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Université Paris-Est Marne la Vallée, France

e-mail: alexis.rosuel@univ-eiffel.fr; philippe.loubaton@univ-eiffel.fr

Abstract: The asymptotic behaviour of Linear Spectral Statistics (LSS)
of the smoothed periodogram estimator of the spectral coherency matrix
of a complex Gaussian high-dimensional time series (yn)n∈Z with indepen-
dent components is studied under the asymptotic regime where both the
dimension M of y and the smoothing span of the estimator grow to infinity
at the same rate. It is established that the estimated spectral coherency
matrix is close from the sample covariance matrix of an independent iden-
tically NC(0, IM ) distributed sequence, and that its empirical eigenvalue
distribution converges towards the Marcenko-Pastur distribution. This al-
lows to conclude that each LSS has a deterministic behaviour that can be
evaluated explicitely. Using concentration inequalities, it is shown that the
order of magnitude of the deviation of each LSS from its deterministic ap-
proximation is of the order of M

N
where N is the sample size. Numerical

simulations suggest that these results can be used to test whether a large
number of time series are uncorrelated or not.
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4.1 Step 1: proof of (4.2) . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Reduction to the study of
∫
D dz ∂Φk(f)(z)

∑M
m=1(Q+

zQ2)mm

(
1− ‖xm‖

2
2

B+1

)
. . . . . . . . . . . . . . . . . 32

4.1.2 Proof of Lemma 4.1 and Lemma 4.2 . . . . . . 39

4.2 Step 2: Lipschitz argument . . . . . . . . . . . . . . . . . 52

4.3 Step 3: Extension to ν ∈ [0, 1] . . . . . . . . . . . . . . . . 57

5 Applications and numerical simulation . . . . . . . . . . . . . 59

5.1 Definition of the test statistics . . . . . . . . . . . . . . 59

5.2 Signal model for the alternative . . . . . . . . . . . . . . 60

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1 Proof of Lemma A.1 . . . . . . . . . . . . . . . . . . . . . 65

A.2 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . 68

A.3 Proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . 71

A.4 Proof of Lemma A.5 . . . . . . . . . . . . . . . . . . . . . 71

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

1. Introduction

1.1. The addressed problem and the results

We consider a M–variate zero-mean complex Gaussian stationary time series 1

(yn)n∈Z and assume that the samples y1, . . . ,yN are available. We introduce

the traditional frequency smoothed periodogram estimate Ŝ(ν) of the spectral
density of y at frequency ν defined by

Ŝ(ν) =
1

B + 1

B/2∑
b=−B/2

ξy

(
ν +

b

N

)
ξy

(
ν +

b

N

)∗
(1.1)

where B is an even integer, which represents the smoothing span, and

ξy(ν) =
1√
N

N∑
n=1

yne
−2iπ(n−1)ν (1.2)

1any finite linear combination x of the components of (yn)n∈Z is a complex Gaussian
random variable, i.e. Re(x) and Im(x) are independent zero-mean Gaussian random variables
having the same variance
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is the renormalized Fourier transform of (yn)n=1...,N . The corresponding esti-
mated spectral coherency matrix is defined as:

Ĉ(ν) = diag
(
Ŝ(ν)

)− 1
2

Ŝ(ν)diag
(
Ŝ(ν)

)− 1
2

(1.3)

where diag(Ŝ(ν)) = Ŝ(ν) � IM , with � denoting the Hadamard product (ie.
entrywise product) and IM is the M–dimensional identity matrix. Under the
hypothesis H0 that the M components (y1,n)n∈Z, . . . , (yM,n)n∈Z of y are mutu-
ally uncorrelated, we evaluate the behaviour of certain Linear Spectral Statistics
(LSS) of the eigenvalues of Ĉ(ν) in asymptotic regimes where N → +∞ and
both M = M(N) and B = B(N) converge towards +∞ in such a way that

M(N) = O(Nα) for α ∈ (1/2, 1) and cN = M(N)
B(N) → c where c ∈ (0, 1). It

is established that if µ
(c)
MP represents the Marcenko-Pastur distribution with

parameter c < 1 defined by

dµ
(c)
MP (λ) =

√
(λ+ − λ)(λ− λ−)

2πcλ
1λ∈[λ−;λ+](λ) dλ, λ± = (1±

√
c)2

then, for each function f defined on R+ with enough continuous derivatives in

a neighbourhood of the support [λ−;λ+] of µ
(c)
MP , it holds that for each ε > 0,

there exist a γ(ε) := γ > 0 such that:

