → +∞ and
both M = M(N) and B = B(N) converge towards +∞ in such a way that

M(N) = O(Nα) for α ∈ (1/2, 1) and cN = M(N)
B(N) → c where c ∈ (0, 1). We

denote by µ
(c)
MP the Marcenko-Pastur distribution with parameter c < 1 defined

by

dµ
(c)
MP (λ) =

√
(λ+ − λ)(λ− λ−)

2πcλ
1λ∈[λ−;λ+](λ) dλ, λ± = (1±

√
c)2

and define the sequences (uN )N≥1 and (vN )N≥1 by

uN =
1

B
+

√
B

N
+

(
B

N

)3

(1.4)

and

vN =
1

B + 1

B/2∑
b=−B/2

(
b

N

)2

. (1.5)

1any finite linear combination x of the components of (yn)n∈Z is a complex Gaussian
random variable, i.e. Re(x) and Im(x) are independent zero-mean Gaussian random variables
having the same variance
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We notice that

uN = O
(

1

B

)
1 1

2≤α≤
2
3

+O

(√
B

N

)
1 2

3≤α≤
4
5

+O
(
B

N

)3

1α≥ 4
5

(1.6)

and vN = O
(
(BN )2

)
, as well as uN

vN
→ 0 if α > 2/3 and uN

vN
→ +∞ if α <

2/3. Then, if (sm)m=1,...,M represent the spectral densities of the scalar time
series ((ym,n)n∈Z)m=1,...,M , for each function f defined on R+ and C∞ in a

neighbourhood of the support [λ−;λ+] of µ
(c)
MP , it holds that for each ε > 0,

there exist a γ(ε) := γ > 0 such that for each N large enough:

P

[
sup
ν∈[0,1]

∣∣∣∣ 1

M
Tr
(
f(Ĉ(ν))

)
−
∫

R+

f dµ
(cN )
MP − rN (ν) φN (f) vN 1α>2/3

∣∣∣∣
> N εuN ] ≤ exp−Nγ (1.7)

where rN (ν) is defined by

rN (ν) =

(
1

M

M∑
m=1

s′m(ν)

sm(ν)

)2

(1.8)

and where φN (f) is a deterministic O(1) term which coincides with the
action of function f on a certain compactly supported distribution DN (to be

precised later) depending on the Marcenko-Pastur distribution µ
(cN )
MP . In other

words, under H0, uniformly w.r.t. the frequency ν, 1
MTr

(
f(Ĉ(ν))

)
behaves

as
∫

R f dµ
(cN )
MP . If α ≤ 2/3, with high probability, the order of magnitude of

the corresponding error is not larger than uN = 1
B = O( 1

Nα ). If α > 2/3,
1
MTr

(
f(Ĉ(ν))

)
−
∫

R f dµ
(cN )
MP behaves as the deterministic O(BN )2 term

rN (ν) φN (f) vN , and the rate of convergence towards 0 of the corrected

statistics 1
MTr

(
f(Ĉ(ν))

)
−
∫

R+ f dµ
(cN )
MP − rN (ν) φN (f) vN 1α>2/3 appears to

be uN which verifies uN
vN
→ 0.

Our approach is based on the observation that in the above asymptotic
regime, Ŝ(ν) can be interpreted as the sample covariance matrix of the large
vectors (ξy(ν + b

N ))b=−B/2,...,B/2. Classical time series analysis results sug-

gest that the vectors (ξy(ν + b
N ))b=−B/2,...,B/2 appear as ”nearly” i.i.d. zero

mean complex random vectors with covariance matrix S(ν) where S(ν) =

diag (s1(ν), . . . , sM (ν)). Ĉ(ν) can be interpreted as the sample autocorrelation
matrix of the above vectors. As it is well-known that the empirical eigenvalue
distribution of the sample autocorrelation matrix of i.i.d. large random vectors
converges towards the Marcenko-Pastur distribution (see e.g. [21]), it is not sur-

prising that 1
MTr

(
f(Ĉ(ν))

)
behaves as

∫
R+ f dµ

(cN )
MP . Our main results are thus

obtained using tools borrowed from large random matrix theory (see e.g. [30],
[1]) and from frequency domain time series analysis techniques (see e.g. [4]).
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1.2. Motivation

This paper is motivated by the problem of testing whether the components of
y are uncorrelated or not when the dimension M of y is large and the number
of observations N is significantly larger than M . For this, a possible way would
be to estimate the spectral coherency matrix, equal to IM at each frequency ν
under H0, by the standard estimate Ĉ(ν) defined by (1.3) for a relevant choice
of B, and to compare, for example, the supremum over ν of the spectral norm
‖Ĉ(ν)− IM‖ to a threshold. To understand the conditions under which such an
approach should provide satisfying results, we mention that under some mild
extra assumptions, it can be shown that

sup
ν
‖Ŝ(ν)− S(ν)‖ a.s.−−−−−→

N→+∞
0

as well as
sup
ν
‖Ĉ(ν)− IM‖

a.s.−−−−−→
N→+∞

0

in asymptotic regimes where N,B,M converge towards +∞ in such a way that
B
N → 0 and M

B → 0. Therefore, Ĉ(ν) is likely to be close from IM for each ν if

both B
N and M

B are small enough. However, if M is large and that the number
of available samples N is not arbitrarily large w.r.t. M , it may be impossible
to choose the smoothing span B in such a way that B

N � 1 and M
B � 1. In

such a context, the predictions provided by the asymptotic regime B
N → 0 and

M
B → 0 will not be accurate, and any test comparing Ĉ(ν) to IM for each ν
will provide poor results. To solve this issue, we propose to choose B of the
same order of magnitude as M . In this case, Ĉ(ν) has of course no reason to
be close from IM for each ν. If M

N , or equivalently if B
N is small enough, the

asymptotic regime where both M and B converge towards +∞ at the same rate
appears relevant to understand the behaviour of Ĉ(ν). We mention in particular
that the condition α > 1/2 implies that the rate of convergence of M

N towards
0 is moderate, which is in accordance with practical situations in which the
sample size is not arbitrarily large. Our asymptotic results thus suggest that if
M
N is small enough and if B is chosen of the same order of magnitude as M ,
then it seems reasonable to test that the components of y are uncorrelated by
comparing

1

uN
sup
ν∈[0,1]

∣∣∣∣ 1

M
Tr
(
f(Ĉ(ν)

)
−
∫

R+

f dµ
(cN )
MP − r̂N (ν) φN (f) vN 1α>2/3

∣∣∣∣
to a well chosen threshold, where r̂N (ν) represents an estimate of rN (ν) accu-
rate enough to keep equal to uN the convergence rate towards 0 of the modified
statistics. We notice that our results just characterize the order of magnitude of
the above statistics under H0, and that we do not provide asymptotic approxi-
mation of its distribution. While the derivation of such an approximation would
be quite useful to design a well defined statistical test and to study and compare
its performance with existing approaches, our results represent a first necessary
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step that has its own interest. We notice that we consider the supremum on
the whole frequency interval [0, 1] because, compared to a solution where the
maximum is over a low number of fixed frequencies, this allows to increase the
power of the test in contexts of alternatives for which, under H1,

ν →
∣∣∣∣ 1

M
Tr
(
f(Ĉ(ν))

)
−
∫

R+

f dµ
(cN )
MP − r̂N (ν) φN (f) vN 1α>2/3

∣∣∣∣ (1.9)

exhibits narrow peaks that would not be visible on a low density frequency
grid. We also mention that other statistics could also be considered, e.g. the in-
tegral on the frequency domain of function (1.9) or of this function to the square.

We finally remark that the most usual asymptotic regime considered in the
context of large random matrices is M → +∞, N → +∞ in such a way that
M
N converges towards a non zero constant. In this regime, it is still possible to
develop large random matrix-based approaches testing that the components of
y are uncorrelated or not, see e.g. the contribution [29] to be presented below
which, under the extra assumption that the components of y share the same
spectral density, is based on a Gaussian approximation of linear spectral statis-
tics of the empirical covariance matrix R̂N defined by

R̂N =
1

N

N∑
n=1

yny∗n (1.10)

under H0. However, when the ratio M
N is small enough, the asymptotic regime

considered in the present paper seems more relevant than the standard large
random matrix regime M → +∞, N → +∞, and test statistics that depend
on the estimated spectral coherency matrix Ĉ(ν) should provide better perfor-

mance than functionals of the matrix R̂N .

1.3. On the literature

The problem of testing whether various jointly stationary and jointly Gaus-
sian time series are uncorrelated is an important problem that was exten-
sively addressed in the past. Apart from a few works that will be discussed
later, almost all the previous contributions addressed the case where the num-
ber M of available time series remains finite when the sample size increases.
Two classes of methods were mainly studied. The first class uses lag domain
approaches based on the observation that M jointly stationary time series
(y1,n)n∈Z, . . . , (yM,n)n∈Z are mutually uncorrelated if and only if for each in-

teger L, the covariance matrix of the ML dimensional vector y
(L)
n defined by

y(L)
n = (y1,n, . . . , y1,n+L−1, . . . , yM,n, . . . , yM,n+L−1)T

is block diagonal. The lag domain approach was in particular used in [17] for
M = 2, and extended and developed in [24], [25], [19], [20], [8] and [12].
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The second approach is based on the observation that the M jointly
stationary time series (y1,n)n∈Z, . . . , (yM,n)n∈Z are uncorrelated if and only
the spectral density matrix S(ν) of yn = (y1,n, . . . , yM,n)T is diagonal for each
frequency ν, or equivalently, if its spectral coherence matrix C(ν) is reduced
to IM for each ν. [35] is one of the first related contribution. This work was
followed by [10], [33], as well as [11].

We now review the existing works devoted to the case where the number
M of time series converges towards +∞. The particular context where the
observations y1, . . . ,yN are i.i.d. and where the ratio M

N converges towards a
constant d ∈ (0, 1) is the most popular. In contrast with the asymptotic regime
considered in the present paper, M and N are of the same order of magnitude.
This is because, in this context, the time series are mutually uncorrelated if and
only the covariance matrix E[yny∗n] is diagonal. Therefore, it is reasonable to

consider test statistics that are functionals of the sample covariance matrix R̂N

defined by (1.10). In particular, when the observations are Gaussian random
vectors, the generalized likelihood ratio test (GLRT) consists in comparing the

test statistics log det(ĈN ) to a threshold, where ĈN represents the sample
autocorrelation matrix. [21] proved that under H0, the empirical eigenvalue

distribution of ĈN converges almost surely towards the Marcenko-Pastur distri-

bution µ
(d)
MP and therefore, that 1

MTr
(
f(ĈN )

)
converges towards

∫
fdµ

(d)
MP for

each bounded continuous function f . In the Gaussian case, [23] also established

a central limit theorem (CLT) for log det(ĈN ) under H0 using the moment

method. In the real Gaussian case, [7] remarked that
(

detĈN

)N/2
is the prod-

uct of independent beta distributed random variables. Therefore, log det (ĈN )
appears as the sum of independent random variables, thus deducing the CLT.
More recently, in [28] is established a CLT on LSS of ĈN in the Gaussian case
using large random matrix techniques when the covariance matrix E[yny∗n]
is not necessarily diagonal. This allows studying the asymptotic performance
of the GLRT under a certain class of alternatives. We also mention that
[22] studied the behaviour of maxi,j |(ĈN )i,j | under H0, and established that

maxi,j |(ĈN )i,j |, after recentering and appropriate normalization, converges in
distribution towards a Gumble distribution, which, of course, allows to test the
hypothesis H0. This first contribution was extended later in several works, in
particular in [6] who considered the case where the samples y1, . . . ,yN have
some specific correlation pattern. Still, in the asymptotic regime M

N → d, [29]
proposed to test hypothesis H0 when the components of y share the same
spectral density. In this case, the rows of the M × N matrix (y1, . . . ,yN ) are
independent and identically distributed under H0. [29] established a central
limit theorem for linear spectral statistics of the empirical covariance matrix
R̂N defined by (1.10), and deduced from this test statistics to check whether H0

holds or not. We notice that the results of [29] are valid in the non-Gaussian case.

In our knowledge, no existing work studied the behaviour of linear spectral
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statistics of matrix Ĉ(ν) in the asymptotic regime defined in the present paper.
However, we mention that this regime was considered in [3] in order to solve a
completely different problem, i.e. the use of shrinkage in the frequency domain
in order to enhance the performance of the spectral density estimate (1.1) when

the components of y are not uncorrelated. We notice that B3/2

N is supposed to
converge towards 0 in [3]. When B = O(Nα), this condition is equivalent to α <
2/3, while we rather study situations where α > 1/2. We finally mention that
our works [27] and [31] also consider the present asymptotic regime and study

respectively the behaviour of supi<j,ν∈GN |Ĉi,j(ν)| (GN is the set {kB+1
N , k =

0, . . . , N
B+1}) and the largest eigenvalues of Ĉ(ν) in the presence of an extra

signal, independent from y, and having a low-rank spectral density matrix.

1.4. General approach

In order to simplify the notations, we denote by ψN (f, ν) the statistics defined
by

ψN (f, ν) =
1

M
Tr
(
f(Ĉ(ν))

)
−
∫

R+

f dµ
(cN )
MP − rN (ν) φN (f) vN 1α>2/3. (1.11)

In order to be able to study the behaviour of supν |ψN (f, ν)|, we establish expo-
nential concentration inequalities that allow to evaluate P(|ψN (f, ν)| > N εuN )
for each ν as well as P(supν∈VN |ψN (f, ν)| > N εuN ) for some relevant finite
discrete grid VN of the interval [0, 1]. (1.7) is then obtained by using Lipschitz
properties of function ν → ψN (f, ν).

In order to evaluate P(|ψN (f, ν)| > N εuN ) for each ν, we use the following
approach:

• We first study the behaviour of the modified sample spectral coherency
matrix C̃(ν) defined by

C̃(ν) = diag (S(ν))
− 1

2 Ŝ(ν)diag (S(ν))
− 1

2 . (1.12)

We notice that C̃(ν) is obtained from Ĉ(ν) by replacing the estimated

diagonal matrix diag
(
Ŝ(ν)

)
by its true value diag (S(ν)). Using classical

results of [4], we establish that for each ν, C̃(ν) can be represented as

C̃(ν) =
X(ν)X∗(ν)

B + 1
+ ∆̃(ν) (1.13)

where X(ν) is a M × (B + 1) random matrix with NC(0, 1) i.i.d. entries,
and ∆̃(ν) is another matrix such that, for any ε > 0, there exists γ > 0,
independent from ν, such that for each large enough N ∈ N:

P

[
‖∆̃(ν)‖ > N ε B

N

]
≤ exp−Nγ .
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We deduce from (1.13) that Ĉ(ν) can be written as

Ĉ(ν) =
X(ν)X∗(ν)

B + 1
+ ∆(ν) (1.14)

where ∆(ν) verifies the concentration inequality

P

[
‖∆(ν)‖ > N ε

(
1√
B

+
B

N

)]
≤ exp−Nγ

for each ε > 0, where γ does not depend on ν. Using (1.13) and (1.14), we

establish that the eigenvalues of C̃(ν) and Ĉ(ν) are localized with high
probability in a neighbourhood of the support of the Marcenko-Pastur

distribution µ
(c)
MP .

C̃(ν) appears as a useful intermediate matrix because the study of
1
MTr

(
f(Ĉ(ν))

)
−
∫

R+ f dµ
(cN )
MP is based on the evaluation of each term

of the following decomposition:

1

M
Tr
(
f(Ĉ(ν))

)
−
∫

R+

f dµ
(cN )
MP =

1

M
Tr
(
f(Ĉ(ν))

)
− 1

M
Tr
(
f(C̃(ν))

)
+

1

M
Tr
(
f(C̃(ν))

)
− E

[
1

M
Tr
(
f(C̃(ν))

)]
+

E

[
1

M
Tr
(
f(C̃(ν))

)
− 1

M
Tr

(
f(

X(ν)X∗(ν)

B + 1
)

)]
+

E

[
1

M
Tr

(
f(

X(ν)X∗(ν)

B + 1
)

)]
−
∫

R+

f dµ
(cN )
MP .

(1.15)

Using the above-mentioned results related to the localization of the eigen-
values of C̃(ν) and Ĉ(ν), we also argue that it is sufficient to do so when
f is compactly supported.

• The term 1
MTr

(
f(Ĉ(ν))

)
− 1

MTr
(
f(C̃(ν))

)
is studied using the Helffer-

Sjöstrand formula which allows, in a certain sense, to be back to the study

of 1
MTr

(
Q̂(z)− Q̃(z)

)
for z ∈ C+, where Q̂(z) and Q̃(z) represent the

resolvents of matrices Ĉ(ν) and C̃(ν) (see below for a formal definition).

Using (1.13) and (1.14), we express 1
MTr

(
Q̂(z)− Q̃(z)

)
in terms of the

resolvent Q(z) of matrix X(ν)X∗(ν)
B+1 . As matrix X(ν) is Gaussian, it is

possible to use standard Gaussian tools (Poincaré-Nash inequality and
the integration by part formula) to have a good understanding of the
behaviour of Q(z), and to prove that for each ε > 0, it exists γ independent
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from ν such that

P

(∣∣∣∣ 1

M
Tr
(
f(Ĉ(ν))

)
− 1

M
Tr
(
f(C̃(ν))

)
−(

1

2M

M∑
m=1

s′′m(ν)

sm(ν)

)
φ̃N (f) vN 1α>2/3

∣∣∣∣∣ > N εuN

)
≤ exp−Nγ

where φ̃N (f) is a deterministic term defined as the action of f on a com-

pactly supported distribution D̃N depending on µ
(cN )
MP .

• Using a standard Gaussian concentration inequality as well as the struc-
ture of matrix C̃(ν), we obtain that for each ε > 0, it exists γ independent
from ν such that

P

[∣∣∣∣ 1

M
Tr
(
f(C̃(ν))

)
− E

[
1

M
Tr
(
f(C̃(ν))

)]∣∣∣∣ > N ε 1

B

]
≤ exp−Nγ

(1.16)
for each N large enough.

• We still analyse the deterministic term

E
[

1
MTr

(
f(C̃(ν))

)
− 1

MTr
(
f(X(ν)X∗(ν)

B+1 )
)]

using the Helffer-Sjöstrand

formula. We first show that for each z ∈ C+, E
[

1
MTr(Q̃(z)−Q(z))

]
is a

O(BN )2 term, a non obvious result because the evaluation (1.13) just leads

to the conclusion that the above term is O(BN ). Moreover, using long and
very tedious Gaussian calculations, we obtain that if α > 2

3 , it holds that

E

[
1

M
Tr(Q̃(z)−Q(z))

]
= −

(
1

2M

M∑
m=1

s′′m(ν)

sm(ν)

)
p̃N (z) vN+

(
1

M

M∑
m=1

s′m(ν)

sm(ν)

)2

pN (z) vN +O
(
B

N

)3

where pN and p̃N are the Stieltjes transforms of the compactly supported
distributions DN and D̃N introduced previously. This immediately implies
that if α ≤ 2

3 , then

E

[
1

M
Tr
(
f(C̃(ν))

)
− 1

M
Tr

(
f(

X(ν)X∗(ν)

B + 1
)

)]
= O

(
B

N

)2

= o

(
1

B

)
= o(uN )
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while if α > 2
3 , then,

E

[
1

M
Tr
(
f(C̃(ν))

)
− 1

M
Tr

(
f(

X(ν)X∗(ν)

B + 1
)

)]
=

−

(
1

2M

M∑
m=1

s′′m(ν)

sm(ν)

)
φ̃N (f) vN +

(
1

M

M∑
m=1

s′m(ν)

sm(ν)

)2

φN (f) vN

+O(uN )

because (BN )3 � uN if 2/3 < α ≤ 4/5 and (BN )3 is equivalent to uN if
α > 4/5.

• Finally, classical results imply that

E

[
1

M
Tr

(
f(

X(ν)X∗(ν)

B + 1
)

)]
−
∫

R+

f dµ
(cN )
MP = O

(
1

B2

)
= o(uN ).

Gathering the above evaluations and using the Lipschitz properties of function
ν → ψ(f, ν), we eventually obtain (1.7).

We also indicate how the use of lag window estimators of the spectral densities
(sm)m=1,...,M allows to design an estimator r̂N (ν) of rN (ν) defined by (1.8) for

which the rate of convergence towards 0 of the statistics ψ̂N (f, ν) obtained by
replacing rN (ν) by r̂N (ν) in Eq. (1.11) is still uN . In particular, we establish that

for each ε > 0, P
(

supν |ψ̂N (f, ν)| > N εuN

)
converges towards 0 exponentially.

1.5. Assumptions and general notations

Assumption 1.1. For each m ≥ 1, (ym,n)n∈Z is a zero mean stationary com-
plex Gaussian time series, ie.

1. E[ym,n] = 0 for any m ≥ 1 and any n ∈ Z
2. every finite linear combination x of the random variables (ym,n)n∈Z is a
NC(0, σ2) distributed random variable for some σ2, i.e. Re(x) and Im(x)
are independent and N (0, σ2/2) distributed.

Assumption 1.2. If m1 6= m2, then the scalar time series (ym1,n)n∈Z and
(ym2,n)n∈Z are independent.

We now formulate the following assumptions on the growth rate of the quan-
tities N,M,B:

Assumption 1.3.

B,M = O(Nα) where
1

2
< α < 1,

M

B + 1
= cN , cN −−−−−→

N→+∞
c ∈ (0, 1).