P

[
sup
ν∈[0,1]

∣∣∣∣ 1

M
Tr
(
f(Ĉ(ν))

)
−
∫
R+

f dµ
(cN )
MP

∣∣∣∣ > N εB

N

]
≤ exp−Nγ (1.4)

In other words, under H0, uniformly w.r.t. the frequency ν, 1
MTr

(
f(Ĉ(ν))

)
behaves as

∫
R f dµ

(cN )
MP , and with high probability, the order of magnitude

of the corresponding error is not larger than B
N = O( 1

N1−α ). Our approach

is based on the observation that in the above asymptotic regime, Ŝ(ν) can
be interpreted as the sample covariance matrix of the large vectors (ξy(ν +
b/N))b=−B/2,...,B/2. Classical time series analysis results suggest that the vec-
tors (ξy(ν+b/N))b=−B/2,...,B/2 appear as ”nearly” i.i.d. zero mean complex ran-
dom vectors with covariance matrix S(ν) where S(ν) = Diag (s1(ν), . . . , sM (ν))
and (sm)m=1,...,M represent the spectral densities of the scalar time series

((ym,n)n∈Z)m=1,...,M . Ĉ(ν) can be interpreted as the sample autocorrelation
matrix of the above vectors. As it is well known that the empirical eigenvalue
distribution of the sample autocorrelation matrix of i.i.d. large random vectors
converges towards the Marcenko-Pastur distribution (see e.g. [22]), it is not sur-

prising that 1
MTr

(
f(Ĉ(ν))

)
behaves as

∫
R+ f dµ

(cN )
MP . Our main results are thus

obtained using tools borrowed from large random matrix theory (see e.g. [27],
[1]) and from frequency domain time series analysis techniques (see e.g. [5]).
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1.2. Motivation

This paper is motivated by the problem of testing whether the components
of y are uncorrelated or not when the dimension M of y is large. For this, a
possible way would be to estimate the spectral coherency matrix, equal to IM
at each frequency ν under H0, by the standard estimate Ĉ(ν) defined by (1.3)
for a relevant choice of B, and to compare, for example, the supremum over ν
of the spectral norm ‖Ĉ(ν) − IM‖ to a threshold. In order to understand the
conditions under which such an approach should provide satisfying results, we
mention that under some mild extra assumptions, it can be shown that

sup
ν
‖Ŝ(ν)− S(ν)‖ a.s.−−−−−→

N→+∞
0

as well as

sup
ν
‖Ĉ(ν)− IM‖

a.s.−−−−−→
N→+∞

0

in asymptotic regimes where N,B,M converge towards +∞ in such a way that
B
N → 0 and M

B → 0. Therefore, Ĉ(ν) is likely to be close from IM for each ν if

both B
N and M

B are small enough. However, if M is large and that the number
of available samples N is not arbitrarily large w.r.t. M , it may be impossible
to choose the smoothing span B in such a way that B

N � 1 and M
B � 1. In

such a context, the predictions provided by the asymptotic regime B
N → 0 and

M
B → 0 will not be accurate, and any test comparing Ĉ(ν) to IM for each ν will
provide poor results. In order to solve this issue, we propose to choose B of the
same order of magnitude than M . In this case, Ĉ(ν) has of course no reason
to be close from IM for each ν. If M

N , or equivalently if B
N is small enough, the

asymptotic regime presented in Paragraph 1.1 appears relevant to understand
the behaviour of Ĉ(ν). We mention in particular that the condition α > 1/2
implies that the rate of convergence of M

N towards 0 is moderate, which is in
accordance with practical situations in which the sample size is not arbitrarily
large. Our asymptotic results thus suggest that if M

N is small enough and if B
is chosen of the same order of magnitude than M , then it seems reasonable to
test that the components of y are uncorrelated by comparing

sup
ν

∣∣∣∣ 1

M
Tr
(
f(Ĉ(ν)

)
−
∫
R+

f dµ
(cN )
MP

∣∣∣∣
to a well chosen threshold for some smooth function f . We also notice that
the most usual asymptotic regime considered in the context of large random
matrices is M → +∞, N → +∞ in such a way that M

N converges towards a
non zero constant. This is because the quantity of interest of the corresponding
papers is very often the empirical covariance matrix

R̂N =
1

N

N∑
n=1

yny∗n (1.5)
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However, when the multivariate time series (yn)n∈Z is not supposed to be

i.i.d., the study of R̂N is of course not sufficient in order to test that
(y1,n)n∈Z, . . . , (yM,n)n∈Z are uncorrelated or not. The construction of test statis-
tics that are functions of the spectral density and spectral coherency estimates
(1.1,1.3) appears much more relevant in this context. However, it is clear that
it would be hard to expect the derivation of positive results concerning the
asymptotic behaviour of functionals of these estimates when M

N does not con-
verge towards 0. We finally remark that our asymptotic regime is similar to the
regime studied in [4], devoted to the use of shrinkage methods to improve the
performance of the spectral density estimate (1.1) when M is large. We thus
refer the reader to [4] for other arguments motivating this regime.