As M = M(N) converges towards +∞, we assume that an infinite sequence
(y1,n)n∈Z, (y2,n)n∈Z, . . . , (yk,n)n∈Z, . . . of mutually independent zero mean com-
plex Gaussian time series is given.
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We denote by (sm)m≥1 the corresponding sequence of spectral densities (i.e.
sm coincides with the spectral density of the times series (ym,n)n∈Z). For each
m ≥ 1, we denote by rm = (rm,u)u∈Z the autocovariance sequence of (ym,n)n∈Z,
i.e. rm,u = E[ym,n+uy

∗
m,n]. We formulate the following assumptions on (sm)m≥1

and (rm)m≥1:

Assumption 1.4. The time series ((ym,n)n∈Z)m≥1 are such that:

inf
m≥1

inf
ν∈[0,1]

|sm(ν)| > 0 (1.17)

and
sup
m≥1

∑
u∈Z

(1 + |u|)γ0 |rm,u| < +∞ (1.18)

where γ0 ≥ 3. Assumption (1.18) of course implies that the spectral densities
(sm)m≥1 are C3 and that

sup
m≥1

sup
ν∈[0,1]

|s(i)
m (ν)| < +∞ (1.19)

for i = 0, 1, 2, 3 (s
(i)
m represents the derivative of order i of sm). We notice that

(1.18) holds as soon as we have

sup
m≥1
|rm,u| ≤

C

|u|1+γ0+δ

for each u 6= 0 as well as supm≥1 |rm,0| < ∞ (C > 0 and δ > 0 represent
constants). If z represents the backward shift operator, a simple example of
time series verifying Assumption 1.4 is to consider ARMA time series generated
as

ym,n = [hm(z)]εm,n

where ((εm,n)n∈Z)m≥1 are mutually independent i.i.d. NC(0, 1) sequences, and

where hm(z) = bm(z)
am(z) , am and bm being 2 polynomials having no pole nor zero

in the closed unit disk D. Moreover, supm≥1 max(deg(am),deg(bm)) < +∞, and
if (zk,m)k=1,...,deg(bm) and (pk,m)k=1,...,deg(am) are the zeros of bm and am, then
we should have

inf
m≥1

inf
k

dist(zk,m,D) > 0, inf
m≥1

inf
k

dist(pk,m,D) > 0

sup
m≥1

sup
k
|zk,m| < +∞, sup

m≥1
sup
k
|pk,m| < +∞.

It is easy to check that (1.18) holds for each γ0 > 0, and that (1.17) is verified
as well.

Notations. A zero mean complex valued random vector y is said to be
NC(0,Σ) distributed if E(yy∗) = Σ and if each linear combination x of the
entries of y is a complex Gaussian random variable, i.e. Re(x) and Im(x) are
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independent Gaussian random variables sharing the same variance. If x is a
random variable, we denote by x◦ the random variable defined by

x◦ = x− E[x]. (1.20)

If A is a P ×Q matrix, ‖A‖ and ‖A‖F denote its spectral norm and Frobe-
nius norm respectively. If P = Q and A is Hermitian, λ1(A) ≥ . . . ≥ λP (A) are
the eigenvalues of A. The spectrum of A, which is here the set of its eigenvalues
(λk(A))k=1,...,P , is denoted by σ(A). For A and B square Hermitian matrices,
if all the eigenvalues of A − B are non negative, we write A ≥ B. We define
Re A = (A + A∗)/2 and Im A = (A − A∗)/2 where A∗ is the conjugate
transpose of matrix A.

Cp represents the set of all real-valued functions defined on R whose p
first derivatives exist and are continuous, and Cpc is the set of all compactly
supported functions of Cp.

We recall that S(ν) represents the M × M diagonal matrix
S(ν) = diag(s1(ν), . . . , sM (ν)). We notice that S depends on M , thus on
N (through M := M(N)), but we often omit to mention the corresponding
dependency in order to simplify the notations. In the following, we will denote
by ym the N–dimensional vector ym = (ym,1, . . . , ym,N )T .

A nice constant is a positive a constant that does not depend on the
frequency ν, the time series index m, the complex variable z of the various
resolvents and Stieltjes transforms used throughout the paper, as well as
on the dimensions B,M and N . A nice polynomial is a polynomial whose
degree and coefficients are nice constants. If z ∈ C+ and if P1 and P2 are two
nice polynomials, terms such as P1(z)P2( 1

Imz ) play an important role in the
following. C and C(z) will represent a generic notation for respectively a nice
constant and a term P1(z)P2( 1

Imz ), and the values of C and C(z) may change
from one line to the other.

If (aN )N≥1 and (bN )N≥1 are two sequences of positive real numbers, we
write aN << bN if aN

bN
→ 0 when N → +∞.

We also recall how a function can be applied to Hermitian matrices. For a
M ×M Hermitian matrix A with spectral decomposition UΛU∗ where Λ =
diag(λm,m = 1, . . . ,M) and the (λm)m=1,...,M are the real eigenvalues of A,
then for any function f defined on R, we define f(A) as:

f(A) = U

f(λ1)
. . .

f(λM )

U∗

C+ is the upper half-plane of C, i.e. the set of all complex numbers z for
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which Im z > 0.

For µ a probability measure, its Stieltjes transform sµ is the function defined
on C \ Suppµ as

sµ(z) =

∫
dµ(λ)

λ− z
. (1.21)

We recall that

|sµ(z)| ≤ 1

Im z
(1.22)

for each z ∈ C+. Moreover, if µ is carried by R+, then for any a > 0, function
− 1
z(1+asµ(z)) is also the Stieljes transform of a probability distribution carried

by R+, a property which implies that∣∣∣∣ 1

1 + asµ(z)

∣∣∣∣ ≤ |z|Imz
(1.23)

for each z ∈ C+ (see [15], Proposition 5-1, item 4).

If λ1, . . . , λM denote the eigenvalues of an Hermitian matrix A and if µ :=
1
M

∑M
i=1 δλi denotes the empirical eigenvalue distribution of A, then we have

the following relation:

sµ(z) =
1

M
tr QA(z)

where QA(z) represents the resolvent of A defined by

QA(z) = (A− zIM )−1. (1.24)

We finally mention the following useful control for the norm QA. For each
z ∈ C+, we have

‖QA‖ ≤
1

Im z
. (1.25)

1.6. Overview of the paper

We first recall in Section 2 useful technical tools: in Paragraph 2.1, the concept
of stochastic domination adapted from [13] which allows to considerably simplify
the exposition of the following results, in Paragraph 2.2 some useful properties
of the extreme eigenvalues and of the resolvent of large Wishart matrices, two
well-known Gaussian concentration inequalities expressed using the stochastic
domination framework in Paragraphs 2.3 and 2.4, and the Helffer-Sjöstrand for-
mula in Paragraph 2.5. We establish in Section 3 the stochastic representations
(1.13) and (1.14) of C̃(ν) and Ĉ(ν). In Section 4, we prove for each ν the con-
centration of |ψN (f, ν)| defined by (1.11), and indicate how it is possible to
estimate the term rN (ν) in order to keep equal to uN the rate of convergence

of the statistics ψ̂N (f, ν) obtained by replacing rN (ν) by r̂N (ν) in (1.11). In
Section 5, we establish Lipschitz properties for the functions ν → ψN (f, ν) and
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ν → ψ̂N (f, ν) that allow to establish the concentration of supν |ψN (f, ν)| and

supν |ψ̂N (f, ν)|. We finally provide in Section 6 some numerical simulations that
support our results.

2. Useful technical tools

2.1. Stochastic domination

We now present the concept of stochastic domination introduced in [13]. A nice
introduction to this tool can also be found in the lecture notes [2].

Definition 2.1. Stochastic Domination. Let

X = (X(N)(u) : N ∈ N, u ∈ U (N)), Y = (Y (N)(u) : N ∈ N, u ∈ U (N))

be two families of nonnegative random variables, where U (N) is a set that may
possibly depend on N . We say that X is stochastically dominated by Y if for all
(small) ε > 0, there exists some γ > 0 (which of course depends on ε) such that:

P
[
X(N)(u) > N εY (N)(u)

]
≤ exp−Nγ

for each u ∈ U (N) and for each large enough N > N0(ε), where N0(ε) is inde-
pendent of u, or equivalently

sup
u∈U(N)

P
[
X(N)(u) > N εY (N)(u)

]
≤ exp−Nγ . (2.1)

for each large enough N > N0(ε). If X is stochastically dominated by Y we
use the notation X(N)(u) ≺ Y (N)(u). To simplify the notations, we will very
often denote X(N) ≺ Y (N) or X ≺ Y when the context will be clear enough.
Moreover, if for some complex valued family X we have |X| ≺ Y we also write
X = O≺(Y ).

Finally, we say that a family of events Ξ = Ξ(N)(u) holds with exponentially
high (small) probability if there exist N0 and γ > 0 such that for N ≥ N0,
P[ΞN (u)] > 1− exp−Nγ (P[ΞN (u)] < exp−Nγ) for each u ∈ U (N).

Remark 2.1. Suppose (XN )N∈N is a sequence of positive random variables,
satisfying XN ≺ aNN

ε for any ε > 0 for some positive real numbers sequence
(aN )N∈N. It turns out that this precisely means that XN ≺ aN . Indeed, consider
an arbitrary ε′ > 0. By the stochastic domination property of XN , one can take
ε such that 0 < ε < ε′ and write

P
[
XN > aN ×N ε′

]
≤ P

XN > aN ×N ε ×N ε′−ε︸ ︷︷ ︸
�1

 ≤ P [XN > aN ×N ε]

which goes to zero exponentially since XN ≺ aNN ε for the ε chosen. This argu-
ment will be used in the proof of Lemma 4.2.
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Lemma 2.1. Take four families of non negative random variables X1, X2, Y1

and Y2 defined as in Definition 2.1. Then the following holds:

X1 ≺ Y1 and X2 ≺ Y2 =⇒ X1 +X2 ≺ Y1 + Y2 and X1X2 ≺ Y1Y2.

We omit the proof of this lemma.

Remark 2.2. Note that Definition 2.1 is slightly different from the original one
[13] which states that the left hand side of (2.1) should be bounded by a quantity
of order N−D for any finite D > 0. In the present paper, all the random variables
are Gaussian, and exponential concentration rates can be achieved.

2.2. Properties of the eigenvalues and of the resolvent of large
Wishart matrices

In this paper we will at multiple occasion use properties of the eigenvalues of

matrices
XNX∗N
B+1 where XN is a M×(B+1) complex Gaussian matrix with i.i.d.

NC(0, 1) entries when M = M(N) and B = B(N) follow Assumption 1.3.

2.2.1. Concentration of the largest and the smallest eigenvalues

We first recall concentration results of the largest and smallest eigenvalue of
XNX∗N
B+1 due to [14]. We have for any ε > 0

P

[
λM

(
XNX∗N
B + 1

)
< (1−

√
c)2 − ε

]
≤ (B + 1) exp−C(B + 1)ε2 (2.2)

P

[
λ1

(
XNX∗N
B + 1

)
> (1 +

√
c)2 + ε

]
≤ (B + 1) exp−C(B + 1)ε2 (2.3)

for some nice constant C.
Consider for ε > 0, the ε–expansion of the support of the Marchenko-Pastur

distribution µ
(c)
MP :

Suppµ
(c)
MP + ε :=

[
(1−

√
c)2 − ε, (1 +

√
c)2 + ε

]
and the event:

ΛN,ε =

{
σ

(
XNX∗N
B + 1

)
⊂ Suppµ

(c)
MP + ε

}
. (2.4)

It is clear that using (2.2) and (2.3), ΛN,ε holds with exponentially high
probability for any ε > 0. This will be of high importance in the following since
it will enable us to work on events of exponentially high probability where the

norm of
XNX∗N
B+1 and the norm of its inverse are bounded.
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Eventually, the following (weaker) statement is a simple consequence of the
equations (2.2) and (2.3), which will sometimes be enough in the following:

λ1

(
XNX∗N
B + 1

)
+

1

λM

(
XNX∗N
B+1

) ≺ 1. (2.5)

We finally notice that if we consider a family XN (u) ∈ CM×(B+1) with i.i.d.
NC(0, 1) entries, u ∈ U (N), where U (N) is a certain set possibly depending on
N , then (2.2) and (2.3) hold for each u ∈ U (N) because the constant C in (2.2)
and (2.3) is universal. This implies that the stochastic domination (2.5) is still
verified by the family XN (u), u ∈ U (N). Moreover, the family of events ΛN,ε(u)
defined by (2.4) when XN is replaced by XN (u) still holds with exponentially
high probability.

2.2.2. Asymptotic behaviour of the resolvent of
XNX∗N
B+1

We next review known results related to the asymptotic behaviour of the resol-

vent QN (z) of matrix
XNX∗N
B+1 that can be deduced from standard Gaussian tools.

The Poincaré-Nash inequality (see e.g. [30, Proposition 2.1.6] in the Gaussian
real case and Eq. (18) in [16] in the complex Gaussian case) implies immediately
that the following Lemma holds.

Lemma 2.2. Consider deterministic M ×M and (B + 1) × (B + 1) matrices
A and Ã. Then, it holds that

Var
1

M
tr AQi

N (z) ≤ C(z)

M2

1

M
tr AA∗ (2.6)

Var
1

M
tr

(
XÃX∗

B + 1
Qi
N (z)

)
≤ C(z)

M2

1

B + 1
tr ÃÃ∗ (2.7)

for i = 1, 2

We recall that C(z) represents a generic notation for P1(z)P2( 1
Imz ) where P1

and P2 are nice polynomials.

The integration by parts formula states that if h(X,X∗) is a C1 function of
the entries of X and X∗ with polynomially bounded first derivatives, then, it
holds that

E(Xijh(X,X∗)) = E|Xij |2E

[
∂h

∂Xij

(X,X∗)

]
. (2.8)

(2.8), in conjunction with the Poincaré-Nash inequality, allows to evaluate easily
the asymptotic behaviour of the entries of E(QN (z)) (see e.g. [30]). We first
notice that properties of the distribution of matrix XN immediately imply that
E(QN (z)) is reduced to βN (z)IM where βN (z) coincides with E(Qm,m(z)) for
each m. Then, it holds that

βN (z) = tN (z) + εN (z) (2.9)
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where the error term εN (z) verifies |εN (z)| ≤ C(z)
M2 and where tN (z) is the

Stieltjes transform of the Marcenko-Pastur distribution µ
(cN )
MP . In other words,

tN (z) is the unique Stieltjes transform satisfying the equation

tN (z) =
1

−z + 1
1+cN tN (z)

. (2.10)

It is also convenient to define t̃N (z) by

t̃N (z) = − 1

z(1 + cN tN (z))
(2.11)

so that tN (z) is also given by

tN (z) = − 1

z(1 + t̃N (z))
. (2.12)

It is well-known that t̃N (z) is the Stieltjes transform of the probability

distribution cNµ
(cN )
MP + (1− cN )δ0.

We finally mention that E(Q′N (z)) = E(Q2
N (z)) = β′N (z)IM (where ′ stands

for the derivative w.r.t. z), and that ε′N (z) = β
′

N (z)− t′N (z) still satisfies

|ε′N (z)| ≤ C(z)

M2
. (2.13)

2.3. Concentration of functionals of Gaussian entries

It is well-known (see e.g. [34, Th. 2.1.12]) that for any 1-Lipschitz real val-
ued function f defined on RN and any N–dimensional random variable X ∼
N (0, IN ), there exists a universal constant C such that:

P [|f(X)− Ef(X)| > t] ≤ C exp−Ct2. (2.14)

This inequality is still valid when X ∼ NC(0, IN ): in this context, f(X) is re-
placed by a real-valued function f(X,X∗) depending on the entries of X and
X∗. f(X,X∗) can of course be written as f(X,X∗) = f̃(

√
2Re(X),

√
2Im(X))

for some function f̃ defined on R2N . As (
√

2Re(X),
√

2Im(X)) is N (0, I2N )
distributed, the concentration inequality is still valid for f(X,X∗) =
f̃(
√

2Re(X),
√

2Im(X)). We just finally mention that f , considered as a func-
tion of (X,X∗), and f̃ have Lipschitz constants that are of the same order of
magnitude. More precisely, if we define the differential operators ∂

∂z and ∂
∂z̄ by

∂

∂z
=

∂

∂x
− i ∂

∂y
,

∂

∂z̄
=

∂

∂x
+ i

∂

∂y

we can verify immediately that

N∑
i=1

(∣∣∣∣ ∂f∂Xi

∣∣∣∣2 +

∣∣∣∣ ∂f∂X∗i
∣∣∣∣2
)

= ‖ (∇f)(X,X∗) ‖
2 = 4‖

(
∇f̃
)

(
√

2Re(X),
√

2Im(X))
‖2.
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Within the stochastic domination framework, the concentration inequality
(2.14) implies that for a family XN (u) ∼ N (0, IN ) for u ∈ U (N):

|f(XN (u))− Ef(XN (u))| ≺ 1

The proof is immediate: consider ε > 0 and obtain that

P[|f(XN (u))− Ef(XN (u))| > N ε] ≤ C exp−CN2ε

for each u as expected. This result can easily be extended in the complex case,
ie. when XN (u) ∼ NC(0, IN ).

2.4. Hanson-Wright inequality

The Hanson-Wright inequality [32] is useful to control deviations of a quadratic
form from its expectation. While it is proved in the real case in [32], it can
easily be understood that it can be extended in the complex case as follows: let
X ∼ NC(0, IN ) and A ∈ CN×N . Then

P[|X∗AX− EX∗AX| > t] ≤ 2 exp−C min

(
t2

‖A‖2F
,

t

‖A‖

)
. (2.15)

We now write (2.15) in the stochastic domination framework. Consider a
family of independent NC(0, 1) random variables (Xn(u))n=1,...,N where u ∈
U (N) and a sequence of N × N matrices AN (u) that possibly depend on u.
Take ε > 0 and t = N ε‖AN (u)‖F . Since ‖AN (u)‖ > 0, ‖AN (u)‖F > 0, and
‖AN (u)‖ ≤ ‖AN (u)‖F :

min

(
t

‖AN (u)‖
,

t2

‖AN (u)‖2F

)
= min

(
N ε ‖AN (u)‖F
‖AN (u)‖

, N2ε ‖AN (u)‖2F
‖AN (u)‖2F

)
≥ min(N ε, N2ε) = N ε.

Denote XN (u) = (X1(u), . . . , XN (u))T . For any u ∈ U (N), it holds that:

P [|X∗N (u)AN (u)XN (u)− EX∗N (u)AN (u)XN (u)| > N ε‖AN (u)‖F ]

≤ 2 exp−CN ε. (2.16)

We can therefore rewrite (2.16) as the following stochastic domination:

|X∗N (u)AN (u)XN (u)− EX∗N (u)AN (u)XN (u)| ≺ ‖AN (u)‖F . (2.17)

2.5. Helffer-Sjöstrand formula

If µ is a probability measure, the Helffer-Sjöstrand formula can be seen as an
alternative to the Stieltjes inversion formula that allows to express

∫
fdµ in

terms of the Stieltjes transform sµ(z) of µ (see (1.21)) when f is a regular enough
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compactly supported function. In order to introduce this tool, we consider a
class Ck+1 compactly supported function f for a certain integer k, and denote
by Φk(f) : C→ C the function defined on C by

Φk(f)(x+ iy) =

k∑
l=0

(iy)l

l!
f (l)(x)ρ(y)

where ρ : R→ R+ is smooth, compactly supported, with value 1 in a neighbour-
hood of 0. Function Φk(f) coincides with f on the real line and extends it to
the complex plane. Let ∂̄ = ∂x + i∂y. It is well-known that

∂̄Φk(f)(x+ iy) =
(iy)k

k!
f (k+1)(x) (2.18)

(a proof of this result can be found in [9] or [18]) if y belongs to the neighbour-
hood of 0 in which ρ is equal to 1. The Helffer-Sjöstrand formula can be written
as ∫

f dµ =
1

π
Re

∫
C+

∂̄Φk(f)(z)sµ(z) dx dy. (2.19)

In order to understand why the integral at the right hand side of (2.19) is well
defined, we take, to fix the ideas, ρ ∈ C∞ such that ρ(y) = 1 for |y| ≤ 1 and
ρ(y) = 0 for |y| > 2, and denote by [a1, a2] an interval containing the support
of f . Then, it appears that the integral on C+ is in fact over the compact set
D = {x + iy : x ∈ [a1, a2], y ∈ [0, 2]}. Moreover, as |sµ(z)| ≤ 1

y if z ∈ D (see

(1.22)), (2.18) for k = 1 leads to the conclusion that

|∂̄Φk(f)(z)sµ(z)| ≤ C

for z ∈ {x + iy ∈ D, y ≤ 1}. Therefore, the right hand side of (2.19) is well
defined.

We finally mention that the Helffer-Sjöstrand formula remains still valid for
any compactly supported distribution D (see e.g. [26], section 9). The Stieltjes
transform of D, denoted by sD(z), is defined for each z ∈ C+ as the action of
function λ→ 1

λ−z on D, i.e. sD(z) =< D, 1
λ−z >, and verifies

|sD(z)| ≤ C
(

1 +
1

(Imz)n0

)
for each z ∈ C+ where n0 is related to the order of the distribution. We refer
the reader to [5] (Theorem 4.3) and the references therein for more details on
Stieltjes transforms of distributions. Then, if f is a C∞ function supported by
[a1, a2], < D, f > is given by

< D, f >=
1

π
Re

∫
D
∂̄Φk(f)(z)sD(z) dxdy (2.20)

for k ≥ n0. We also recall that an alternative expression for < D, f > is given
by the Stieltjes inversion formula, also valid for distributions, i.e.

< D, f >=
1

π
lim
y→0

∫ a2

a1

f(λ) ImsD(λ+ iy) dλ. (2.21)
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3. Stochastic representations of C̃(ν) and Ĉ(ν)

The first step is to show that C̃(ν) and Ĉ(ν) can be approximated by the sample
covariance matrix of a sequence of i.i.d. Gaussian random vectors, and to control
the order of magnitude of the corresponding errors. This is the objective of the
following result.

Theorem 3.1. Under Assumptions 1.1, 1.2, 1.3 and 1.4, for any ν ∈ [0, 1], it
exists a M × (B+1) random matrix XN (ν) with NC(0, 1) i.i.d. entries, and two
matrices (∆̃N (ν),∆N (ν)) such that:

C̃N (ν) =
XN (ν)X∗N (ν)

B + 1
+ ∆̃N (ν), ‖∆̃N (ν)‖ ≺ B

N
(3.1)

ĈN (ν) =
XN (ν)X∗N (ν)

B + 1
+ ∆N (ν), ‖∆N (ν)‖ ≺ 1√

B
+
B

N
. (3.2)

Remark 3.1. Therefore, up to small additive perturbations, C̃N (ν) and ĈN (ν)
appear as empirical covariance matrices of i.i.d. NC(0, IM ) random vectors. We

thus expect that C̃N (ν) and ĈN (ν) will satisfy a number of useful properties of
empirical covariance matrices of i.i.d. NC(0, IM ) random vectors.

In particular, Theorem 3.1 allows to precise the location of the eigenvalues
of C̃N (ν) and ĈN (ν). In order to formulate the corresponding result, we define

some notations. We introduce the events ΛC̃
N,ε(ν) and ΛĈ

N,ε(ν) defined by

ΛC̃
N,ε(ν) = {σ(C̃N (ν)) ⊂ Suppµ

(c)
MP + ε} (3.3)

ΛĈ
N,ε(ν) = {σ(ĈN (ν)) ⊂ Suppµ

(c)
MP + ε}. (3.4)

Then, we establish in the following the Corollary:

Corollary 3.1. For each ε > 0, the family of events ΛC̃
N,ε(ν), N ≥ 1, ν ∈ [0, 1]

and ΛĈ
N,ε(ν), N ≥ 1, ν ∈ [0, 1] hold with exponential high probability.

Remark 3.2. In the following, we will often omit to mention that
the various matrices under consideration depend on N and ν. Ma-
trices ĈN (ν), C̃N (ν),XN (ν),∆N (ν), . . . will therefore be denoted by

Ĉ(ν), C̃(ν),X(ν),∆(ν), . . . or Ĉ, C̃,X,∆, . . .. We will also denote ΛC̃
N,ε(ν) and

ΛĈ
N,ε(ν) by ΛC̃

ε (ν) or ΛC̃
ε and ΛĈ

ε (ν) or ΛĈ
ε .

The proof of Theorem 3.1 will proceed in three steps: first we provide the
result for matrix C̃(ν), then control the deviations between diag(S(ν))−

1
2 and

diag(Ŝ(ν))−
1
2 , and eventually extend the stochastic representation of C̃(ν) to

Ĉ(ν).

3.1. Step 1: Stochastic representation of C̃

In order to establish (3.1), we prove the following Proposition.
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Proposition 3.1. Under Assumptions 1.1, 1.2, 1.3 and 1.4, for any ν ∈ [0, 1],
there exist a M × (B + 1) random matrix XN (ν) with NC(0, 1) i.i.d. entries,
and another matrix ΓN (ν) such that:

C̃N (ν) =
(XN (ν) + ΓN (ν))(XN (ν) + ΓN (ν))∗

B + 1
(3.5)

where the family of random variables ‖ΓN (ν)‖2
B+1 , ν ∈ [0, 1] verifies

‖ΓN (ν)‖2

B + 1
≺ B2

N2
. (3.6)

Proof. Denote by Σ the M × (B + 1) random matrix defined by

Σ =

(
ξy(ν − B

2N
), . . . , ξy(ν +

B

2N
)

)
(3.7)

where we recall that the normalized Fourier transform ξy is defined in (1.2),

so that Ŝ defined in (1.1) is equal to ΣΣ∗/(B + 1). Denote by ωm the m–th
row of Σ. In other words, ωm coincides with the (B+ 1)–dimensional Gaussian
complex row vector defined by:

ωm =

(
ξym(ν − B

2N
), . . . , ξym(ν +

B

2N
)

)
.

The covariance matrix E[ω∗mωm] of ω is given by:

E[ω∗mωm] = E

[{
ξym(ν +

b1
N

)∗ξym(ν +
b2
N

)

}B/2
b1,b2=−B/2

]

By Lemma A.1 in Appendix, we have for b and b1 6= b2:

E

[∣∣∣∣ξym (ν +
b

N

)∣∣∣∣2
]

= sm

(
ν +

b

N

)
+O

(
1

N

)
E

[
ξym(ν +

b1
N

)∗ξym(ν +
b2
N

)

]
= O

(
1

N

)
where the error is uniform over m ≥ 1 and ν ∈ [0, 1]. Therefore one can write
that there exists some Hermitian matrix Υm(ν) and some nice constant C such
that:

E[ω∗mωm] = diag

(
sm

(
ν +

b

N

)
: b = −B/2, . . . , B/2

)
+ Υm

where Υm satisfies

sup
m≥1,b1,b2

∣∣∣(Υm)b1,b2

∣∣∣ ≤ C

N
.
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Moreover, the regularity of the applications ν 7→ sm(ν) specified in Assump-
tion 1.4 implies that there exists quantities εm such that:

sm(ν +
b

N
) = sm(ν) + s′m(ν)

b

N
+

1

2
s′′m(ν) (

b

N
)2 + εm(ν +

b

N
)

where:

sup
m≥1

sup
−B/2≤b≤B/2

|εm(ν +
b

N
)| ≤ C

(
B

N

)3

for some nice constant C. Therefore, it holds that

diag

(
sm(ν +

b

N
) : b = −B/2, . . . , B/2

)
= sm(ν)IB+1 + s′m(ν) diag

(
b

N
: b = −B/2, . . . , B/2

)
+

1

2
s′′m(ν) diag

(
(
b

N
)2 : b = −B/2, . . . , B/2

)
+

diag

(
εm(ν +

b

N
) : b = −B/2, . . . , B/2

)
.

If we define matrix Φm as:

Φm =
1

sm

[
Υm + diag

(
sm(ν +

b

N
)− sm(ν) : b = −B/2, . . . , B/2

)]
then E[ω∗mωm] = sm (IB+1 + Φm) with

sup
m≥1,b1 6=b2

|(Φm)b1,b2 | ≤
C

N
, sup

m≥1,b
|(Φm)b,b| ≤

CB

N
(3.8)

as well as
1

B + 1
tr Φm =

1

2

s′′m(ν)

sm(ν)
vN +O

((
B

N

)3

+
1

N

)
(3.9)

where we recall that vN is defined by (1.5). The spectral norm of Φm can be
roughly bounded by the following inequality:

sup
m≥1
‖Φm‖ ≤ sup

m≥1
sup

−B/2≤b1≤B/2

B/2∑
b2=−B/2

|(Φm)b1,b2 | ≤ C
B

N
.

Moreover, it is easily checked that the Frobenius norm of Φm

B+1 verifies∥∥∥∥ Φm

B + 1

∥∥∥∥
F

≤ C
√
B

N
= O(uN ). (3.10)

Using the Gaussianity of vector ωm and the expression (3.8), we obtain that
ωm can be represented as

ωm =
√
sm xm (I + Φm)

1/2
, xm ∼ NC(0, IB+1) (3.11)
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where xm1 and xm2 are independent for m1 6= m2. This comes from the mutual

independence of the time series ((ym,n)n∈Z)m=1,...,M . It is clear that (I + Φm)
1/2

can be written as
(I + Φm)

1/2
= I + Ψm (3.12)

where matrix Ψm verifies

sup
m
‖Ψm‖ ≤ C

B

N
(3.13)

Therefore, it holds that:

ωm =
√
smxm (I + Ψm) =

√
sm (xm + xmΨm)

We denote by X and Γ the M × (B+ 1) matrices with rows (xm)m=1,...,M , and
(xmΨm)m=1,...,M respectively. Then, it holds that

Σ = diag (
√
sm,m = 1, . . . ,M) (X + Γ) (3.14)

where we recall that Σ is defined by (3.7). We recall the definition of matrix C̃
given by

C̃ = diag(
√
sm,m = 1, . . . ,M)−1/2 Ŝ diag(

√
sm,m = 1, . . . ,M)−1/2 (3.15)

= diag(
√
sm,m = 1, . . . ,M)−1/2 ΣΣ∗

B + 1
diag(

√
sm,m = 1, . . . ,M)−1/2.

The representation (3.14) implies that C̃ can also be written as

C̃ =
(X + Γ)(X + Γ)∗

B + 1
.

Equivalently, for each m1,m2, the entry (C̃)m1,m2 is given by

(C̃)m1,m2
=

1

B + 1
xm1

(I + Φm1
)1/2(I + Φm2

)1/2x∗m2
. (3.16)

This completes the proof of (3.5). It remains to show (3.6). We denote by Z
the M ×M matrix Z = 1

B+1ΓΓ∗. As ‖Z‖ verifies

‖Z‖ ≤ ‖Z− EZ‖+ ‖EZ‖

it is enough to prove the two following facts:

‖EZ‖ ≤ C B2

N2
(3.17)

‖Z− EZ‖ ≺ B2

N2
. (3.18)

We start with (3.17). The definition of Γ leads to

E[Zi,j ] =
1

B + 1
E[ΓΓ∗]i,j =

1

B + 1
E[xiΨiΨ

∗
jx
∗
j ] = δij

1

B + 1
tr ΨiΨ

∗
j
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so that it is clear that E[Z] is the diagonal matrix with diagonal entries
( 1
B+1 tr ΨmΨ∗m)m=1,...,M . By the estimation in equation (3.13), we easily have

(3.17).
It remains to prove (3.18). We use the observation that ‖Z − E[Z]‖ =

max‖h‖=1 |h∗(Z− E[Z])h|, and use a classical ε–net argument that allows to de-
duce the behaviour of ‖Z−E[Z]‖ from the behaviour of any recentered quadratic
form g∗Zg−Eg∗Zg where g ∈ CM is a deterministic unit norm vector. We thus
first concentrate g∗Zg−Eg∗Zg using the Hanson-Wright inequality (2.17). For
this, we need to express g∗Zg as a quadratic form of a certain complex Gaussian
random vector with i.i.d. entries. We denote by z the M–dimensional random

vector z = Γ∗(ν)g√
B+1

. Its covariance matrix G = G(ν) is equal to

G(ν) = E[zz∗] =
1

B + 1

M∑
m=1

|gm|2(Ψm(ν))∗Ψm(ν).

Therefore, z can be written z = G1/2w for some w ∼ NC(0, IM ) random vector.
As a consequence, the quadratic form g∗Zg − Eg∗Zg can be written as

g∗Zg − Eg∗Zg = w∗Gw − Ew∗Gw.

The Hanson-Wright inequality (2.17) can now be applied:

|w∗Gw − Ew∗Gw| ≺ ‖G‖F . (3.19)

Since
∑M
m=1 |gm|2 = 1, it is clear that ‖G‖ ≤ 1

B+1 supm=1,...,M ‖Ψm(ν)‖2.

Therefore, (3.13) and the rough evaluation ‖G‖2F ≤ (B + 1)‖G‖2 leads to

‖G‖ ≤ C 1

B + 1

(
B

N

)2

, ‖G‖2F ≤ C
1

B + 1

(
B

N

)4

(3.20)

The substitution of (3.20) in equation (3.19) gives the following control of
g∗Zg − Eg∗Zg:

|g∗Zg − Eg∗Zg| ≺ 1√
B

(
B

N

)2

(3.21)

Consider ε > 0, and an ε–net Nε of CM , that is a set of CM unit norm vectors
{hk : k = 1, . . . ,K} such that for each unit norm vector u ∈ CM , it exists a
vector h ∈ Nε for which ‖u − h‖ ≤ ε. It is well known that the cardinal of Nε

is bounded by C0

(
1
ε

)2M
where C0 is a universal constant. Then, denote gs a

(random) unit norm vector such that |g∗sZgs−Eg∗sZgs| = ‖Z−EZ‖, and define
hs ∈ Nε as the closest vector from gs. Therefore, we have

‖Z− EZ‖ = |g∗s(Z− EZ)gs|
= |(g∗s − h∗s + h∗s)(Z− EZ)(gs − hs + hs)|
≤ |(g∗s − h∗s)(Z− EZ)(gs − hs)|+ |(g∗s − h∗s)(Z− EZ)hs|

+ |h∗s(Z− EZ)(gs − hs)|+ |h∗s(Z− EZ)hs|.
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It is clear that:

|(g∗s − h∗s)(Z− EZ)(gs − hs)| ≤ ε2‖Z− EZ‖
|(g∗s − h∗s)(Z− EZ)hs| ≤ ε‖Z− EZ‖

and
‖Z− EZ‖ ≤ |h∗s(Z− EZ)hs|+ ε2‖Z− EZ‖+ 2ε‖Z− EZ‖

which leads to

(1− 2ε− ε2)‖Z− EZ‖ ≤ |h∗s(Z− EZ)hs|.

This implies that for each t > 0,

{‖Z− EZ‖ > t} ⊂ ∪h∈Nε{|h∗(Z− EZ)h| > C1t}

where C1 = (1− 2ε− ε2). Using the union bound, we obtain that

P [‖Z− EZ‖ > t] ≤
∑
h∈Nε

P [|h∗(Z− EZ)h| > C1t] . (3.22)

Here, we would like to use equation (3.21) to conclude. By the definition of ≺,
(3.21) is valid uniformly on any set of vector with cardinality polynomial in N .
Here, the cardinal of the set Nε is a O(ε−2M ) term and therefore exponential
in M . As a consequence, we have to accept to lose some speed when going from
the stochastic domination of |g∗(Z− EZ)g| for a fixed g to the same stochastic
domination but uniformly over Nε.

More precisely, write again (3.21) but here without the notation ≺ in order
to understand precisely how a change in speed affects the probability. Take tN a
sequence of positive number such that tN ≥ B2/N2. Using the estimates (3.20)
of ‖G‖ and ‖G‖2F , and the fact that min(a1, a2) > min(b1, b2) when a1 > b1
and a2 > b2, we obtain that there exist some nice constant C > 0 such that:

min

(
tN
‖G‖

,
t2N
‖G‖2F

)
≥ C Bmin

tN (N
B

)2

,

(
tN

(
N

B

)2
)2


= C B tN

(
N

B

)2

.

The Hanson-Wright inequality (2.15) provides:

P [|g∗ [Z− EZ)] g| > C1tN ] ≤ 2 exp

{
−CB tN

(B/N)2

}
for some nice constant C that depends on C1. Eventually, the union bound on
Nε gives:

P [‖Z− E(Z)‖ > tN ] ≤
∑
h∈Nε

P [|h∗(Z− EZ)h| > C1tN ]

≤ 2C0 exp

{
−CB tN

(B/N)2
+ 2M log

1

ε

}
. (3.23)
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If we take tN = N ε′(B2/N2), then, it exists γ > 0 such that

exp

{
−CB tN

(B/N)2
+ 2CM log

1

ε

}
≤ exp−Nγ

holds for each N large enough. (3.22) thus implies (3.18). This completes the
proof of (3.5).

Corollary 3.2 is a rewriting of Proposition 3.1 in a more concise way. Define:

∆̃ =
XΓ∗ + ΓX∗ + ΓΓ∗

B + 1
. (3.24)

Corollary 3.2. For any ν ∈ [0, 1], C̃(ν) can be written as

C̃(ν) =
X(ν)X∗(ν)

B + 1
+ ∆̃(ν) (3.25)

where the family of random variable ‖∆̃(ν)‖, ν ∈ [0, 1] verifies

‖∆̃‖ ≺ B

N
. (3.26)

Proof. Let ν ∈ [0, 1]. By equation (3.6) from Theorem 3.1 and equation (2.5)
from Paragraph 2.2, we have the two following estimates:

‖Γ‖√
B + 1

≺ B

N
,

‖X‖√
B + 1

≺ 1

The result is immediate using decomposition ∆̃ from (3.24):

We now take benefit of Corollary 3.2 to establish the first part of Corollary
3.1 and to analyse the location of the eigenvalues of matrices Ŝ. We denote by D
and D̂ the matrices D = D(ν) := diag(S(ν))

1
2 and D̂ = D̂(ν) := diag(Ŝ(ν))

1
2 .

Denote by s̄ and s the quantities such that:

s := inf
m≥1

inf
ν∈[0,1]

sm(ν), s̄ := sup
m≥1

sup
ν∈[0,1]

sm(ν)

which are by Assumption 1.4 in (0,+∞). We consider the event:

ΛŜ
ε (ν) =

{
σ(Ŝ(ν)) ⊂ Suppµ

(c)
MP × [s, s̄] + ε

}
(3.27)

where the notation Suppµ
(c)
MP × [s, s̄] stands for [(1−

√
c)2s, (1 +

√
c)2s̄]. Note

that in our settings, c ∈ (0, 1) so Suppµ
(c)
MP is bounded and away from zero. In

conjunction with Assumption 1.4, the same holds for Suppµ
(c)
MP × [s, s̄]. We also

note that ΛŜ
ε (ν) of course depends on N .

Corollary 3.3. For any ε > 0, the families of events ΛC̃
ε (ν), ν ∈ [0, 1] and

ΛŜ
ε (ν), ν ∈ [0, 1] hold with exponentially high probability.
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Proof. Equation (3.25) implies that

XX∗

B + 1
− ‖∆̃‖IM ≤ C̃ ≤ XX∗

B + 1
+ ‖∆̃‖IM .

Therefore, the event {λ1(C̃) > (1 +
√
c)2 + ε} is included in {λ1(XX∗

B+1 ) + ‖∆̃‖ >
(1 +

√
c)2 + ε}, which is itself included into{

λ1(
XX∗

B + 1
) > (1 +

√
c)2 + ε/2

}
∪
{
‖∆̃‖ > ε/2

}
.

Therefore,

P
[
λ1(C̃) > (1 +

√
c)2 + ε

]
≤ P

[
λ1(

XX∗

B + 1
) > (1 +

√
c)2 + ε/2

]
+ P

[
‖∆̃‖ > ε/2

]
.

Equations (2.3) and (3.26) imply that P
[
λ1(C̃) > (1 +

√
c)2 + ε

]
converges to-

wards 0 exponentially. A similar evaluation of P
[
λM (C̃) < (1−

√
c)2 − ε

]
leads

to the same conclusion. This, in turn, establishes that ΛC̃
ε (ν), ν ∈ [0, 1] holds

with exponential high probability.

In order to establish that the same property holds for ΛŜ
ε (ν), ν ∈ [0, 1], we

just need to write (1.12) as Ŝ = D1/2C̃D1/2. Therefore, for each k = 1, . . . ,M ,

the eigenvalues of Ŝ verify

s λM (C̃) ≤ λk(Ŝ) ≤ s̄ λ1(C̃).

This, of course, implies that ΛŜ
ε (ν), ν ∈ [0, 1] holds with exponential high prob-

ability (indeed, one can change ε to ε̃ such that (Suppµ
(c)
MP + ε̃) × [s, s̄] ⊂

Suppµ
(c)
MP × [s, s̄] + ε.

Remark 3.3. Corollary 3.3 implies the following weaker property, which will
be useful:

‖Ŝ(ν)‖ ≺ 1. (3.28)

Before ending the section and proving Theorem 3.1, we need some stochastic
control on the diagonal elements of Ŝ in order to evaluate Θ defined by

Θ := Ĉ− C̃. (3.29)

Using the definition of Ĉ from (1.3) and C̃ from (1.12), Θ can be written as

Θ = (D̂−1/2 −D−1/2)ŜD̂−1/2 + D−1/2Ŝ(D̂−1/2 −D−1/2). (3.30)
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Since we proved that ‖Ŝ‖ ≺ 1, it remains to show that ‖D̂−1/2‖ and ‖D̂−1/2 −
D−1/2‖ can also be stochastically dominated by some relevant quantity in order
to control ‖Θ‖. Define

ŝm(ν) := Ŝm,m(ν) (3.31)

the diagonal elements of Ŝ(ν) spectral density estimator (note that they coincide
with the traditional smoothed periodogram estimator of the spectral density
sm). The aim of the following Paragraph 3.2 is to establish stochastic domination

results for ŝm, ‖D̂−1/2‖ and ‖D̂−1/2 −D−1/2‖.

3.2. Step 2: Estimates for ŝm(ν)

We write sm(ν) := sm, D(ν) := D, in order to simplify the notations. Define as
in (3.27) the following quantity

ΛD̂
ε (ν) = {σ(D̂(ν)) ⊂ [s, s̄] + ε}. (3.32)

Lemma 3.1. Let ε > 0. The family of events ΛD̂
ε (ν), ν ∈ [0, 1] holds with

exponentially high probability.

Proof. See Appendix A.2.

Roughly speaking, this ensures that with exponentially high probability, ŝm
stays bounded and away from zero. This result implies the following (weaker)
statement, but will still be enough for some proofs and reduces the complexity
of the arguments.

Lemma 3.2. The family of random variables (|ŝm(ν)|+ 1
|ŝm(ν)| )m=1,...,M , ν ∈

[0, 1], verifies (
|ŝm|+

1

|ŝm|

)
≺ 1.

Proof. Immediate from Lemma 3.1.

Lemma 3.3. The set of random variable (|ŝm(ν)−1/2 − sm(ν)−1/2|)m=1,...,M

and (|
√

sm(ν)
ŝm(ν) − 1|)m=1,...,M , ν ∈ [0, 1], verifies

|ŝ−1/2
m − s−1/2

m | ≺ 1√
B

+
B2

N2
,

∣∣∣∣√sm
ŝm
− 1

∣∣∣∣ ≺ 1√
B

+
B2

N2
. (3.33)

Proof. See Appendix A.3

3.3. Step 3: Stochastic representation of Ĉ

We are now in position to prove the result concerning Ĉ of Theorem 3.1 and of
Corollary 3.1.
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Proof. We have first to control the operator norm of:

∆ = Ĉ− XX∗

B + 1
= Ĉ− C̃ + C̃− XX∗

B + 1
= Θ + ∆̃. (3.34)

The operator norm of ‖∆̃‖ has already been proved in Corollary 3.2 to satisfy

‖∆̃‖ ≺ (BN ). Moreover, recall that Θ can be written as a function of D̂−1/2 −
D−1/2 in (3.30), so that one can use Lemma 3.2 and Lemma 3.3 to dominate
each term and get:

‖Θ‖ ≺ 1√
B

+
B2

N2
. (3.35)

Summing the estimate of Θ and the one of ∆̃, one get:

‖∆‖ ≺ 1√
B

+
B

N

which is the desired result.

As a consequence, we state here Corollary 3.4 about the localization of the
eigenvalues of Ĉ(ν).