1.3. On the literature

The problem of testing whether various jointly stationary and jointly Gaussian
time series are uncorrelated is an important problem that was extensively ad-
dressed in the past. Apart a few works that will be discussed later, almost all the
previous contributions addressed the case where the number M of available time
series remains finite when the sample size increases. We first review a few related
examples of previous works. Two classes of methods were mainly studied. The
first class use lag domain approaches based on the observation that M jointly
stationary time series (y1,n)n∈Z, . . . , (yM,n)n∈Z are mutually uncorrelated if and
only if for each integer L, the covariance matrix of the ML dimensional vector

y
(L)
n defined by

y(L)
n = (y1,n, . . . , y1,n+L−1, . . . , yM,n, . . . , yM,n+L−1)T

is block diagonal. The lag domain approach was in particular used in [17] in
conjunction with a prewithening of each time series. In this paper, M = 2
and the two time series are supposed to be ARMA series. The coefficients of
the ARMA models are estimated, as well as their corresponding innovation
sequences u1,n and u2,n for n = 1, . . . , N , and the cross correlation coefficients
between u1 and u2 at lags −(L − 1), . . . , (L − 1) where L is a fixed integer. If
r̂1,2(l) represents the estimated cross correlation coefficient at lag l defined by

r̂1,2(l) =

∑N
t=l+1 û1,tû2,t−l(∑N

t=1 û
2
1,t

)1/2 (∑N
t=1 û

2
2,t

)1/2

where ûi,n represents the estimator of ui,n, then [17] introduced the statistics

QL = N

L−1∑
l=−(L−1)

r̂2
1,2(l)

and established that it is asymptotically chi-square distributed under H0. This
idea has been extended and improved in the following decades, see e.g. [24],
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[25], [19]. [20] generalized the approach of [17] to non ARMA time series.
The main idea was to replace the estimated innovation processes by order
pN prediction errors where pN converges towards ∞ at certain rate when
N → +∞, and to replace the fixed integer L by a sequence (L(N))N≥1

converging towards ∞ at a well chosen rate. The test statistics QL was also
modified by introducing a kernel, a deterministic recentering term, as well
as a well chosen renormalization. Duchesne and Roy [8] robustified Hong’s
statistics by applying the methodology of [25]. We finally mention the more
direct approach of [12], valid when the two time series are multivariate, and
that did not use any prewhitening of the various time series.

The second approach is based on the observation that the M jointly station-
ary time series (y1,n)n∈Z, . . . , (yM,n)n∈Z are uncorrelated if and only the spectral
density matrix S(ν) of yn = (y1,n, . . . , yM,n)T is diagonal for each frequency ν,
or equivalently, if its spectral coherence matrix C(ν) is reduced to IM for each

ν. [31] studied hypothesis testing based on the nonparametric estimate Ĉ(ν)
defined in equation (1.3) of C(ν). Motivated by the generalized likelihood ratio
test (GLRT) in the case of Gaussian i.i.d. time series and the Hadamard in-
equality, [31] remarked that for each ν, log det(C(ν)) ≤ 0 and the equality holds
if and only if C(ν) = IM . [31] thus considered the statistics

P∑
i=1

log det
(
Ĉ(νi)

)
where ν1, . . . , νP are fixed frequencies, and computed its asymptotic distribution
underH0. When M = 2, [10] derived the asymptotic distribution of the statistics

N−1∑
k=0

∣∣C̄1,2(k/N)
∣∣2

under H0, where C̄ is a windowed frequency-smoothed periodogram estimate of
the corresponding spectral coherency matrix. [29] studied more general class of
test of the form

H0 :

∫ 1

0

K(S(ν)) dν = κ

where K is a certain functional. [29] derived the asymptotic distribution of∫ 1

0
K(S̃(ν)) dν − κ where S̃(ν) is a lag window estimator of S(ν). These general

results were used to test that 2 time series are uncorrelated. In the same vein,
we also mention [11].