Corollary 3.4. For each ε > 0, we define ΛĈ
ε (ν) as the event

ΛĈ
ε (ν) =

{
σ(Ĉ(ν)) ⊂ Suppµ

(c)
MP + ε

}
. (3.36)

Then, the family of events ΛĈ
ε (ν), ν ∈ [0, 1] holds with exponentially high prob-

ability.

Proof. We simply write:

XX∗

B + 1
− ‖∆‖IM ≤ Ĉ ≤ XX∗

B + 1
+ ‖∆‖IM

and use the same arguments as in the proof of Corollary 3.3.

4. Stochastic domination of the family ψN(f, ν), N ≥ 1, ν ∈ [0, 1]

We have first to define the distribution DN introduced in the definition (1.11)
of ψN (f, ν). For this, we consider the function pN (z) defined by

pN (z) = − cN (z tN (z) t̃N (z))3

1− c(z tN (z) t̃N (z))2
(4.1)

where we recall that tN and t̃N are defined by (2.10) and (2.11). Then (see
Lemma 9.2 in [26]), pN is the Stieltjes transform of a distribution whose sup-

port is contained into the support Suppµ
(cN )
MP = [(1 −

√
cN )2, (1 +

√
cN )2] of

the Marcenko-Pastur distribution µ
(cN )
MP . This distribution is DN introduced in

(1.11). In the following, we consider LSS for function f satisfying the following
assumptions.
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Assumption 4.1. f is defined on R+ and there exist some ε > 0 such that its

restriction on Supp
(c)
MP +ε is C∞.

We now state the main result of this section.

Theorem 4.1. Let f be an application satisfying the conditions of Assumption
4.1. Then, under Assumptions 1.1, 1.2, 1.3 and 1.4, the family |ψN (f, ν)|, N ≥
1, ν ∈ [0, 1] verifies

|ψN (f, ν)| ≺ uN . (4.2)

Before starting the proof of Theorem 4.1, we first mention that it is suffi-
cient to establish (4.2) when f is compactly supported by a neighbourhood of

Suppµ
(c)
MP . To justify this claim, we consider κ > 0 and define χ : R → R as a

C∞ function such that:

χ(λ) =

{
1 if λ ∈ Suppµ

(c)
MP + κ

0 if λ /∈ Suppµ
(c)
MP + 2κ.

(4.3)

We consider function f̄ given by f̄ = f×χ. Then, as cN → c, for N large enough,

Suppµ
(cN )
MP is contained in Suppµ

(c)
MP + κ. Therefore, f = f̄ on Suppµ

(cN )
MP for

N large enough, and it holds that < DN , f >=< DN , f̄ > and
∫
fdµ

(cN )
MP =∫

f̄dµ
(cN )
MP . For each ε > 0, we express P(|ψN (f, ν)| > N εuN ) as

P(|ψN (f,ν)| > N εuN )

= P(|ψN (f, ν)| > N εuN ,Λ
Ĉ
κ (ν)) + P(|ψN (f, ν)| > N εuN , (Λ

Ĉ
κ (ν))c)

≤ P(|ψN (f, ν)| > N εuN ,Λ
Ĉ
κ (ν)) + P

(
(ΛĈ

κ (ν))c
)

≤ P(|ψN (f̄ , ν)| > N εuN ) + P
(

(ΛĈ
κ (ν))c

)
where the last inequality follows from the observation that 1

M tr f(Ĉ) =
1
M tr f̄(Ĉ) on ΛĈ

κ (ν). Moreover, the family of events ΛĈ
κ (ν) holds with expo-

nential high probability, which implies that P
(

(ΛĈ
κ (ν))c

)
converges towards 0

exponentially. Therefore, |ψN (f̄ , ν)| ≺ uN implies (4.2) as expected. From now

on, we thus assume that function f is supported by Suppµ
(c)
MP + 2κ

In order to establish (4.2), we evaluate the four terms of the righhandside of
(1.15).

4.1. Step 1: Evaluation of E
[

1
M

Tr
(
f(

XN (ν)X∗
N (ν)

B+1
)
)]
−
∫

R+ f dµ
(cN )
MP

We evaluate this term using the Helffer-Sjöstrand formula. We keep the nota-
tions of paragraphs 2.5 and 2.2: we assume that the support of f is included
into [a1, a2] with a1 = (1 −

√
cN )2 − 2κ and a2 = (1 +

√
cN )2 + 2κ. More-

over, the resolvent of matrix
XNX∗N
B+1 is denoted QN (z) (we omit to mention
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that the matrices depend on ν), and βN (z) represents E((QN (z))mm) for each
m. We also denote by εN (z) the error term defined by (2.9) which satisfies
|εN (z)| ≤ 1

M2P1(|z|)P2( 1
Imz ) on C+ for some nice polynomials P1 and P2. Then,

for k ≥ deg(P2), it holds that

E

[
1

M
Tr

(
f(

X(ν)X∗(ν)

B + 1
)

)]
−
∫

R+

f dµ
(cN )
MP

=
1

π
Re

∫
D
∂̄Φk(f)(z)(βN (z)− tN (z)) dxdy

where D is defined as in paragraph 2.5.
∫
D

∣∣∂̄Φk(f)(z)
∣∣P1(|z|)P2( 1

Imz ) dxdy is
finite, and by (2.9), the following bound holds:∣∣∣∣E [ 1

M
Tr

(
f(

X(ν)X∗(ν)

B + 1
)

)]
−
∫

R+

f dµ
(cN )
MP

∣∣∣∣ ≤
1

M2

∫
D

∣∣∂̄Φk(f)(z)
∣∣P1(|z|)P2(

1

Imz
) dx dy ≤ C

B2

for some nice constant C. We have therefore established the following result.

Lemma 4.1. It exists a nice constant C such that, for each ν,∣∣∣∣E [ 1

M
Tr

(
f(

X(ν)X∗(ν)

B + 1
)

)]
−
∫

R+

f dµ
(cN )
MP

∣∣∣∣ ≤ C

B2
. (4.4)

4.2. Step 2: Evaluation of 1
M

Tr
(
f(C̃(ν))

)
− E

[
1
M

Tr
(
f(C̃(ν))

)]
In order to evaluate the above term, we use the Gaussian concentration in-
equality introduced in Paragraph 2.3. We recall that C̃ can be interpreted as a

function of (X,X∗) (see (3.16))). Therefore, 1
MTr

(
f(C̃(ν))

)
can be written as

g(X,X∗) for some real valued function g. We establish in the following that g
is O( 1

B )–Lipschitz, which in turn, will imply that∣∣∣∣ 1

M
Tr
(
f(C̃(ν))

)
− E

[
1

M
Tr
(
f(C̃(ν))

)]∣∣∣∣ ≺ 1

B
. (4.5)

For this, we evaluate

‖∇g(X,X∗)‖2 =
∑
i,j

∣∣∣∣ ∂g

∂Xi,j

∣∣∣∣2 +

∣∣∣∣ ∂g

∂Xi,j

∣∣∣∣2 = 2
∑
i,j

∣∣∣∣ ∂g

∂Xi,j

∣∣∣∣2 . (4.6)

Using classic identities for the derivation of Hermitian matrices, we obtain
that

1

M

∂ tr f(C̃)

∂Xij
=

1

M
tr

(
f ′(C̃)

∂C̃

∂Xij

)
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Straightforward calculations lead to

∑
i,j

∣∣∣∣ ∂g

∂Xi,j

∣∣∣∣2 =
1

M2(B + 1)2

M∑
i=1

(
f ′(C̃)(X + Γ)(I + Φi)(X + Γ)∗f ′(C̃)

)
ii
.

Using supi ‖I + Φi‖ ≤ C for some nice constant C as well as C̃ = 1
B+1 (X +

Γ)(X + Γ)∗, we obtain immediately that

∑
i,j

∣∣∣∣ ∂g

∂Xi,j

∣∣∣∣2 ≤ C

B2

1

M
tr
(
f ′2(C̃)C̃

)
.

As f ∈ C∞ and is compactly supported, the function λ→ λ f ′2(λ) is bounded
by some constant, and there exists a nice constant C such that

‖∇g(X,X∗)‖2 ≤ C

B2
.

This proves that g is O( 1
B )–Lipschitz. Paragraph 2.3 thus leads to (4.5).

4.3. Step 3: Evaluation of 1
M

Tr
(
f(Ĉ(ν))

)
− 1

M
Tr
(
f(C̃(ν))

)
The goal of this paragraph is to establish the following Proposition.

Proposition 4.1. Let D̃N the distribution supported by Supp(µ
(cN )
MP ) with Stielt-

jes transform

p̃N (z) = (z tN (z))′ =
(z tN (z) t̃N (z))2

1− c(z tN (z) t̃N (z))2
. (4.7)

Then, if we denote < D̃N , f > by φ̃N (f), we have∣∣∣∣ 1

M
Tr
(
f(Ĉ(ν))

)
− 1

M
Tr
(
f(C̃(ν))

)
−

(
1

2M

M∑
m=1

s′′m(ν)

sm(ν)

)
φ̃N (f) vN 1α>2/3

∣∣∣∣∣ ≺ uN . (4.8)

Remark 4.1. (4.8) implies that
∣∣∣ 1
MTr

(
f(Ĉ(ν))

)
− 1

MTr
(
f(C̃(ν))

)∣∣∣ ≺ 1
B if

α ≤ 2/3. If α > 2/3, the dominant term of 1
MTr

(
f(Ĉ(ν))

)
− 1

MTr
(
f(C̃(ν))

)
is the deterministic O

(
B
N

)2
term

(
1
M

∑M
m=1

s′′m(ν)
sm(ν)

)
φ̃N (f) vN , and its substrac-

tion from 1
MTr

(
f(Ĉ(ν))

)
− 1

MTr
(
f(C̃(ν))

)
allows to retrieve a term stochas-

tically dominated by uN .
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Remark 4.2. We notice that (3.35) leads immediately to∣∣∣∣ 1

M
tr f(Ĉ)(ν)− 1

M
tr f(C̃)(ν)

∣∣∣∣ ≺ B

N
+

1√
B

(4.9)

an evaluation which is considerably more pessimistic that (4.8). As seen below,
the derivation of (4.8) is rather demanding, and is based on subtle effects. In
order to understand why (4.9) can be improved, we consider the simple case
f(λ) = log λ. We thus have

1

M
tr f(Ĉ)(ν)− 1

M
tr f(C̃)(ν) =

1

M

M∑
m=1

(log sm(ν)− log ŝm(ν))

which depends only on the estimators (ŝm(ν))m=1,...,M . We just provide a brief
analysis of the above term. For this, we first remark that is possible to study
1
M

∑M
m=1 (log sm(ν)− log ŝm(ν)) on the event ΛD̂

ε (ν) defined by (3.32). For each
m, we expand around sm the logarithm up to the second order, and obtain that

1

M

M∑
m=1

(log sm(ν)− log ŝm(ν))

= − 1

M

M∑
m=1

(ŝm − sm)
1

sm
+

1

M

M∑
m=1

1

2

(
ŝm − sm
θm

)2

(4.10)

where for each m, θm is located between sm and ŝm. Lemma A.5 allows to
conclude that the second term of the right hand side of (4.10) is dominated by
1
B +

(
B
N

)4
= O(uN ) term. In order to evaluate the first term of the r.h.s. of

(4.10), we remark that (A.9) leads to

1

M

M∑
m=1

(E(ŝm − sm))
1

sm
=

1

2M

M∑
m=1

s′′m
sm

vN +O

((
B

N

)3

+
1

N

)
.

As ŝm
sm

=
xm(I+Φm)x∗m

B+1 we finally remark that

1

M

M∑
m=1

ŝm − E(ŝm)

sm

can be interpreted as a recentered quadratic form of the M(B + 1)–dimensional
vector x = (xT1 , . . . ,x

T
M )T . The stochastic domination relation∣∣∣∣∣ 1

M

M∑
m=1

ŝm − E(ŝm)

sm

∣∣∣∣∣ ≺ 1

B

then follows from the Hanson-Wright inequality. Putting all the pieces together,

and using that 1
B +O

((
B
N

)3
+ 1

N

)
= O(uN ) and that vN = o(uN ) if α < 2/3,
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we obtain that∣∣∣∣∣ 1

M

M∑
m=1

(log sm(ν)− log ŝm(ν)) +
1

2M

M∑
m=1

s′′m(ν)

sm(ν)
vN 1α>2/3

∣∣∣∣∣ ≺ uN .
Comparing this result with (4.8), we deduce that < D̃N , f >= −1. We just check
this formula directly. For this, we notice that function z → log z is holomorphic
inside a neighbourhood of the interval [a1, a2]. We consider the expression (2.21)
of < D̃N , f > and remark that if (∂Rε)− denotes the negatively oriented contour

(∂Rε)− = {λ± iε, λ ∈ [a1, a2]} ∪ {a1 + iy, y ∈ [−ε, ε]} ∪ {a2 + iy, y ∈ [ε,−ε]}

then, by (2.21), < D̃N , f > can also be written as the contour integral

< D̃N , f >= lim
ε→0

1

2iπ

∫
(∂Rε)−

log z p̃N (z) dz.

But, the above contour integral does not depend on ε, so that for each ε, we have

< D̃N , f >=
1

2iπ

∫
(∂Rε)−

log z p̃N (z) dz.

Using the expression of p̃N (z) and the integration by part trick, we get that

< D̃N , f >= − 1

2iπ

∫
(∂Rε)−

tN (z) dz.

Taking the limit ε → 0, and using the Stieltjes inversion formula for the

Marcenko-Pastur distribution µ
(cN )
MP , we eventually obtain that

< D̃N , f >= − 1

π
lim
ε→0

∫ a2

a1

Im(tN (λ+ iε)) dλ = −µ(cN )
MP ([a1, a2]) = −1

which is the expected result.

Proof. We now establish (4.8). In order to simplify the notations, we put

r̃N (ν) =
1

2M

M∑
m=1

s′′m(ν)

sm(ν)
. (4.11)

The Helffer-Sjöstrand formula implies that

1

M
tr f(Ĉ)− 1

M
tr f(C̃)− r̃N (ν) φ̃N (f) vN 1α>2/3 =

1

π
Re

∫
D

dxdy ∂̄Φk(f)(z)

[
1

M
(tr Q̂(z)− tr Q̃(z))− r̃N (ν) p̃N (z) vN 1α>2/3

]
.
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4.3.1. Reduction to the study of ζ

We define

ζ =

∫
D

dxdy ∂Φk(f)(z)
1

M

M∑
m=1

(zQ)′mm

(
‖xm‖22
B + 1

− 1

)
(4.12)

where we recall that the row vectors (xm)m=1,...,M are the rows of the i.i.d.
matrix X. We establish in this paragraph that∣∣∣∣∫

D
dxdy ∂̄Φk(f)(z)

(
1

M
tr {Q̂− Q̃} − r̃N (ν) p̃N (z) vN 1α>2/3

)
− ζ
∣∣∣∣ ≺ uN .

(4.13)
It turns out that by Lemma 4.2 and Lemma 4.4 in Paragraph 4.3.2 below, ζ
verifies the key properties :

|ζ| ≤ |ζ − Eζ|+ |Eζ| ≺ 1

B
.

(4.8) will then follow directly from (4.13).

Plugging in the integral expression of ζ, and using the expression (4.7), we
get:∣∣∣∣∫

D
∂̄Φk(f)(z)

(
1

M
tr {Q̂− Q̃} − r̃N (ν) p̃N (z) vN 1α>2/3

)
dxdy − ζ

∣∣∣∣
=

∣∣∣∣∫
D

dxdy∂Φk(f)(z)

(
1

M
tr {Q̂− Q̃} − r̃N (ztN (z))′ vN 1α>2/3

− 1

M

M∑
m=1

(zQ)′mm

(
‖xm‖22
B + 1

− 1

))∣∣∣∣∣ .
We recall the definition of Θ := Ĉ− C̃ from (3.29). We will proceed in three

steps, which, in turn, will imply (4.13):

1. ∣∣∣∣∫
D

dxdy ∂Φk(f)(z)

(
1

M
tr {Q̂− Q̃}+

1

M
tr {Q2Θ}

)∣∣∣∣ ≺ uN (4.14)

2. ∣∣∣∣∫
D

dx dy ∂Φk(f)(z)

(
1

M
tr {Q2Θ}

−2
1

M
tr

XX∗

B + 1
Q2(D̂−1/2D1/2 − I)

)∣∣∣∣ ≺ uN (4.15)
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3. ∣∣∣∣∫
D

dx dy ∂Φk(f)(z)×(
2

1

M
tr

XX∗

B + 1
Q2(I− D̂−1/2D1/2)− r̃N (ztN (z))′ vN 1α>2/3−

1

M

M∑
m=1

(zQ)′mm

(
‖xm‖22
B + 1

− 1

))∣∣∣∣∣ ≺ uN (4.16)

Step 1. Using the well-known identity A−1 −B−1 = B−1(B −A)A−1, we

express Q̂− Q̃ as:
Q̂− Q̃ = −Q̃ΘQ̂. (4.17)

We claim that it is possible to approximate tr Q̃ΘQ̂ by tr QΘQ. Indeed, we
have

|tr Q̃ΘQ̂− tr QΘQ|

= |tr Q̃ΘQ̂− tr Q̃ΘQ̃ + tr Q̃ΘQ̃− tr Q̃ΘQ + tr Q̃ΘQ− tr QΘQ|

≤ |tr Q̃ΘQ̂− tr Q̃ΘQ̃|+ |tr Q̃ΘQ̃− tr Q̃ΘQ|+ |tr Q̃ΘQ− tr QΘQ|
:= T1 + T2 + T3.

The following rough bounds are enough to control T1 (we used (1.25) to control
the norm of the resolvents):

T1 = |tr Q̃Θ(Q̂− Q̃)| = |tr Q̃ΘQ̃ΘQ̂| ≤M‖Q̃‖2‖Q̂‖‖‖Θ‖2 ≤ 1

Im3z
M‖Θ‖2.

Concerning T2 and T3, we write similarly that Q̃−Q = −Q̃∆̃Q, and obtain
that

T2 = |tr Q̃ΘQ̃− tr Q̃ΘQ| ≤M‖Q̃‖2‖Q‖‖∆̃‖Θ‖ ≤ 1

Im3z
M‖∆̃‖‖Θ‖

T3 = |tr Q̃ΘQ− tr QΘQ| ≤M‖Q̃‖‖Q‖2‖∆̃‖Θ‖ ≤ 1

Im3z
M‖∆̃‖‖Θ‖.

Plugging these estimations into the left hand side of (4.14), we obtain that∣∣∣∣∫
D

dxdy ∂Φk(f)(z)

(
1

M
tr {Q̂− Q̃} − 1

M
tr {Q2Θ}

)∣∣∣∣
≤
∫
D

dxdy|∂Φk(f)(z)| 1

M
(T1 + T2 + T3)

≤ C(‖Θ‖2 + 2‖∆̃‖Θ‖).

Moreover, the concentration results (3.35) for ‖Θ‖ and (3.26) for ‖∆̃‖ from
Proposition 3.1, imply that

‖Θ‖2 + 2‖Θ‖‖∆̃‖ ≺ 1

B
+

1√
B

B

N
+

(
B

N

)3

= uN .

This eventually establishes (4.14).
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Step 2. We claim that:∥∥∥∥Θ− ((D̂−1/2D1/2 − I)
XX∗

B + 1
+

XX∗

B + 1
(D1/2D̂−1/2 − I)

)∥∥∥∥ ≺ uN . (4.18)

We recall that Ŝ can be written using the definition (1.12) of C̃, and use the
decomposition (3.25) of C̃ from Corollary 3.2. Using these results, we get that

Ŝ = D1/2 C̃ D1/2 = D1/2

(
XX∗

B + 1
+ ∆̃

)
D1/2.

Plugging this expression of Ŝ into (3.30), we obtain easily that

Θ =(D̂−1/2D1/2 − I)

(
XX∗

B + 1
+ ∆̃

)
D1/2D̂−1/2

+

(
XX∗

B + 1
+ ∆̃

)
(D1/2D̂−1/2 − I)

:= Θ1 + Θ2.

As ∆̃ is a negligible quantity, one should expect that the leading quan-
tity in Θ1 and Θ2 is respectively (D̂−1/2D1/2 − I)XX∗

B+1 D1/2D̂−1/2 and
XX∗

B+1 (D1/2D̂−1/2 − I). To prove it, write:∥∥∥∥Θ1 − (D̂−1/2D1/2 − I)
XX∗

B + 1
D1/2D̂−1/2

∥∥∥∥
=
∥∥∥(D̂−1/2D1/2 − I)∆̃D1/2D̂−1/2

∥∥∥
≤ ‖D̂−1/2D1/2 − I‖‖∆̃‖‖D1/2D̂−1/2‖. (4.19)

∆̃ is controlled by (3.26) from Corollary 3.2, and D̂−1/2D1/2−I is controlled
by (3.33) from Lemma 3.3 (it is a diagonal matrix which elements are stochas-
tically dominated by Lemma 3.3). Moreover, from Lemma 3.3, it holds that

‖D1/2D̂−1/2‖ ≺ 1. Combining these estimations into (4.19), one get:∥∥∥∥Θ1 − (D̂−1/2D1/2 − I)
XX∗

B + 1
D1/2D̂−1/2

∥∥∥∥ ≺ ( 1√
B

+
B2

N2

)
B

N
= O(uN ).

(4.20)

Using that ‖D̂−1/2D1/2− I‖ ≺ 1√
B

+ B2

N2 as well as (2.5) from Paragraph 2.2

to control the norm of XX∗/(B+1), one can further approximate (D̂−1/2D1/2−
I)XX∗

B+1 D1/2D̂−1/2 by (D̂−1/2D1/2−I)XX∗

B+1 . In particular, it is easy to check that∥∥∥∥Θ1 − (D̂−1/2D1/2 − I)
XX∗

B + 1

∥∥∥∥ ≺ uN . (4.21)

Similarly for Θ2, one would obtain:∥∥∥∥Θ2 −
XX∗

B + 1
(D1/2D̂−1/2 − I)

∥∥∥∥ ≺ uN . (4.22)
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Combining (4.21) and (4.22), we obtain (4.18). To finish the proof of Step 2,
it remains to consider tr Q2Θ and prove (4.15). Remark that XX∗/(B+1) and
its resolvent Q commutes.

tr Q2

(
(D̂−1/2D1/2 − I)

XX∗

B + 1
+

XX∗

B + 1
(D1/2D̂−1/2 − I)

)
= 2 tr

XX∗

B + 1
Q2(D̂−1/2D1/2 − I) (4.23)

Therefore, using (4.23):∣∣∣∣ 1

M
tr Q2Θ− 2

1

M
tr

XX∗

B + 1
Q2(D̂−1/2D1/2 − I)

∣∣∣∣
≤ ‖Q‖2

∥∥∥∥Θ− ((D̂−1/2D1/2 − I)
XX∗

B + 1
+

XX∗

B + 1
(D1/2D̂−1/2 − I)

)∥∥∥∥ (4.24)

so that the left hand side of (4.18) is recognised in the right hand side of (4.24).
We can eventually prove (4.15) by following the same idea as in Step 1:∣∣∣∣∫

D
dxdy ∂Φk(f)(z)

1

M

(
tr {Q2Θ} − 2tr

XX∗

B + 1
Q2(D̂−1/2D1/2 − I)

)∣∣∣∣
≤
∥∥∥∥Θ− ((D̂−1/2D1/2 − I)

XX∗

B + 1
+

XX∗

B + 1
(D1/2D̂−1/2 − I)

)∥∥∥∥
×
∫
D
|∂Φk(f)(z)| 1

Im2z
dxdy︸ ︷︷ ︸

<+∞

.

This proves (4.15) and ends Step 2.

Step 3. By definition of the resolvent, the following identity holds(
XX∗

B+1 − zIM
)

Q(z) = IM , which leads to the so-called resolvent identity:

XX∗

B + 1
Q = IM + zQ. (4.25)

Using (4.25) as well the identity Q′(z) = Q2(z) one can write:

1

M
tr

XX∗

B + 1
Q2(I−D1/2D̂−1/2) =

1

M
tr (I + zQ)Q(I−D1/2D̂−1/2)

=
1

M

M∑
m=1

(zQ)
′
mm

(
1−

√
sm
ŝm

)
. (4.26)

To handle 1−
√

sm
ŝm

we use the following Taylor expansion: define the appli-

cation h by h(u) = 1− 1√
u

, with h′(u) = 1
2

1
u3/2 and h′′(u) = − 3

4
1

u5/2 . A Taylor
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expansion to the second order of h around 1 provides:

h

(
ŝm
sm

)
= h(1) +

(
ŝm
sm
− 1

)
h′(1) +

1

2

(
ŝm
sm
− 1

)2

h′′(θm)

=
1

2sm
(ŝm − sm) +

1

2

h′′(θm)

s2
m

(ŝm − sm)2

where θm is some random quantity between ŝm and sm. Therefore (4.26) be-
comes

1

M
tr
(

(zQ)′(I−D1/2D̂−1/2)
)

=
1

M
tr

(
(zQ)′diag

(
ŝm − sm

2sm
+

1

2

h′′(θm)(ŝm − sm)2

s2
m

: m ∈ {1, . . . ,M}
))

.

Lemma 3.1 implies that the set ΛD̂
ε (ν) defined by (3.32) holds with exponentially

high probability. Therefore, it is sufficient to study the term 1
M tr (zQ)′(I −

D1/2D̂−1/2) on the event ΛD̂
ε (ν). If ΛD̂

ε (ν) holds, θm belongs to [s, s̄]+ε for each
m ∈ {1, . . . ,M}, and supm≥1 |h′′(θm)| is bounded by a nice constant. Moreover,
as infν infm≥1 sm(ν) is bounded away from zero, there exists a nice constant C
for which the inequality∣∣∣∣ 1

M
tr

(
(zQ)′diag

(
1

2

h′′(θm)(ŝm − sm)2

s2
m

: m ∈ {1, . . . ,M}
))∣∣∣∣

≤ C(‖Q‖+ z‖Q‖2)
1

M

M∑
m=1

(ŝm − sm)2 ≤ C(z)
1

M

M∑
m=1

(ŝm − sm)2

holds on ΛD̂
ε (ν), where we recall that C(z) can be written as P1(|z|)P2( 1

Imz )
for some nice polynomials P1 and P2. Following again the same argument as in
Step 1, we obtain that∣∣∣∣∫

D
dxdy∂Φk(f)(z)

{
1

M
tr (zQ)′(I− D̂−1/2D1/2)

− 1

M
tr (zQ)′diag

(
ŝm − sm

2sm
: m ∈ {1, . . . ,M}

)}∣∣∣∣
≤ C 1

M

M∑
m=1

(ŝm − sm)2

on ΛD̂
ε (ν) provided k ≥ Deg(P2) . Lemma A.5 in Appendix implies that

1

M

M∑
m=1

(ŝm − sm)2 ≺ 1

B
+
B4

N4
= O(uN ).
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We have thus shown that∣∣∣∣∫
D

dx dy∂Φk(f)(z)

{
1

M
tr (zQ)′(I− D̂−1/2D1/2)

− 1

M
tr (zQ)′diag

(
ŝm − sm

2sm
: m ∈ {1, . . . ,M}

)}∣∣∣∣
≺ uN .

We denote by ηN (z) the term defined by

ηN (z) =
1

M

M∑
m=1

(zQ)′mm

(
ŝm − sm
sm

−
(
‖xm‖22
B + 1

− 1

))
− r̃N (z)(ztN (z))′vN1α>2/3 (4.27)

and define δN as

δN =

∫
D

dxdy ∂Φk(f)(z) ηN (z).

In order to establish (4.16), it is sufficient to prove that |δN | ≺ uN . For this, we

first remark that ŝm = sm
xm(I+Φm)x∗m

B+1 , so that ηN (z) can also be written as

ηN (z) =
1

M

M∑
m=1

(zQ)′mm
xmΦmx∗m
B + 1

− r̃N (ztN (z))′vN1α>2/3. (4.28)

We express ηN (z) as ηN (z) = η1,N (z)+η2,N (z)+η3,N (z) where (ηi,N )i=1,2,3 are
defined by

η1,N (z) =
1

M

M∑
m=1

(zQ)′mm

(
xmΦmx∗m
B + 1

− 1

B + 1
tr Φm

)

η2,N (z) =
1

M

M∑
m=1

E[(zQ)′mm]
1

B + 1
tr Φm − r̃N (ztN (z))′vN1α>2/3

η3,N (z) =
1

M

M∑
m=1

((zQ)′mm)◦
1

B + 1
tr Φm

and denote by (δi,N )i=1,2,3 the contributions of (ηi,N )i=1,2,3 to δN . We recall
the definition (1.20) of ((zQ)′mm)◦. In order to evaluate δ1,N , we remark that
|(zQ)′mm| = |Qmm + zQ2

mm| ≤ C(z) and that

|η1,N (z)| ≤ C(z) sup
m=1,...,M

∣∣∣∣xmΦmx∗m
B + 1

− 1

B + 1
tr Φm

∣∣∣∣ .
Therefore, for k large enough, δ1,N verifies |δ1,N | ≤
C supm=1,...,M

∣∣∣xmΦmx∗m
B+1 − 1

B+1 tr Φm

∣∣∣. The Hanson-Wright inequality as well
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as the evaluation (3.10) of the Frobenius norm of Φm imply that |δ1,N | ≺ uN .
We now evaluate δ2,N . For this, we notice that the results reviewed in Para-
graph 2.2.2 imply that E(zQ)′mm = (zβN (z))′ = (ztN (z))′ + (zεN (z))′ where

|(zεN (z))′| ≤ C(z)
M2 . Therefore, using (3.9), we obtain that

η2,N (z)) =

(
1

M

2M∑
m=1

s′′m
sm

)
(ztN (z))′ vN + ε1,N (z)− r̃N (ztN (z))′ vN 1α>2/3

=r̃N (ztN (z))′ vN 1α≤2/3 + ε1,N (z)

where ε1,N (z) verifies |ε1,N (z)| ≤ C(z)uN . We then deduce that |η2,N (z)| ≤
C(z)uN because if α ≤ 2/3, vN ≤ uN . This implies that |δ2,N | = O(uN ). In
order to address δ3,N , we interpret δ3,N as a function g of (X,X∗), and use the
Gaussian concentration inequality presented in Paragraph 2.3. In particular, we
verify that

‖∇g‖ ≤ C 1√
B

(
B

N

)2

= o(uN ).

As E(δ3,N ) = 0, this leads immediately to |δ3,N | ≺ uN . We just check that

∑
i,j

∣∣∣∣ ∂g∂Xij

∣∣∣∣2 ≤ C 1

B

(
B

N

)4

. (4.29)

For this, we express (zQ)′mm as (zQ)′mm = Qmm + zQ2
mm and notice that

∂Qmm
∂Xij

=−Qmi
(

X∗

B + 1
Q

)
jm

∂Q2
mm

∂Xij
=− (Q2)mi

(
X∗

B + 1
Q

)
jm

−Qmi
(

X∗

B + 1
Q2

)
jm

.

Using the Jensen inequality, we obtain that∣∣∣∣ ∂g∂Xij

∣∣∣∣2 ≤ ∫
D

dxdy|∂Φk(f)(z)|2 1

M

M∑
m=1

∣∣∣∣∂(zQ)′mm
∂Xij

∣∣∣∣2( 1

B + 1
tr Φm

)2

.

Summing over i, j leads to the expected evaluation of (4.29) and to |δ3,N | ≺ uN .
This, in turn, completes the proof of (4.16) and of (4.13).

Up to the Lemma 4.2 and Lemma 4.4, Theorem 4.1 is proved.

4.3.2. Proof of Lemma 4.2 and Lemma 4.4

We now establish Lemma 4.2 and Lemma 4.4.

Lemma 4.2. The family of random variables ζ(ν) − Eζ(ν), ν ∈ [0, 1] verifies
the following property:

|ζ(ν)− Eζ(ν)| ≺ 1

B
. (4.30)
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Proof. ζ defined by (4.12) can be written as

ζ =

∫
D

dxdy ∂Φk(f)(z)
1

M

M∑
m=1

Qmm

(
‖xm‖22
B + 1

− 1

)
+

∫
D

dx dy ∂Φk(f)(z)
1

M

M∑
m=1

z(Q2)mm

(
‖xm‖22
B + 1

− 1

)
:= ζ1 + ζ2.

In the following, we omit to evaluate |ζ1(ν)− E(ζ1(ν))|, and just establish that
|ζ2(ν)− E(ζ2(ν))| ≺ 1

B using the Gaussian concentration inequality from Para-
graph 2.3.

Recall that ‖xm‖22 is a χ2
2(B+1) random variable. Therefore it is clear that:∣∣∣∣‖xm‖22B + 1

− 1

∣∣∣∣ ≺ 1√
B
.

Knowing this, the idea is to show that, conditioned on the event where the

random variables
(
‖xm‖22
B+1 − 1

)
m=1,...,M

are localized, which holds with expo-

nentially high probability, ζ2 is a O( 1
B1−ε )–Lipschitz function of the entries of

matrix X for any ε > 0. Let 0 < ε < 1
2 , and define the family of events Am,ε(ν),

m = 1, . . . ,M, ν ∈ [0, 1] given by

Am,ε(ν) =

{
‖xm(ν)‖22
B + 1

∈
[
1− Bε√

B
, 1 +

Bε√
B

]}
(4.31)

as well as Aε(ν) = ∩Mm=1Am,ε(ν). It is clear that the family of events Am,ε(ν),
m = 1, . . . ,M , ν ∈ [0, 1] holds with exponentially high probability, and that the
same property holds for the family Aε(ν), ν ∈ [0, 1]. We claim that it exists a
family of C∞ functions (gB,ε)B≥1 verifying

gB,ε(t) =

{
t− 1 if t ∈ [1− Bε√

B
, 1 + Bε√

B
]

0 if t /∈ [1− 2 Bε√
B
, 1 + 2 Bε√

B
]

and

sup
t
|gB,ε(t)| ≤ C

Bε√
B
, sup

t
|g′B,ε(t)| ≤ C (4.32)

for each B, where C is a nice constant. Indeed consider h ∈ C∞ such that it
verifies |h(t)| ≤ 2|t| for each t and

h(t) =

{
t if t ∈ [−1, 1]

0 if t /∈ [−2, 2].

Then, it is easy to check that the family (gB,ε)B≥1 defined by

gB,ε(t) =
Bε√
B
h

(√
B

Bε
(t− 1)

)
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satisfies the requirements (4.32).

We define ζ̃2,ε by

ζ̃2,ε =

∫
D

dxdy∂Φk(f)(z)
1

M

M∑
m=1

(zQ2)mm gB,ε

(
‖xm‖22
B + 1

)
and notice that ζ2 and ζ̃2,ε coincide on the exponentially high probability event

Aε(ν). We claim that if |ζ̃2,ε−E(ζ̃2,ε)| ≺ 1
B1−ε , then |ζ2−E(ζ2)| ≺ 1

B1−ε . Since ε
is arbitrary and Bε = O(Nαε), Remark 2.1 will imply that |ζ2−E(ζ2)| ≺ 1

B . To

justify this, we evaluate P
(
|ζ̃2,ε − E(ζ̃2,ε)| > 1

B1−εN
δ
)

for each δ > 0. It holds

that

P

(
|ζ2 − E(ζ2)| > Nαε+δ

B

)
≤ P

(
|ζ2 − E(ζ2)| > Nαε+δ

B
,Aε

)
+ P(Acε).

As P(Acε) converges towards zero exponentially, we have just to consider

P

(
|ζ2 − E(ζ2)| > Nαε+δ

B
,Aε

)
and write, since ζ2 and ζ̃2,ε coincide on Aε,

P

(
|ζ2 − E(ζ2)| > Nαε+δ

B
,Aε

)
= P

(
|ζ̃2,ε − E(ζ2)| > Nαε+δ

B
,Aε

)
≤ P

(
|ζ̃2,ε − E(ζ̃2,ε)| >

Nαε+δ

B
− |E(ζ2 − ζ̃2,ε)|, Aε

)
.

We now prove that |E(ζ2− ζ̃2,ε)| converges towards 0 exponentially. For this,

we notice that as ζ2 and ζ̃2,ε coincide on Aε, then

|E(ζ2 − ζ̃2,ε)| =
∣∣∣E((ζ2 − ζ̃2,ε)IAcε )

∣∣∣ ≤ (E
∣∣∣ζ2 − ζ̃2,ε∣∣∣2)1/2

(P(Acε))
1/2

.

A rough evaluation of

(
E
∣∣∣ζ2 − ζ̃2,ε∣∣∣2)1/2

leads to

(
E
∣∣∣ζ2 − ζ̃2,ε∣∣∣2)1/2

≤ C

for some nice constant C. Therefore,

(
E
∣∣∣ζ2 − ζ̃2,ε∣∣∣2)1/2

(P(Acε))
1/2

, and thus

|E(ζ2 − ζ̃2,ε)|, converge towards 0 exponentially. For each N large enough, we
thus have

P

(
|ζ̃2,ε − E(ζ̃2,ε)| >

Nαε+δ

B
−|E(ζ2 − ζ̃2,ε)|, Aε

)
≤ P

(
|ζ̃2,ε − E(ζ̃2,ε)| >

Nαε+δ/2

B
,Aε

)
≤ P

(
|ζ̃2,ε − E(ζ̃2,ε)| >

Nαε+δ/2

B

)
.
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We have therefore established that

P

(
|ζ2 − E(ζ2)| > Nαε+δ

B
,Aε

)
≤ P

(
|ζ̃2,ε − E(ζ̃2,ε)| >

Nαε+δ/2

B

)
which eventually justifies that if |ζ̃2,ε − E(ζ̃2,ε)| ≺ Bε

B , then |ζ2 − E(ζ2)| ≺ Bε

B .

Therefore, it remains to prove that |ζ̃2,ε − E(ζ̃2,ε)| ≺ Bε

B . This is true by

Lemma 4.3 below. The stochastic domination relation |ζ1−Eζ1| ≺ Bε

B is proved
similarly. The completes the proof of Lemma 4.2.

Lemma 4.3.

|ζ̃2,ε − E(ζ̃2,ε)| ≺
Bε

B
.

Proof. In the following, we evaluate the norm square of the gradient of ζ̃2,ε w.r.t.

the variables Xi,j , X
∗
i,j and just compute

∑
i,j

∣∣∣∂ζ̃2,ε∂Xij

∣∣∣2 because
∑
i,j

∣∣∣∂ζ̃2,ε∂X∗ij

∣∣∣2 is of

the same order of magnitude.
We recall that

∂(Q2)mm
∂Xij

= −
(

(Q2)mi(X
∗Q)jm

B + 1
+
Qmi(X

∗Q2)jm
B + 1

)
. (4.33)

Moreover it is clear that

∂

∂Xij

(
gB,ε

(
‖xm‖22
B + 1

))
= δim

Xm,j

B + 1
g′B,ε

(
‖xm‖22
B + 1

)
. (4.34)

Collecting the derivatives (4.33) and (4.34) we get after some algebra that

∂

∂Xij

(
M∑
m=1

(Q2)mmgB,ε

(
‖xm‖22
B + 1

))
=

Xi,j

B + 1
g′B,ε

(
‖xi‖22
B + 1

)
(Q2)ii

−
M∑
m=1

gB,ε

(
‖xm‖22
B + 1

)(
(Q2)mi(X

∗Q)jm
B + 1

+
Qmi(X

∗Q2)jm
B + 1

)
. (4.35)

It remains to control
∑
i,j

∣∣∣∂ζ̃2,ε∂Xij

∣∣∣2. From the integral representation of ζ̃2,ε,

the derivative with respect to Xij is applied only on the integrand as follows:

∂ζ̃2,ε
∂Xij

=
1

M

∫
D

dxdy ∂Φk(f)(z)
∂

∂Xij

(
M∑
m=1

z(Q2)mmgB,ε

(
‖xm‖22
B + 1

))
.

Plugging in the derivative computed in (4.35) we get:

∂ζ̃2,ε
∂Xij

=
1

M

∫
D

dxdy ∂Φk(f)(z) z

{
Xi,j

B + 1
g′B,ε

(
‖xi‖22
B + 1

)
(Q2)ii

−
M∑
m=1

gB,ε

(
‖xm‖22
B + 1

)(
(Q2)mi(X

∗Q)jm
B + 1

+
Qmi(X

∗Q2)jm
B + 1

)}
.
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Using the bounds of gB,ε and g′B,ε from inequalities (4.32), the observation

that g′B,ε(t) = 0 if |t− 1| ≥ 2Bε√
B

, and that |z| is bounded on D, one can write:∣∣∣∣∣∂ζ̃2,ε∂Xij

∣∣∣∣∣
2

≤ C

M2

∫
D

dxdy
∣∣∂Φk(f)(z)

∣∣2 ∣∣∣∣ Xi,j

B + 1
g′B,ε

(
‖xi‖22
B + 1

)
(Q2)ii

−
M∑
m=1

gB,ε

(
‖xm‖22
B + 1

)(
(Q2)mi(X

∗Q)jm
B + 1

+
Qmi(X

∗Q2)jm
B + 1

)∣∣∣∣∣
2

≤ C

M2

∫
D

dxdy
∣∣∂Φk(f)(z)

∣∣2 ∣∣∣∣ Xi,j

B + 1
(Q2)ii

∣∣∣∣2 1(∣∣∣∣ ‖xi‖22B + 1
− 1

∣∣∣∣ ≤ 2Bε√
B

)

+
C

M2

∫
D

dxdy
∣∣∂Φk(f)(z)

∣∣2( Bε√
B

)2
∣∣∣∣∣
M∑
m=1

∣∣(Q2)mi
∣∣ |(X∗Q)jm|
B + 1

∣∣∣∣∣
2

+
C

M2

∫
D

dxdy
∣∣∂Φk(f)(z)

∣∣2( Bε√
B

)2
∣∣∣∣∣
M∑
m=1

|Qmi|
∣∣(X∗Q2)jm

∣∣
B + 1

∣∣∣∣∣
2

:=
C

M2
(T

(1)
ij + T

(2)
ij + T

(3)
ij ).

It remains to sum over i, j.

M∑
i,j=1

T
(1)
ij

=

∫
D

dxdy
∣∣∂Φk(f)(z)

∣∣2 M∑
i,j=1

∣∣∣∣ Xi,j

B + 1
(Q2)ii

∣∣∣∣2 1(∣∣∣∣ ‖xi‖22B + 1
− 1

∣∣∣∣ ≤ 2Bε√
B

)

≤
∫
D

dxdy
∣∣∂Φk(f)(z)

∣∣2 M∑
i=1

|(Q2)ii|2 1
(∣∣∣∣ ‖xi‖22B + 1

− 1

∣∣∣∣ ≤ 2Bε√
B

) M∑
j=1

∣∣∣∣ Xi,j

B + 1

∣∣∣∣2

=
C

B + 1

∫
D

dx dy
∣∣∂Φk(f)(z)

∣∣2 M∑
i=1

|(Q2)ii|2
‖xi‖22
B + 1

1

(∣∣∣∣ ‖xi‖22B + 1
− 1

∣∣∣∣ ≤ 2Bε√
B

)

≤ C

B + 1
(1 +

2Bε√
B

)

∫
D

dxdy
∣∣∂Φk(f)(z)

∣∣2 M∑
i=1

|(Q2)ii|2.

Since
M∑
i=1

|(Q2)ii|2 ≤M‖Q‖4

it can be written that:

M∑
i,j=1

T
(1)
ij ≤ C

M

B + 1

∫
D

dxdy
∣∣∂Φk(f)(z)

∣∣2 ‖Q‖4.
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Inspecting T
(2)
ij , one can see that by Jensen’s inequality∣∣∣∣∣

M∑
m=1

∣∣(Q2)mi
∣∣ |(X∗Q)jm|

∣∣∣∣∣
2

≤M
M∑
m=1

∣∣(Q2)mi
∣∣2 |(X∗Q)jm|2

so summing over i and j provides:

M∑
i,j=1

T
(2)
ij ≤

B2εM

(B + 1)3

×
∫
D

dxdy
∣∣∂Φk(f)(z)

∣∣2 M∑
m=1

(
M∑
i=1

∣∣(Q2)mi
∣∣2) M∑

j=1

|(X∗Q)jm|2
 .

Notice that since
∑M
i=1

∣∣(Q2)mi
∣∣2 is the square euclidean norm of line m of Q2:

M∑
i=1

∣∣(Q2)mi
∣∣2 ≤ ‖Q2‖2 ≤ ‖Q‖4.

Moreover,

M∑
m=1

 M∑
j=1

|(X∗Q)jm|2
 = tr X∗QQ∗X

= (B + 1)tr ((I + zQ) Q∗) ≤M(B + 1)(‖Q‖+ |z|‖Q‖2)

therefore

M∑
i,j=1

T
(2)
ij ≤ B

2ε

(
M

B + 1

)2 ∫
D

dx dy
∣∣∂Φk(f)(z)

∣∣2 ‖Q4‖(‖Q‖+ |z|‖Q‖2)

and similarly for T
(3)
ij one get:

M∑
i,j=1

T
(3)
ij ≤ B

2ε

(
M

B + 1

)2 ∫
D

dxdy
∣∣∂Φk(f)(z)

∣∣2 ‖Q2‖(‖Q‖3 + |z|‖Q‖4).

Collecting the terms in T
(1)
ij , T

(2)
ij and T

(3)
ij , and since M/(B + 1) = O(1) by

Assumption 1.3, we can write:

∑
i,j

∣∣∣∣∣∂ζ̃2,ε∂Xij

∣∣∣∣∣
2

≤ C

M2
B2ε

∫
D

dx dy
∣∣∂Φk(f)(z)

∣∣2 (‖Q‖4 + ‖Q5‖+ |z|‖Q6‖)

As ‖Q‖4 + ‖Q5‖+ |z|‖Q6‖ ≤ C(z), we obtain that for k large enough,

∑
i,j

∣∣∣∣∣∂ζ̃2,ε∂Xij

∣∣∣∣∣
2

= O
(
B2ε

B2

)
as expected.
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It remains to study E[ζ], and establish the following Lemma.

Lemma 4.4.

|Eζ| = O
(

1

B

)
.

Proof. As in the proof of Lemma 4.2, we only consider

E[ζ2] =

∫
D

dx dy ∂Φk(f)(z)
1

M

M∑
m=1

zE

[
(Q2)mm

(
‖xm‖22
B + 1

− 1

)]
as E[ζ1] is shown to be alsoO( 1

B ) with the same argument. As E
[
‖xm‖22
B+1 − 1

]
= 0,

we have

E

[
(Q2)mm

(
‖xm‖22
B + 1

− 1

)]
= E

[(
(Q2)mm − E[(Q2)mm]

)(‖xm‖22
B + 1

− 1

)]
.

Apply now the Cauchy-Schwartz inequality:

|E[ζ2]| ≤
∫
D

dxdy |∂Φk(f)(z)| 1

M

M∑
m=1

|z|
√

Var(Q2)mm

√
E

∣∣∣∣‖xm‖22B + 1
− 1

∣∣∣∣2.
(4.36)

As it is clear that E
∣∣∣‖xm‖22B+1 − 1

∣∣∣2 = O
(

1
B

)
, it remains to control Var(Q2)mm =

Var(tr Q2emeTm) where (em)m=1,...,M is the canonical basis of CM . A direct
application of (2.6) for i = 2 leads immediately to

Var(Q2)mm ≤
C(z)

B
(4.37)

for some nice constant C. Using (4.37) in (4.36), we get that for k large enough:

|Eζ2| ≤
1

B

∫
D

dxdy |∂Φk(f)(z)|
√
C(z)

≤ 1

B

∫
D

dxdy |∂Φk(f)(z)|(1 + C(z)) ≤ C 1

B
.

This completes the proof of Lemma 4.4.

Remark 4.3. We notice that, instead of using (1.15), an alternative approach

to study 1
M tr f(Ĉ(ν))−

∫
f dµ

(cN )
MP could have been based on the decomposition

1

M
Tr
(
f(Ĉ(ν))

)
−
∫

R+

f dµ
(cN )
MP =

1

M
Tr
(
f(Ĉ(ν))

)
− E

[
1

M
Tr
(
f(Ĉ(ν))

)]
+

E

[
1

M
Tr
(
f(Ĉ(ν))

)]
− E

[
1

M
Tr
(
f(C̃(ν))

)]
+

E

[
1

M
Tr
(
f(C̃(ν))

)
− 1

M
Tr

(
f(

X(ν)X∗(ν)

B + 1
)

)]
+

E

[
1

M
Tr

(
f(

X(ν)X∗(ν)

B + 1
)

)]
−
∫

R+

f dµ
(cN )
MP .

(4.38)
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The first term of the r.h.s. of (4.38) can be addressed using the Gaussian con-
centration inequality. However, the calculations are more complicated than the

evaluation of 1
MTr

(
f(C̃(ν))

)
− E

[
1
MTr

(
f(C̃(ν))

)]
because, considered as a

function of (X,X∗), 1
MTr

(
f(Ĉ(ν))

)
is not a Lipschitz function. Using tech-

nics similar to those developed to evaluate ζ − E(ζ) (see Lemma 4.2), it could
however be shown that∣∣∣∣ 1

M
Tr
(
f(Ĉ(ν))

)
− E

[
1

M
Tr
(
f(Ĉ(ν))

)]∣∣∣∣ ≺ 1

B
. (4.39)

In order to evaluate the second term of the r.h.s. of (4.38), one should prove
that

E

[∫
D

dx dy

(
∂̄Φk(f)(z)

1

M
tr {Q̂− Q̃} − r̃N (ν) p̃N (z) vN 1α>2/3

)
− ζ
]

= O(uN ) (4.40)

and E(ζ) = O( 1
B ). The proof of (4.40) does not appear simpler than the proof

of (4.13): the 3 steps that allowed to establish (4.13) should still be used, ex-
cept that the stochastic domination properties should be replaced by properties
of the mathematical expectation of the various terms. However, proving stochas-
tic domination appears simpler than showing the desired properties of the above
mathematical expectations. In sum, while the use of decomposition (4.38) al-
lows to avoid Lemma 4.2, the justification of (4.39) needs to develop tools that
are similar to those of Lemma 4.2, and the proof of (4.40) tends to be more
complicated than the proof of (4.13). This explains why we have chosen to use
decomposition (1.15) rather than (4.38).

4.4. Step 4: evaluation of E
[

1
M

Tr
(
f(C̃(ν))

)
− 1

M
Tr
(
f(X(ν)X∗(ν)

B+1
)
)]

The Helffer-Sjöstrand formula implies that

E

[
1

M
Tr
(
f(C̃(ν))

)
− 1

M
Tr

(
f(

X(ν)X∗(ν)

B + 1
)

)]
=

1

π
Re

∫
D

dx dy ∂Φk(f)(z)E

[
1

M
tr (Q̃N (z)−QN (z))

]
.

Therefore, we are back to evaluate E
[

1
M tr (Q̃N (z)−QN (z))

]
.

In order to simplify the exposition of the results of this paragraph, we
introduce the following notation. If (hN (z))N≥1 is a sequence of complex-valued
functions defined on C+ and if (wN )N≥1 is a sequence of positive real numbers,
the notation hN (z) = Oz(wN ) means that it exists two nice polynomials P1

and P2 such that |hN (z)| ≤ wNP1(|z|)P2( 1
Imz ) for each z ∈ C+.

In this paragraph, we establish the following Proposition.
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Proposition 4.2. E
[

1
M tr (Q̃N (z)−QN (z))

]
can be written as

E

[
1

M
tr (Q̃N (z)−QN (z))

]
=

(
1

M

M∑
m=1

s′m
sm

)2

pN (z) vN−(
1

2M

M∑
m=1

s′′m
sm

)
p̃N (z) vN +Oz

((
B

N

)3

+
1

N

)
. (4.41)

The Helffer-Sjöstrand formula thus leads to the following Corollary:

Corollary 4.1. E
[

1
MTr

(
f(C̃(ν))

)
− 1

MTr
(
f(X(ν)X∗(ν)

B+1 )
)]

is given by

E

[
1

M
Tr
(
f(C̃(ν))

)
− 1

M
Tr

(
f(

X(ν)X∗(ν)

B + 1
)

)]
=(

1

M

M∑
m=1

s′m
sm

)2

φN (f) vN −

(
1

2M

M∑
m=1

s′′m
sm

)
φ̃N (f) vN +O

((
B

N

)3

+
1

N

)
.

(4.42)

Corollary 4.1 first implies that E
[

1
MTr

(
f(C̃(ν))

)
− 1

MTr
(
f(X(ν)X∗(ν)

B+1 )
)]

is a O
(
B
N

)2
, a result which is not a priori obvious. In particular, the stochastic

representation (3.1) of matrix C̃ can be shown to provide the more pessimistic
O(BN ) rate of convergence. The comparison of (4.42) with (4.8) also leads to

the conclusion that if α > 2/3, the dominant O
(
B
N

)2
deterministic term of

1
M tr (f(Ĉ(ν))−f(C̃(ν)) is cancelled by the second term of the righthandside of

(4.42), thus explaining the structure of the O
(
B
N

)2
deterministic correction of

1
M tr (f(Ĉ(ν)) −

∫
f dµ

(cN )
MP . In particular, establishing (4.41) (and thus (4.42))

will complete the proof of Theorem 4.1.

Proof. The proof of (4.41) is based on the Gaussian tools reviewed in Paragraph
2.2.2, and needs long and very tedious calculations. Therefore, we just provide

a sketch of proof. In particular, we justify that E
[

1
M tr (Q̃N (z)−QN (z))

]
is a

Oz
(
B
N

)2
term, but do not establish its expression (4.41).

The starting point of the proof is to express Q̃−Q as

Q̃−Q = −Q̃∆̃Q = −Q∆̃Q + Q∆̃Q∆̃Q− Q̃ ∆̃Q∆̃Q∆̃Q.
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Therefore, E
[

1
M tr (Q̃N (z)−QN (z))

]
can be written as

E

[
1

M
tr (Q̃−Q)

]
= −E

[
1

M
tr (Q2∆̃)

]
+ E

[
1

M
tr (Q2∆̃Q∆̃)

]
− E

[
1

M
tr (Q̃∆̃Q∆̃Q∆̃)

]
. (4.43)

It is clear that the moduli of the second and third terms of the right hand side of
(4.43) are controlled by C(z)E(‖∆̃‖2) and C(z)E(‖∆̃‖3) respectively. We now
state the following useful Lemma, proved in the Appendix, which implies that

these terms are Oz
(
B
N

)2
and Oz

(
B
N

)3
respectively.

Lemma 4.5. For each k ≥ 1, it exist a nice constant C depending on k such

that E
(
‖∆̃‖k

)
≤ C

(
B
N

)k
In order to prove that E

[
1
M tr (Q̃N (z)−QN (z))

]
= Oz

(
B
N

)2
, we thus have

to check that

E

[
1

M
tr Q2∆̃

]
= Oz

(
B

N

)2

. (4.44)

For this, we first express E
[

1
M tr Q2∆̃

]
as

E

[
1

M
tr Q2∆̃

]
= E

(
1

M
tr Q2 ΓX∗

B + 1

)
+ E

(
1

M
tr Q2 XΓ∗

B + 1

)
+ E

(
1

M
tr Q2 ΓΓ∗

B + 1

)
.

The third term of the right hand side is clearly Oz((BN )2). We thus need to check

that the first two terms are also Oz((BN )2). We just verify this property for the

first term. For this, we evaluate E
(

1
M tr QΓX∗

B+1

)
using the Gaussian tools, and

take the derivative w.r.t. z to obtain the expression of E
(

1
M tr Q2 ΓX∗

B+1

)
.

In order to simplify the notations, we denote by W the matrix W = X√
B+1

,

and denote by w1 = x1√
B+1

, . . . ,wM = xM√
B+1

its M rows. In particular, the

row m of matrix Γ√
B+1

coincides with wmΨm where we recall that matrix

Ψm is defined by (3.12). If (e1, . . . , em) represents the canonical basis of CM ,

E
(

1
M tr QΓX∗

B+1

)
can be written as

E

(
1

M
tr Q

ΓX∗

B + 1

)
=

1

M

M∑
m=1

E (wmΨmW∗Qem) .

We now state the following Lemma whose proof is given in Appendix. We recall
that βN (z) = E((QN (z))mm for each m.
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Lemma 4.6. If A represents a (B+ 1)× (B+ 1) matrix, the following equality
holds

E (wmAW∗Qem) =
β

1 + βc

1

B + 1
tr A−E

[(
1

B + 1
tr WAW∗Q

)◦
Q◦m,m

]
+

βc

1 + βc
E

[(
1

B + 1
tr WAW∗Q

)◦
1

B + 1
tr Q◦

]
. (4.45)

Using (1.23) in the case sµ(z) = β(z) as well as (2.9), we easily obtain that
β

1+βc = t
1+ct + ε1(z) = −zt(z)t̃(z) + ε1(z) where ε1(z) = Oz( 1

B2 ). Moreover, it

follows from (2.13) that ε′1(z) is also a Oz( 1
B2 ). We now use (4.45) for A = Ψm,

and differentiate (4.45) for A = Ψm w.r.t. z. Using the Schwartz inequality the
inequalities (2.6) and (2.7), and (3.13), we obtain immediately that

E (wmΨmW∗Qem) = −
(
zt(z)t̃(z)

)′ 1

B + 1
tr Ψm +Oz

(
B

N

)3

+Oz
(

1√
BN

)
and that

E

(
1

M
tr Q2 ΓX∗

B + 1

)
= −

(
zt(z)t̃(z)

)′ 1

B + 1
tr

(
1

M

M∑
m=1

Ψm

)

+Oz
(
B

N

)3

+Oz
(

1√
BN

)
.

It is easily checked that

Ψm = (I + Φm)1/2 − I =
1

2
Φm −

1

8
Φ2
m + Ξm

where ‖Ξm‖ ≤ C
(
B
N

)3
. It is easily seen that 1

B+1 tr Φ2
m =

(
s′m
sm

)2

vN+O((BN )3+
1
N ). Using (3.9), we thus obtain that

E

(
1

M
tr Q2 ΓX∗

B + 1

)
= −(ztN (z)t̃N (z))′

(
1

M

M∑
m=1

(
s′′m
2sm

− (s′m)2

8(sm)2
)

)
vN

+Oz(uN )

because

Oz
(
B

N

)3

+Oz
(

1√
BN

)
+Oz

(
1

N

)
= Oz(uN ).

We have thus established that E
(

1
M tr Q2 ΓX∗

B+1

)
is a Oz

(
B
N

)2
term, and have

evaluated the corresponding principal term. Using similar calculations, we

can obtain easily the expression of the Oz
(
B
N

)2
term of E

(
1
M tr Q2∆̃

)
. In

order to establish (4.42), it is necessary to evaluate the Oz
(
B
N

)2
term of

E
(

1
M tr Q∆̃Q∆̃Q

)
. This step needs very long calculations that are omit-

ted.



P. Loubaton and A. Rosuel/Coherency matrices of high-dimensional time series 53

4.5. Estimation of rN(ν)

The term supν |ψN (f, ν)| depends on the unknown true spectral densities
(sm)m=1,...,M through the term rN (ν) defined by (1.8). In order to be able
to use Theorem 4.1 in practice, it appears necessary to estimate rN (ν) by an

accurate enough estimate r̂N (ν), and to replace ψN (f, ν) by ψ̂N (f, ν) defined
by

ψ̂N (f, ν) =
1

M
Tr
(
f(Ĉ(ν))

)
−
∫

R+

f dµ
(cN )
MP − r̂N (ν) φN (f) vN 1α>2/3 (4.46)

r̂N (ν) has to be chosen in such a way that |ψ̂N (f, ν)| ≺ uN , a condition that will
be verified if |r̂N (ν)−rN (ν)| ≺ uN

vN
if α > 2

3 . A natural choice for r̂N (ν) would be
to replace the true spectral densities (sm)m=1,...,M by their frequency smoothed
estimates (ŝm)m=1,...,M defined by (3.31), and the derivatives (s′m)m=1,...,M by
(ŝ′m)m=1,...,M . However, ŝ′m is not an accurate estimate of s′m so that the corre-
sponding estimate of rN (ν) does not verify |r̂N (ν) − rN (ν)| ≺ uN

vN
if α > 2

3 . If
L < N is an integer, we introduce the lag window estimator ŝm,L of sm defined
by

ŝm,L(ν) =

∫ 1

0

|ξym(µ)|2wL(ν − µ)dµ =

L∑
l=−L

r̂m,l e
−2iπlν (4.47)

where wL(ν) =
∑L
l=−L e

−2iπlν is the Fourier transform of the rectangular win-
dow and r̂m,l represents the biased estimate of the autocovariance coefficient
rm,l of ym at lag l defined by

r̂m,l =
1

N

N−l∑
n=1

ym,n+ly
∗
m,n (4.48)

and r̂m,−l = r̂∗m,l for l ≥ 0. Then, the following result holds.

Proposition 4.3. Assume that L = L(N) = O(N
1

2γ0+1 ), where γ0 ≥ 3 is
defined by (1.18). Then, the estimate r̂N (ν) defined by

r̂N (ν) =

(
1

M

M∑
m=1

ŝ′m,L(ν)

ŝm,L(ν)

)2

(4.49)

verifies

|r̂N (ν)− rN (ν)| ≺ 1

N (γ0−1)/(2γ0+1)
(4.50)

|r̂N (ν)− rN (ν)| ≺ uN
vN

if α > 2
3 (4.51)

as well as
|ψ̂N (f, ν)| ≺ uN . (4.52)
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Proof. We denote by dN (ν) the N–dimensional vector defined by dN (ν) =
(1, e−2iπν , . . . , e−2iπ(N−1)ν)T . We recall that ym is the N–dimensional vector

ym = (ym,1, . . . , ym,N )T . ym can be written as ym = R
1/2
m zm where Rm =

E(ymy∗m) and zm isNC(0, IN ) distributed. It is clear that ŝm,L(ν) can be written
as

ŝm,L(ν) = z∗mR1/2
m Ω(ν)R1/2

m zm

with

Ω(ν) =
1

N

∫
dN (µ)dN (µ)∗wL(ν − µ)dµ

while ŝ′m,L(ν) is equal to

ŝ′m,L(ν) = z∗mR1/2
m Ω′(ν)R1/2

m zm

with

Ω′(ν) =
−2iπ

N

∫
dN (µ)dN (µ)∗

(
L∑

l=−L

l e−2iπl(ν−µ)

)
dµ

It is easy to check that ‖Ω′(ν)‖F = O( L
3/2

N1/2 ) and therefore that

‖R1/2
m Ω′(ν)R

1/2
m ‖F = O( L

3/2

N1/2 ). The Hanson-Wright inequality leads immedi-

ately to |ŝ′m,L(ν)−E(ŝ′m,L(ν))| ≺ L3/2

N1/2 . Moreover, it is easy to check that (1.18)
implies that

|E(ŝ′m,L(ν))− s′m(ν)| ≤ C

Lγ0−1

where C is a nice constant. For L = L(N) in such a way that O( L
3/2

N1/2 ) = 1
Lγ0−1 ,

i.e. L = O(N
1

2γ0+1 ), we obtain that

|ŝ′m,L(ν)− s′m(ν)| ≺ 1

N (γ0−1)/(2γ0+1)
.

Moreover, a similar analysis leads to

|ŝm,L(ν)− sm(ν)| ≺ 1

Nγ0/(2γ0+1)

from which we deduce that the estimate r̂N (ν) defined by (4.49) verifies (4.50).
It is then easily checked that if γ0 ≥ 3, then (4.51) holds, which implies that

|ψ̂N (f, ν)| ≺ uN holds.

5. Use of Lipschitz properties of functions ν → ψN(f, ν) and
ν → ψ̂N(f, ν)

In this section, we establish Lipschitz properties of ν → ψN (f, ν) and ν →
ψ̂N (f, ν), and deduce that the stochastic domination properties (4.2) and (4.52)

are still valid for supν∈[0,1] |ψN (f, ν)| and supν∈[0,1] |ψ̂N (f, ν)| where ψ̂N (f, ν) is
defined by (4.46, 4.49).
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5.1. Lipschitz properties

The goal of this paragraph is to prove the following Proposition.

Proposition 5.1. Functions ν → ψN (f, ν) and ν → ψ̂N (f, ν) verify

sup
δ 6=0

sup
ν∈[0,1]

‖ψN (f, ν)− ψN (f, ν + δ)‖
|δ|

≺MN3/2 (5.1)

sup
δ 6=0

sup
ν∈[0,1]

‖ψ̂N (f, ν)− ψ̂N (f, ν + δ)‖
|δ|

≺MN3/2 (5.2)

In the following, we just establish (5.2). For this, we evaluate separately the

Lipschitz constants of ν → 1
M tr f(Ĉ(ν)) and of ν → r̂N (ν).

5.1.1. Lipschitz constant of ν → 1
M tr f(Ĉ(ν))

To show that ν → 1
M tr f(Ĉ(ν)) is MN3/2-Lipschitz with overwhelming proba-

bility, we need to establish a number of intermediate properties.

Proposition 5.2. It holds that

sup
δ 6=0

sup
ν∈[0,1]

‖Ŝ(ν)− Ŝ(ν + δ)‖
|δ|

≺MN3/2. (5.3)

Proof. Let δ ∈ R and ν ∈ [0, 1]. As the random variables (ym,n)m=1,...,M,n=1,...,N

are complex Gaussian and that supm≥1 E|ym,n|2 < +∞, the family
(ym,n)m=1,...,M,n=1,...,N verifies |ym,n| ≺ 1. Therefore, it holds that

1√
N

N∑
n=1

|ym,n| ≺
√
N. (5.4)

For the same reasons, the family ξym(ν),m = 1, . . . ,M, ν ∈ [0, 1] satisfies.

|ξym(ν)| ≺ 1. (5.5)

We also claim that
sup
ν∈[0,1]

|ξym(ν)| ≺ 1. (5.6)

In order to verify (5.6), we first observe that for any n ≥ 1, we have the following
control:

|e−2iπnν − e−2iπn(ν+δ)| ≤ 2| sinπnδ| ≤ 2πn|δ|.
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(5.4) implies that

sup
δ 6=0

sup
ν∈[0,1]

∣∣∣∣ξym(ν)− ξym(ν + δ)

δ

∣∣∣∣
= sup

δ 6=0
sup
ν∈[0,1]

1√
N

∣∣∣∣∣
N∑
n=1

ym,n
e−2iπnν − e−2iπn(ν+δ)

δ

∣∣∣∣∣
≤ 2πN

1√
N

N∑
n=1

|ym,n|

≺ N3/2. (5.7)

We consider a frequency ν∗ ∈ [0, 1] (depending on m) where |ξym(ν)| is max-
imum, and have thus to establish that for each ε > 0, then it exists γ > 0
depending only on ε such that

P(|ξym(ν∗)| > N ε) ≤ exp−Nγ

for each N larger than a certain integer N0(ε). We introduce the discrete the
set

VpN =

{
k

Np
: k ∈ {0, . . . , Np − 1}

}
(5.8)

which cardinal is |VpN | = Np. We notice that (5.5) in conjunction with the union
bound implies that supνp∈VpN |ξym(νp)| ≺ 1. We denote by ν∗,p the element of

VpN for which |ν∗ − νp| is minimum, and notice that |ν∗ − ν∗,p| ≤ 1
Np . Then, we

have the following inequality

P(|ξym(ν∗)| > N ε)

≤ P

(
|ξym(ν∗)− ξym(ν∗,p)| >

N ε

2

)
+ P

(
|ξym(ν∗,p)| >

N ε

2

)
≤ P

(
|ξym(ν∗)− ξym(ν∗,p)| >

N ε

2

)
+ P

(
sup
νp∈VpN

|ξym(νp)| >
N ε

2

)
.

(5.9)

As supνp∈VpN |ξym(νp)| ≺ 1, the second term of the right hand side of (5.9)
converges exponentially towards 0. In order to evaluate the first term of the
r.h.s. of (5.9), we use (5.7), and obtain that

P

(
|ξym(ν∗)− ξym(ν∗,p)| >

N ε

2

)
≤ P

(
N

1√
N

N∑
n=1

|ym,n| ≥
π

2|ν∗ − ν∗,p|
N ε

)

≤ P

(
1√
N

N∑
n=1

|ym,n| ≥
π

2
Np+ε−1

)
.

We choose p so that p − 1 > 3/2, and use (5.4) to conclude that
P
(
|ξym(ν∗)− ξym(ν∗,p)| > Nε

2

)
converges towards 0 exponentially. This
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establishes (5.6).

In order to complete the proof of Proposition 5.2, we consider an individual
entry ŝij(ν) of Ŝ(ν) for i, j ≤M , and write that

|ŝij(ν)− ŝij(ν + δ)|

=
1

B + 1

∣∣∣∣∣∣
B/2∑

b=−B/2

ξi

(
ν +

b

N

)
ξj

(
ν +

b

N

)∗

− ξi

(
ν + δ +

b

N

)
ξj

(
ν + δ +

b

N

)∗∣∣∣∣
≤ 1

B + 1

B/2∑
b=−B/2

∣∣∣∣ξi(ν +
b

N

)(
ξj

(
ν +

b

N

)∗
− ξj

(
ν + δ +

b

N

)∗)∣∣∣∣
+

∣∣∣∣(ξi(ν +
b

N

)
− ξi

(
ν + δ +

b

N

))
ξj

(
ν + δ +

b

N

)∗∣∣∣∣ .
Using the estimations (5.6) and (5.7), we get:

sup
i,j

sup
δ 6=0

sup
ν∈[0,1]

∣∣∣∣ ŝij(ν)− ŝij(ν + δ)

δ

∣∣∣∣ ≺ N3/2 (5.10)

and deduce (5.3) from the rough bound

sup
ν∈[0,1]

‖Ŝ(ν)− Ŝ(ν + δ)‖ ≤ sup
ν∈[0,1]

sup
i

∑
j

|ŝij(ν)− ŝij(ν + δ)|

≤M sup
ν∈[0,1]

sup
i,j
|ŝij(ν)− ŝij(ν + δ)|.

Combining the eigenvalue localisation result from Corollary 3.3 and the Lip-
schitz behaviour of Ŝ from Proposition 5.2, the following statement holds.

Corollary 5.1. (ν uniform version of Corollary 3.3.) Denote for ε > 0:

ΛŜ
ε =

{
∀ν ∈ [0, 1] : σ(Ŝ(ν)) ⊂ Suppµ

(c)
MP × [s, s̄] + ε

}
ΛD̂
ε =

{
∀ν ∈ [0, 1] : σ(D̂(ν)) ⊂ [s, s̄] + ε

}
.

Then, ΛŜ
ε and ΛD̂

ε hold with exponentially high probability.

Proof. As the proof for ΛD̂
ε is strictly similar to the one of ΛŜ

ε , we will only write

the arguments for ΛŜ
ε . For any fixed ν ∈ [0, 1], Corollary 3.3 ensures that ΛŜ

ε (ν)
holds with exponentially high probability. For p ≥ 1, we still consider the set

VpN defined by (5.8) and denote by ΛŜ
ε,p the event defined by

ΛŜ
ε,p =

{
∀νp ∈ VpN : σ(Ŝ(νp)) ⊂ Suppµ

(c)
MP × [s, s̄] + ε

}
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which is ΛŜ
ε but where ν runs only on the finite grid VpN . It is immediate (by the

union bound) that ΛŜ
ε,p holds with exponentially high probability for any fixed

p ∈ N. Moreover, it is clear from the definitions of ΛŜ
ε and ΛŜ

ε,p that ΛŜ
ε ⊂ ΛŜ

ε,p.
We now show the following inclusion:(

ΛŜ
ε

)c
⊂
(

ΛŜ
ε/2,p

)c
∪

{
∃ν ∈ [0, 1] : ‖Ŝ(ν)− Ŝ(ν∗p)‖ > ε/2 where ν∗p ∈ argmin

νp∈VpN
|ν − νp|

}
.

(5.11)

Suppose that (ΛŜ
ε )c is realized, and denote by ν∗ ∈ [0, 1] a frequency such

that σ(Ŝ)(ν∗) 6⊂ Supp
(c)
MP ×[s, s̄] + ε. Denote also ν∗p ∈ argminνp∈VpN |νp − ν

∗|.
We just consider the case where λ1(Ŝ(ν∗)) > s̄(1 +

√
c)2 + ε, since in the case

where λM (Ŝ(ν∗)) < s(1−
√
c)2 − ε, the proof is similar. Then, either:

1. ‖Ŝ(ν∗p) − Ŝ(ν∗)‖ ≤ ε/2, which implies the following estimation for the

location of λ1(Ŝ(ν∗p)):

λ1(Ŝ(ν∗))− ε

2
≤ λ1(Ŝ(ν∗p)) ≤ λ1(Ŝ(ν∗)) +

ε

2

and in particular, λ1(Ŝ(ν∗p)) ≥ s̄(1+
√
c)2+ε/2. This means that

(
ΛŜ
ε/2,p

)c
holds.

2. ‖Ŝ(ν∗p) − Ŝ(ν∗)‖ > ε/2, which exactly means that{
∃ν ∈ [0, 1] : ‖Ŝ(ν)− Ŝ(ν∗p)‖ > ε/2 where ν∗p ∈ argminνp∈VpN |ν − νp|

}
is realized

(5.11) is now proved.

We already showed that
(

ΛŜ
ε/2,p

)c
holds with exponentially small probability,

and establish now that the set{
∃ν ∈ [0, 1] : ‖Ŝ(ν∗p)− Ŝ(ν)‖ > ε/2 where ν∗p ∈ argmin

νp∈VpN
|ν − νp|

}

has the same property. To justify this claim, we remark that Proposition 5.2
implies that for each κ > 0, the probability

P

[{
∃ν, ν′ ∈ [0, 1],

‖Ŝ(ν)− Ŝ(ν′)‖
|ν − ν′|

> NκMN3/2

}]
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converges to 0 exponentially fast. As the following inclusion{
∃ν ∈ [0, 1],

‖Ŝ(ν)− Ŝ(ν∗p)‖
|ν − ν∗p |

, > NκMN3/2, where ν∗p ∈ argmin
νp∈VpN

|ν − νp|

}

⊂

{
∃ν, ν′ ∈ [0, 1],

‖Ŝ(ν)− Ŝ(ν′)‖
|ν − ν′|

> NκMN3/2

}
holds, we get that

P
[{
∃ν ∈ [0, 1], ‖Ŝ(ν)− Ŝ(ν∗p)‖ > |ν − ν∗p |NκMN3/2

}]
→ 0

exponentially fast. Moreover, as for each ν, |ν − ν∗p | ≤ 1
Np , we obtain that

P

[{
∃ν ∈ [0, 1], ‖Ŝ(ν)− Ŝ(ν∗p)‖ > 1

Np
NκMN3/2

}]
→ 0

exponentially fast as well. For p large enough, Nκ 1
NpMN3/2 will eventually

become smaller than ε/2. This proves that{
∃ν ∈ [0, 1], ‖Ŝ(ν∗p)− Ŝ(ν)‖ > ε/2 where ν∗p ∈ argmin

νp∈VpN
|ν − νp|

}
holds with exponentially small probability.

The same argument can be used in order to control ΛD̂
ε . This completes the

proof of Corollary 5.1.

We deduce immediately from Corollary 5.1 the following result that can be
seen as a refinement of (3.28) and of Lemma 3.1.

Corollary 5.2. It holds that

sup
ν∈[0,1]

‖D̂(ν)−1/2‖ ≺ 1, sup
ν∈[0,1]

‖Ŝ(ν)‖ ≺ 1.

A useful consequence of this is the following Corollary, which states that the
Lipschitz result holds for Ĉ(ν).

Corollary 5.3. It holds that

sup
δ 6=0

sup
ν∈[0,1]

∥∥∥∥∥Ĉ(ν)− Ĉ(ν + δ)

δ

∥∥∥∥∥ ≺MN3/2 (5.12)

Proof. For more clarity in the following argument, denote ν1 = ν and ν2 = ν+δ.
Recall that D̂ = diagŜ. Using the definition of Ĉ from equation (1.3), we write:

Ĉ(ν2)− Ĉ(ν1) = D̂−1/2(ν2)Ŝ(ν2)D̂−1/2(ν2)− D̂−1/2(ν1)Ŝ(ν1)D̂−1/2(ν1)

= (D̂−1/2(ν2)− D̂−1/2(ν1))Ŝ(ν2)D̂−1/2(ν2)

+ D̂−1/2(ν1)(Ŝ(ν2)D̂−1/2(ν2)− Ŝ(ν1)D̂−1/2(ν1)).
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Moreover, we write that

Ŝ(ν2)D̂−1/2(ν2)− Ŝ(ν1)D̂−1/2(ν1)

= (Ŝ(ν2)− Ŝ(ν1))D̂−1/2(ν2) + Ŝ(ν1)(D̂−1/2(ν2)− D̂−1/2(ν1)).

Therefore, applying the operator norm, we get by the triangle inequality:

‖Ĉ(ν2)− Ĉ(ν1)‖ ≤ ‖D̂−1/2(ν2)− D̂−1/2(ν1)‖‖Ŝ(ν2)‖‖D̂−1/2(ν2)‖

+ ‖D̂−1/2(ν1)‖‖Ŝ(ν2)− Ŝ(ν1)‖‖D̂−1/2(ν2)‖

+ ‖D̂−1/2(ν1)‖‖Ŝ(ν1)‖‖D̂−1/2(ν2)− D̂−1/2(ν1)‖

It is easy to check that

sup
δ 6=0

sup
|ν2−ν1|=δ

∥∥∥∥∥D̂−1/2(ν2)− D̂−1/2(ν1)

δ

∥∥∥∥∥ ≺ N3/2

holds. Therefore, Proposition 5.2 and Corollary 5.2 immediately imply (5.12).

Finally, we can write for the spectrum of Ĉ the same kind of result as in
Corollary 5.1.

Corollary 5.4. For each ε > 0, we define ΛĈ
ε as the event

ΛĈ
ε =

{
∀ν ∈ [0, 1] : σ(Ĉ(ν)) ⊂ Suppµ

(c)
MP + ε

}
.

Then, ΛĈ
ε holds with exponentially high probability.

Proof. The proof is similar to the proof of Corollary 5.1 and is thus omitted.

We finally use the above results to prove that ν → 1
M tr f(Ĉ(ν))−

∫
f dµ

(cN )
MP

is MN3/2-Lipschitz with overwhelming probability. For this, we establish the
following Proposition.

Proposition 5.3. It holds that

sup
δ 6=0

sup
ν∈[0,1]

1

|δ|

∣∣∣∣ 1

M
tr f(Ĉ(ν))− 1

M
tr f(Ĉ(ν + δ))

∣∣∣∣ ≺MN3/2. (5.13)

Proof. By Corollary 5.4, the event ΛĈ
ε holds with exponentially high probability.

Therefore, it is sufficient to establish that

1ΛĈ
ε

sup
δ 6=0

sup
ν∈[0,1]

1

|δ|

∣∣∣∣ 1

M
tr f(Ĉ(ν + δ))− 1

M
tr f(Ĉ(ν))

∣∣∣∣ ≺MN3/2

We express 1
M tr f(Ĉ(ν + δ))− 1

M tr f(Ĉ(ν)) as

1

M
tr f(Ĉ(ν + δ))− 1

M
tr f(Ĉ(ν)) =

1

M

M∑
m=1

f(λm(Ĉ(ν + δ)))− f(λm(Ĉ(ν)).
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As f is C∞ on a neighborhood of Supp
(c)
MP , on the set ΛĈ

ε , there exist some

random quantities (λ̃m)1≤m≤M between λm(Ĉ(ν)) and λm(Ĉ(ν+ δ)) such that

1

M

M∑
m=1

f(λm(Ĉ(ν + δ)))− f(λm(Ĉ(ν))

=
1

M

M∑
m=1

(
λm(Ĉ(ν + δ))− λm(Ĉ(ν))

)
f ′(λ̃m).

Using the following eigenvalue inequality for Hermitian matrices:∣∣∣λm(Ĉ(ν + δ))− λm(Ĉ(ν))
∣∣∣ ≤ ‖Ĉ(ν + δ)− Ĉ(ν)‖

in conjunction with the fact that sup1≤m≤M |f ′(λ̃m| is bounded by some nice

constant C on the event ΛĈ
ε , we obtain that

P

[
sup
δ 6=0

sup
ν∈[0,1]

∣∣∣∣∣ 1

M

M∑
m=1

f ′(λ̃m)(λm(Ĉ(ν + δ))− λm(Ĉ(ν))

∣∣∣∣∣
> |δ|NκMN3/2, ΛĈ

ε

]
≤ P

[
sup
δ 6=0

sup
ν∈[0,1]

C‖Ĉ(ν + δ)− Ĉ(ν)‖ > |δ|NκMN3/2, ΛĈ
ε

]

(5.12) eventually leads to (5.13).

5.1.2. Lipschitz constant of ν → r̂N (ν).

The function ν → r̂N (ν) verifies the following property:

Proposition 5.4.

sup
δ 6=0

sup
ν∈[0,1]

1

|δ|
|r̂N (ν + δ)− r̂N (ν)| ≺ N3/(2γ0+1). (5.14)

We just provide the main steps the proof, and left the details to the reader.
We first prove that supν∈[0,1]

∑M
m=1

1
ŝm,L(ν) ≺ 1 by verifying that the set

{∀ν ∈ [0, 1],∀m = 1, . . . ,M, ŝm,L(ν) ∈ [s, s̄] + ε} holds with exponentially
high probability. Then, we establish that ν → ŝm,L(ν) and ν → ŝ′m,L(ν) are

N2/(2γ0+1) Lipschitz and N3/(2γ0+1) Lipschitz with overwhelming probability.
This leads immediately to (5.14).

As vN N
3/(2γ0+1) � MN3/2, Propositions 5.3 and 5.4 lead to (5.2). This

completes the proof of Proposition 5.1.
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5.2. Stochastic domination of supν∈[0,1] |ψN(f, ν)| and

supν∈[0,1] |ψ̂N(f, ν)|

We are now in position to establish the main result of this paper.

Theorem 5.1. supν∈[0,1] |ψN (f, ν)| and supν∈[0,1] |ψ̂N (f, ν)| verify the following
stochastic domination property:

sup
ν∈[0,1]

|ψN (f, ν)| ≺ uN (5.15)

sup
ν∈[0,1]

|ψ̂N (f, ν)| ≺ uN . (5.16)

Proof. We just establish (5.16). We consider ε > 0 and evaluate

P

[
sup
ν∈[0,1]

∣∣∣ψ̂N (f, ν)
∣∣∣ > N εuN

]
.

We denote by ν∗ ∈ [0, 1] an element where the supremum is achieved, and
consider ν∗p the closest element of VpN from ν∗, where we recall that VpN is
defined by (5.8). Therefore, one can write:

P

[
sup
ν∈[0,1]

∣∣∣ψ̂N (f, ν)
∣∣∣ > N εuN

]
≤P

[∣∣∣ψ̂N (f, ν∗)− ψ̂N (f, ν∗p))
∣∣∣ > 1

2
N εuN

]
+

P

[∣∣∣ψ̂N (f, ν∗p)
∣∣∣ > 1

2
N εuN

]
.

(4.52) implies that P
[∣∣∣ψ̂N (f, ν∗p)

∣∣∣ > 1
2N

εuN

]
converges exponentially towards

0. It thus remains to study P
[∣∣∣ψ̂N (f, ν∗)− ψ̂N (f, ν∗p))

∣∣∣ > 1
2N

εuN

]
. For this, we

of course use (5.2), Corollary 5.3, and write that

P

[∣∣∣ψ̂N (f, ν∗)− ψ̂N (f, ν∗p))
∣∣∣ > 1

2
N εuN

]
= P

[∣∣∣∣∣ ψ̂N (f, ν∗)− ψ̂N (f, ν∗p))

ν∗ − ν∗p

∣∣∣∣∣ > 1

2|ν∗ − ν∗p |
N εuN

]

≤ P

[∣∣∣∣∣ ψ̂N (f, ν∗)− ψ̂N (f, ν∗p))

ν∗ − ν∗p

∣∣∣∣∣ > 1

2
NpN εuN

]
.

If we choose p large enough, MN3/2 verifies MN3/2 � NpuN , and

P

[∣∣∣∣ ψ̂N (f,ν∗)−ψ̂N (f,ν∗p ))

ν∗−ν∗p

∣∣∣∣ > 1
2N

pN εuN

]
converges towards 0 exponentially as ex-

pected. This completes the proof of (5.16).
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6. Numerical simulations

In this section we examine the impact of the correction quantity rN (ν)φN (f)vN
when α > 2

3 and see how it improves the estimation of the LSS 1
M tr f(Ĉ(ν)).

More precisely, we start by examining the behaviour of the LSS∣∣∣∣ 1

M
tr f(Ĉ(ν))−

∫
R
f dµ

(cN )
MP

∣∣∣∣
and the impact of the corrective term(

1

M

M∑
m=1

s′m(ν)

sm(ν)

)2

φN (f)

 1

B + 1

B/2∑
b=−B/2

(
b

N

)2

= rN (ν)φN (f)vN

(
1

M

M∑
m=1

ŝ′m(ν)

ŝm(ν)

)2

φN (f)

 1

B + 1

B/2∑
b=−B/2

(
b

N

)2

= r̂N (ν)φN (f)vN .

under H0. We recall that φN (f) is the deterministic term defined as the action
of f on the compactly supported distribution DN , whose Stieltjes transform is:

pN (z) = − cN (ztN (z)t̃N (z))3

1− cN (ztN (z)t̃N (z))2
.

Motivated by [28], we consider f(λ) = (λ− 1)2 where it can be verified with a
bit of algebra and residue calculus that∫

R
f(λ) dµ

(cN )
MP (λ) = cN .

and φN (f) = cN . Take yn generated by the following simple model:

yn+1 = Ayn + εn (6.1)

where (εn)n∈Z is an independent sequence of NC(0, IM ) distributed random vec-
tors, and where A is the diagonal matrix defined by A = θ IM for θ ∈ C such that
|θ| < 1. Under (6.1), each time series are independent AR(1) processes. In Figure
1 is represented on the left the values of the LSS associated to f(λ) = (λ− 1)2

for each ν ∈ (0, 1) when (N,B,M,L) = (10119, 1600, 800, 21) (so α = 0.8 and
c = 1/2) and θ = 0.4, where we recall that L represent the lag window size in
the estimation of r̂N (ν).. We see that the correction term captures the major-
ity of the deviation of the LSS from zero. Moreover, the correction where the
spectral densities sm and s′m are estimated still provide a good approximation
of the O(BN )2 term. On the right side is represented the LSS against ψN (f, ν)

and ψ̂N (f, ν). We again observe that the majority of the deviation from zero
of the LSS is corrected by the O(BN )2 terms. Around ν = ±0.1, the corrections
precision seems degraded. This can be understood since ν = ±0.1 corresponds
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Fig 1. Linear Spectral Statistics vs the correction term. f(λ) = (λ − 1)2, (N,B,M,L) =
(10119, 1600, 800, 21), and θ = 0.4.

to peaks in s′m, which leads to greater estimation errors for ŝ′m at this frequency
than for the other ones.

We now check the derived speed of convergence towards zero in Theorem 5.1,
and more precisely that the following estimations hold true:

sup
ν∈[0,1]

∣∣∣∣ 1

M
tr f(Ĉ(ν))−

∫
R
f dµ

(cN )
MP

∣∣∣∣ = O
(

1

B

)
11/2≤α≤2/3 +O

(
B

N

)2

1α≥2/3

sup
ν∈[0,1]

|ψ(f, ν)| = O(uN )

and we abbreviate 1
M tr f(Ĉ(ν)) −

∫
R f dµ

(cN )
MP by LSS(f, ν). In the following

we take c = M
B+1 = 1

2 and α = 4/5. In this case we recall that uN = O(BN )3.
On the left of Figure 2 is represented for M ∈ {20, 30, . . . , 1500} the value of

supν∈[0,1] |LSS(f, ν)| against supν∈[0,1] |ψ(f, ν)| and supν∈[0,1] |ψ̂(f, ν)|. On the

right of Figure 2 we rescale all quantities by (NB )2 and observe, in accordance
with Theorem 4.1 that LSS(f, ν) remains O(1) while the corrected quanti-
ties are o(1). Eventually, on Figure 3 are represented supν∈[0,1] |ψ(f, ν)| and

supν∈[0,1] |ψ̂(f, ν)| rescaled by (NB )3, and observe that these quantities are now
O(1), again in accordance with Theorem 4.1.

Eventually on Figure 4 is represented 20000 realisations of the

LSS supν∈FN

∣∣∣ 1
M tr f(Ĉ(ν))−

∫
f dµ

(cN )
MP

∣∣∣ against its improved estimations

supν∈FN |ψN (f, ν)| and supν∈FN |ψ̂N (f, ν)|. We see that the oracle corrected
statistics ψ(f, ν) is more concentrated around 0, and that its estimated counter-

part ψ̂(f, ν) is close to ψ(f, ν) but exhibits more spread due to the additional
estimation step of the ŝm(ν).

Appendix A: Appendix

A.1. Proof of Lemma A.1

Lemma A.1 is a slight variation of Theorem 4.3.2 [4].
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Fig 2. supν∈FN

∣∣∣ 1
M

tr f(Ĉ(ν))−
∫
f dµ

(cN )
MP

∣∣∣ against supν∈FN ψN (f, ν) and

supν∈FN ψ̂N (f, ν) as functions of M . On the right the quantities are rescaled by (N
B

)2.
α = 0.8, c = 1/2, θ = 0.4

0 200 400 600 800 1000 1200 1400
M
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Fig 3. supν∈FN ψN (f, ν) and supν∈FN ψ̂N (f, ν) rescaled by (N
B

)3 as functions of M . α = 0.8,
c = 1/2, θ = 0.4.

Lemma A.1. For any ν1 and ν2 in [0, 1], such that there exists k ∈
{0, 1, . . . , N − 1} satisfying ν2 − ν1 = k/N , the following bound holds:

sup
m≥1
|E [ξym(ν1)ξym(ν2)∗]− sm(ν1)δν1=ν2 | = O

(
1

N

)
. (A.1)
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Fig 4. supν∈FN |
1
M

tr f(Ĉ(ν)) −
∫
f dµ

(cN )
MP | against supν∈FN |ψN (f, ν)| and

supν∈FN |ψ̂N (f, ν)|. (N,B,M,L) = (4254, 800, 400, 16), θ = 0.4.

Proof.

E [ξym(ν1)ξym(ν2)∗]

=
1

N

N∑
n1,n2=1

E[ym,n1y
∗
m,n2

]e−2iπ(n1−1)ν1e2iπ(n2−1)ν2

=
1

N

N∑
n1,n2=1

rm,n1−n2
e−2iπ(n1−1)ν1+2iπ(n2−1)ν2

=
1

N

(N−1)∑
u=−(N−1),n1,n2∈0,...,N−1

rm,u
∑

n1−n2=u

e−2iπn1ν1+2iπn2ν2

Splitting this expression for u = 0, u > 0 and u < 0 provides

E[ξym(ν1)ξym(ν2)∗] =
1

N
rm,0

N−1∑
n1=0

e−2iπn1(ν2−ν1)

+
1

N

(N−1)∑
u=1

rm,u

N−1−u∑
n2=0

e−2iπ(u+n2)ν1e2iπn2ν2

+
1

N

−1∑
u=−(N−1)

rm,u

N−1∑
n2=−u

e−2iπ(u+n2)ν1e2iπn2ν2 . (A.2)

The first term of the right hand side of (A.2) can be computed in the case
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ν1 = ν2:

1

N
rm,0

N−1∑
n1=0

e−2iπn1(ν2−ν1) = rm,0

and in the case ν1 6= ν2,

1

N
rm,0

N−1∑
n1=0

e−2iπn1
k
N = 0.

Therefore, the first term of the right hand side of (A.2) is equal to rm,0δν1=ν2 .
Consider now the second term of (A.2) (where u > 0):

1

N

N−1∑
u=1

rm,u

N−1−u∑
n2=0

e−2iπ(u+n2)ν1e2iπn2ν2

=
1

N

N−1∑
u=1

rm,ue
−2iπuν1

N−1−u∑
n2=0

e−2iπn2(ν2−ν1). (A.3)

The right hand side of (A.3) can also be explicitly written in the case ν1 = ν2

:

1

N

N−1∑
u=1

rm,ue
−2iπuν1

N−1−u∑
n2=0

e−2iπn2(ν2−ν1)

=
1

N

N−1∑
u=1

rm,ue
−2iπuν1(N − u)

=

N−1∑
u=1

rm,ue
−2iπuν1

N − u
N

=

N−1∑
u=1

rm,ue
−2iπuν1 − 1

N

N−1∑
u=1

u rm,ue
2iπuν1 .

By Assumption 1.4, supm≥1

∑
u∈Z |u||rm,u| < +∞, so we have:

sup
m≥1

1

N

∣∣∣∣∣
N−1∑
u=1

u rm,ue
2iπuν1

∣∣∣∣∣ = O
(

1

N

)
.

Therefore:

sup
m≥1

∣∣∣∣∣ 1

N

N−1∑
u=1

rm,ue
−2iπuν1

N−1−u∑
n2=0

e−2iπn2(ν2−ν1) −
N−1∑
u=1

rm,ue
−2iπuν1

∣∣∣∣∣ = O
(

1

N

)
.

(A.4)

In the case where ν1 6= ν2, note that ν1 − ν2 = k/N with k 6= 0, therefore:

N−1∑
n2=0

e−2iπn2(ν2−ν1) =

N−1∑
n2=0

e−2iπn2
k
N = 0. (A.5)
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Using (A.5), one can rewrite the right hand side of (A.3) as∣∣∣∣∣ 1

N

N−1∑
u=1

rm,ue
−2iπuν1

N−1−u∑
n2=0

e−2iπn2(ν2−ν1)

∣∣∣∣∣
=

∣∣∣∣∣− 1

N

N−1∑
u=1

rm,ue
−2iπuν1

N∑
n2=N−u

e−2iπn2(ν2−ν1)

∣∣∣∣∣
≤ 1

N

N−1∑
u=1

|u||rm,u|

which, again by Assumption 1.4, provides the bound:

sup
m≥1

∣∣∣∣∣ 1

N

N−1∑
u=1

rm,ue
−2iπuν1

N−1−u∑
n2=0

e−2iπn2(ν2−ν1)

∣∣∣∣∣ = O
(

1

N

)
. (A.6)

Combining (A.4) and (A.6), the second term of the right hand side of (A.2)
can be estimated as follow:

sup
m≥1

∣∣∣∣∣∣ 1

N

(N−1)∑
u=1

rm,ue
−2iπuν1

N−1−u∑
n2=0

e−2iπn2(ν2−ν1) − δν1=ν2

N−1∑
u=1

rm,ue
−2iπuν1

∣∣∣∣∣∣
= O

(
1

N

)
.

The term for u < 0 in equation (A.2) is similar. Gathering the three terms
of equation (A.2) leads to

sup
m≥1

∣∣∣∣∣∣E[ξym(ν1)ξym(ν2)∗]− δν1=ν2

 N−1∑
u=−(N−1)

rm,ue
−2iπuν1

∣∣∣∣∣∣ = O
(

1

N

)
.

(A.7)
Eventually, using again Assumption 1.4 we have:∣∣∣∣∣∣

∑
|u|>N

rm(u)e−2iπuν1

∣∣∣∣∣∣ ≤ 1

N

∑
|u|>N

|u||rm(u)| = O
(

1

N

)
.

Inserting this into equation (A.7), we obtain equation (A.1)

A.2. Proof of Lemma 3.1

Proof. Consider the complement of the event ΛD̂
ε (ν) and notice that:

ΛD̂
ε (ν)c ⊂ {∃m ∈ {1, . . . ,M} : ŝm > s̄+ ε} ∪ {∃m ∈ {1, . . . ,M} : ŝm < s− ε}.

(A.8)



P. Loubaton and A. Rosuel/Coherency matrices of high-dimensional time series 69

We start by proving that the first set of the right hand side of (A.8) holds
with is exponentially small probability, ie. for any ε > 0, there exist γ > 0 such
that:

P [∃m ∈ {1, . . . ,M} : ŝm > s̄+ ε] ≤ exp−Nγ .

By Lemma A.2 (see below), |Eŝm − sm| = O(B2/N2) so for N large enough,
this biais term will be smaller than ε/2. Moreover, for any m ∈ {1, . . . ,M},
sm − s̄ ≤ 0. Therefore, one can write for large enough N :

P [∃m ∈ {1, . . . ,M} : ŝm > s̄+ ε]

= P

[
sup

m∈{1,...,M}
(ŝm − Eŝm + Eŝm − sm + sm − s̄) > ε

]

≤ P

[
sup

m∈{1,...,M}
|ŝm − Eŝm| > ε/2

]

which holds with exponentially high probability by Lemma A.3 (see below). The
proof for the lower bound is similar.

It remains to prove Lemma A.2 and Lemma A.3. Concerning the proof of
Lemma A.2, we follow the same approach as the one used in Theorem 5.4.2 in
[4].

Lemma A.2. For any ν ∈ [0, 1], the following results hold:

E(ŝm(ν))− sm(ν) =
s′′m(ν)

2
vN +O

((
B

N

)3

+
1

N

)
(A.9)

and

sup
m=1,...,M

|Eŝm(ν)− sm(ν)| = O
(
B

N

)2

. (A.10)

Proof. It is clear that ŝm(ν) = Ŝm,m(ν) = sm(ν)C̃m,m(ν) can be written as

ŝm(ν) = sm(ν)
xm(I + Φm)x∗m

B + 1
. (A.11)

Therefore, E(ŝm(ν)) = sm(ν)(1 + 1
B+1 tr Φm). (A.9) thus follows immediately

from (3.9). (A.10) is an immediate consequence of (A.9).

Lemma A.3. The family of random variables supm=1,...,M |ŝm(ν) −
E[ŝm(ν)]|, ν ∈ [0, 1] verifies

sup
m=1,...,M

|ŝm − E[ŝm]| ≺ 1√
B
. (A.12)

Proof. (A.11) implies that ŝm − E[ŝm] can be written as ŝm − E[ŝm] =

sm

(
xm(I+Φm)x∗m

B+1 − 1
B+1Tr(I + Φm)

)
. It is clear that supm ‖

(I+Φm)
B+1 ‖F ≤

C
B for

some nice constant C. Therefore, (A.12) leads immediately to (2.17) .
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A.3. Proof of Lemma 3.3

Proof. These estimates can be proved in a compact way by using the calculus
rules available in the stochastic domination framework introduced in Definition
2.1 and proved in Lemma 2.1. Using Lemma 3.2 and Lemma A.4 (see below):∣∣∣∣ 1√

ŝm
− 1
√
sm

∣∣∣∣ =

∣∣∣∣√sm −√ŝm√
sm
√
ŝm

∣∣∣∣
≤
∣∣∣√sm −√ŝm∣∣∣︸ ︷︷ ︸
O≺( 1√

B
+B2

N2 )

×
∣∣∣∣√ 1

sm

∣∣∣∣︸ ︷︷ ︸
O≺(1)

×
∣∣∣∣√ 1

ŝm

∣∣∣∣︸ ︷︷ ︸
O≺(1)

≺ 1√
B

+
B2

N2
.

The second inequality is similar to prove:∣∣∣∣√sm
ŝm
− 1

∣∣∣∣ =

∣∣∣∣√sm −√ŝm√
ŝm

∣∣∣∣
≤ |sm − ŝm|︸ ︷︷ ︸
O≺( 1√

B
+B2

N2 )

×
∣∣∣∣ 1

ŝm(
√
sm + ŝm)

∣∣∣∣︸ ︷︷ ︸
O≺(1)

≺ 1√
B

+
B2

N2
.

Lemma A.4. The family of random variables (supm=1,...,M |ŝm(ν) − sm(ν)|),
ν ∈ [0, 1] verifies

sup
m=1,...,M

|ŝm − sm| ≺
1√
B

+
B2

N2
.

Proof. It is sufficient to check that the family of random variables (|ŝm −
sm|)m=1,...,M , ν ∈ [0, 1] verifies |ŝm − sm| ≺ 1√

B
+ B2

N2 . Using Lemma A.2 and

Lemma A.3, we obtain as expected that

|ŝm − sm| = |sm − Eŝm + Eŝm − ŝm| ≤ |sm − Eŝm|︸ ︷︷ ︸
O(B

2

N2 )

+ |Eŝm − ŝm|︸ ︷︷ ︸
O≺( 1√

B
)

≺ 1√
B

+
B2

N2
.

A.4. Proof of Lemma A.5

Lemma A.5. The set of random variable (
∑M
m=1 |ŝm(ν)− sm(ν)|2), ν ∈ [0, 1]

verifies
M∑
m=1

|ŝm − sm|2 ≺ 1 +
B5

N4
.
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Proof. Using Lemma A.4, we have

|ŝm − sm|2 ≺
1

B
+
B4

N4

and summing over m = 1 . . .M , one immediately get:

M∑
m=1

|ŝm − sm|2 ≺ 1 +
B5

N4
.

A.5. Proof of Lemma 4.5

. We express ∆̃ as ∆̃ = XΓ∗

B+1 + ΓX∗

B+1 + ΓΓ∗

B+1 . Therefore, we have

‖∆̃‖k ≤ C

(∥∥∥∥ X√
B + 1

∥∥∥∥k ∥∥∥∥ Γ√
B + 1

∥∥∥∥k +

∥∥∥∥ ΓΓ∗

B + 1

∥∥∥∥k
)
.

Using the Schwartz inequality, we obtain that

E‖∆̃‖k ≤ C

(E

∥∥∥∥ XX∗

B + 1

∥∥∥∥k
)1/2(

E

∥∥∥∥ ΓΓ∗

B + 1

∥∥∥∥k
)1/2

+ E

∥∥∥∥ ΓΓ∗

B + 1

∥∥∥∥k
 .

It is well-known that E

(∥∥∥XX∗

B+1

∥∥∥k) ≤ C for some nice constant depending on k.

Therefore, we establish that

E

∥∥∥∥ ΓΓ∗

B + 1

∥∥∥∥k ≤ C (BN
)2k

a property which will imply that E‖∆̃‖k ≤ C
(
B
N

)k
. For this, we put Z = ΓΓ∗

B+1 .

As (3.17) holds, it remains to verify that E(‖Z−E(Z)‖k) = O
(
B
N

)2k
. For this, we

use the concentration inequality (3.23). We choose tN = w1/k(BN )2, and obtain
that

P

[
‖Z− E(Z)‖

(BN )2
> w1/k

]
≤ 2C0 exp−CB(w1/k − w1/k

0 ) (A.13)

for some w0 > 0. If we denote by zN the random variable zN =
(
‖Z−E(Z)‖

(BN )2

)k
,

we have to establish that E(zN ) = O(1). For this, we express E(zN ) as

E(zN ) =

∫ +∞

0

P(zN > w) dw =

∫ w0

0

P(zN > w)dw +

∫ +∞

w0

P(zN > w) dw.

As P(zN > w) = P(z
1/k
N > w1/k), (A.13) immediately implies that E(zN ) =

O(1).
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A.6. Proof of Lemma 4.6

We denote by ηm the term of interest, i.e. ηm = E(wmAW∗Qem). ηm can be
written as

ηm =
∑
n1

∑
n2,m′

E(Wm,n2Wm′,n1Qm′,m)An2,n1

 .

The integration by part formula (2.8) leads to

E(Wm,n2
Wm′,n1

Qm′,m) =

δm−m′δn1−n2

1

B + 1
E(Qm,m)− 1

B + 1
E
[
Wm′,n1

(QW)m′,n2
Qm,m

]
.

Therefore, we obtain that∑
n2,m′

E(Wm,n2
Wm′,n1

Qm′,m)An2,n1

=
1

B + 1
E(Qm,m)An1,n1 −

1

B + 1
E [(W∗QWA)n1,n1Qm,m]

and that

ηm = E[Qm,m]
1

B + 1
tr A− E

[(
1

B + 1
tr W∗QWA

)
Qm,m

]
= β

1

B + 1
tr A− β E

(
1

B + 1
tr W∗QWA

)
− E

[(
1

B + 1
tr W∗QWA

)◦
Q◦m,m

]
. (A.14)

In order to evaluate E
(

1
B+1 tr W∗QWA

)
, we remark that

E

(
1

M
tr W∗QWA

)
=

1

M

M∑
m=1

ηm

= β
1

B + 1
tr A− β cE

(
1

M
tr W∗QWA

)
−

E

[(
1

B + 1
tr W∗QWA

)◦
1

M
tr Q◦

]
from which we deduce that

E

(
1

M
tr W∗QWA

)
=

β

1 + βc

1

B + 1
tr A

− 1

1 + βc
E

[(
1

B + 1
tr W∗QWA

)◦
1

M
tr Q◦

]
.

Plugging this relation into (A.14) leads immediately to (4.45).



P. Loubaton and A. Rosuel/Coherency matrices of high-dimensional time series 73

References

[1] Bai, Z. and Silverstein, J. W. (2010). Spectral analysis of large dimen-
sional random matrices 20. Springer.

[2] Benaych-Georges, F. and Knowles, A. (2016). Lectures on the local
semicircle law for Wigner matrices. arXiv preprint arXiv:1601.04055.
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champ magnétique et équation de Harper. In Schrödinger operators 118–
197. Springer.

[19] Himdi, K. E. and Roy, R. (1997). Tests for noncorrelation of two multi-
variate ARMA time series. Canadian Journal of Statistics 25 233–256.

[20] Hong, Y. (1996). Testing for independence between two covariance sta-
tionary time series. Biometrika 83 615–625.

[21] Jiang, T. (2004a). The limiting distributions of eigenvalues of sample cor-
relation matrices. Sankhya: The Indian Journal of Statistics 66 35–48.

[22] Jiang, T. (2004b). The asymptotic distributions of the largest entries of
sample correlation matrices. Ann. Appl. Probab. 14(2) 865–880.

[23] Jiang, T. and Yang, F. (2013). Central limit theorems for classical likeli-
hood ratio tests for high-dimensional distributions. Ann. of Stats. 41 2029–
2074.

[24] Koch, P. D. and Yang, S.-S. (1986). A method for testing the inde-
pendence of two time series that accounts for a potential pattern in the
cross-correlation function. Journal of the American Statistical Association
81 533–544.

[25] Li, W. and Hui, Y. (1994). Robust residual cross correlation tests for
lagged relations in time series. Journal of Statistical Computation and Sim-
ulation 49 103–109.

[26] Loubaton, P. (2016). On the almost sure location of the singular values
of certain Gaussian block-Hankel large random matrices. J. Theor. Prob. 4
1339-1443.

[27] Loubaton, P., Rosuel, A. and Vallet, P. (2021). On the asymptotic
distribution of the maximum sample spectral coherence of Gaussian time
series in the high dimensional regime. Preprint arXiv:2107.02891.

[28] Mestre, X. and Vallet, P. (2017). Correlation tests and linear spectral
statistics of the sample correlation matrix. IEEE Transactions on Informa-
tion Theory 63 4585–4618.

[29] Pan, G., Jiti, G. and Yanrong, Y. (2014). Testing independence among
a large numbers of high-dimensional random vectors. J. Amer. Stat. Assoc.
109 600-612.

[30] Pastur, L. and Shcherbina, M. (2011). Eigenvalue Distribution of Large
Random Matrices. Mathematical Surveys and Monographs, AMS.

[31] Rosuel, A., Vallet, P., Loubaton, P. and Mestre, X. (2021). On the
detection of low-rank signal in the presence of spatially uncorrelated noise:
a frequency domain approach. Preprint . arXiv:2106.12815.

[32] Rudelson, M., Vershynin, R. et al. (2013). Hanson-Wright inequality
and sub-gaussian concentration. Electronic Communications in Probability
18.

[33] Taniguchi, M., Puri, M. L. and Kondo, M. (1996). Nonparametric
approach for non-Gaussian vector stationary processes. Journal of Multi-
variate Analysis 56 259–283.

[34] Tao, T. (2011). Topics in random matrix theory. Graduate Studies in
Mathematics 132.

[35] Wahba, G. (1971). Some tests of independence for stationary multivariate



P. Loubaton and A. Rosuel/Coherency matrices of high-dimensional time series 75

time series. Journal of the Royal Statistical Society: Series B (Methodolog-
ical) 33 153–166.


	Introduction
	The addressed problem and the results
	Motivation
	On the literature
	General approach
	Assumptions and general notations
	Overview of the paper

	Useful technical tools
	Stochastic domination
	Properties of the eigenvalues and of the resolvent of large Wishart matrices
	Concentration of the largest and the smallest eigenvalues
	Asymptotic behaviour of the resolvent of 

	Concentration of functionals of Gaussian entries
	Hanson-Wright inequality
	Helffer-Sjöstrand formula

	Stochastic representations of C tilde (nu) and C hat (nu)
	Step 1: Stochastic representation of C tilde
	Step 2: Estimates for s m tilde (nu) 
	Step 3: Stochastic representation of C hat

	Stochastic domination of the family 
	Step 1: Evaluation of 
	Step 2: Evaluation of 
	Step 3: Evaluation of 
	Reduction to the study of  
	Proof of Lemma 4.2 and Lemma 4.4

	Step 4: evaluation of 
	Estimation of 

	Use of Lipschitz properties of functions 
	Lipschitz properties
	Lipschitz constant of 
	Lipschitz constant of .

	Stochastic domination of  and 

	Numerical simulations
	Appendix
	Proof of Lemma A.1
	Proof of Lemma 3.1
	Proof of Lemma 3.3
	Proof of Lemma A.5
	Proof of Lemma 4.5
	Proof of Lemma 4.6

	References