We finally review the very few existing works devoted to the case where
the number M of time series converges towards +∞. Apart [4] and [6] pre-
sented below, we are just aware of papers addressing the case where the obser-
vations y1, . . . ,yN are i.i.d. and where the ratio M

N converges towards a constant
d ∈ (0, 1). In particular, in contrast with the asymptotic regime considered in the
present paper, M and N are of the same order of magnitude. This is because, in
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this context, the time series are mutually uncorrelated if and only the covariance
matrix E(yny∗n) is diagonal. Therefore, it is reasonable to consider test statis-

tics that are functionals of the sample covariance matrix R̂N defined by (1.5).
In particular, when the observations are Gaussian random vectors, the gener-
alized likelihood ratio test consists in comparing the test statistics log det(ĈN )

to a threshold, where ĈN represents the sample autocorrelation matrix. [22]

proved that under H0, the empirical eigenvalue distribution of ĈN converges al-

most surely towards the Marcenko-Pastur distribution µ
(d)
MP and therefore, that

1
MTr

(
f(ĈN )

)
converges towards

∫
fdµ

(d)
MP for each bounded continuous func-

tion f . In the Gaussian case, [23] also established a central limit theorem (CLT)

for log det(ĈN ) under H0 using the moment method. In the real Gaussian case,

[7] remarked that
(

detĈN

)N/2
is the product of independent beta distributed

random variables. Therefore, log det (ĈN ) appears as the sum of independent
random variables, thus deducing the CLT. More recently, in [26] is established a

CLT on LSS of ĈN in the Gaussian case using large random matrix techniques
when the covariance matrix E(yny∗n) is not necessarily diagonal. This allows to
study the asymptotic performance of the GLRT under certain class of alterna-
tives. We also mention that [21] studied the behaviour of maxi,j |(ĈN )i,j | under

H0, and established that maxi,j |(ĈN )i,j |, after recentering and appropriate nor-
malization, converges in distribution towards a Gumble distribution, which, of
course, allows to test the hypothesis H0. This first contribution was extended
later in a number of works, in particular in [6] who considered the case where
the samples y1, . . . ,yN have some specific correlation pattern. We finally cite [4]
which proposed to use shrinkage in the frequency domain in order to enhance
the performance of the spectral density estimate (1.1) when the components
of y are not uncorrelated. While the topics addressed in [4] are different from
the main purpose of this paper, [4] introduced the asymptotic regime that we

consider here, except that B3/2

N is supposed to converge towards 0 in [4]. When
B = O(Nα), this condition is equivalent to α < 2/3, while we rather study
situations where α > 1/2.

1.4. General approach

In order to establish (1.4), we use the following approach:

• We first study the behaviour of the modified sample spectral coherency
matrix C̃(ν) defined by

C̃(ν) = diag (S(ν))
− 1

2 Ŝ(ν)diag (S(ν))
− 1

2 (1.6)

In other words, C̃(ν) is obtained from Ĉ(ν) by replacing the estimated

diagonal matrix diag
(
Ŝ(ν)

)
by its true value diag (S(ν)). Using classical
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results of [5], we establish that for each ν, C̃(ν) can be represented as

C̃(ν) =
X(ν)X∗(ν)

B + 1
+ ∆̃(ν) (1.7)

where X(ν) is a M × (B + 1) random matrix with NC(0, 1) i.i.d. entries,
and ∆̃(ν) is another matrix such that, for any ε > 0, there exists γ > 0,
independent from ν, such that for each large enough N ∈ N:

P
[
‖∆̃(ν)‖ > N ε B

N

]
≤ exp−Nγ

We deduce from this that for each ε and each smooth enough function f ,

P
[∣∣∣∣ 1

M
Tr
(
f(C̃(ν))

)
− 1

M
Tr

(
f(

X(ν)X∗(ν)

B + 1
)

)∣∣∣∣ > N ε B

N

]
≤ exp−Nγ

for each ν ∈ [0, 1]. Classical concentration results of LSS of X(ν)X∗(ν)
B+1 lead

immediately to

P
[∣∣∣∣ 1

M
Tr
(
f(C̃(ν))

)
−
∫
R+

f dµ
(cN )
MP

∣∣∣∣ > N εB

N

]
≤ exp−Nγ (1.8)

for each ν.
• We next establish that for each ν, Ĉ(ν) can be written as

Ĉ(ν) =
X(ν)X∗(ν)

B + 1
+ ∆(ν) (1.9)

where ∆(ν) verifies the concentration inequality

P
[
‖∆(ν)‖ > N ε

(
1√
B

+
B

N

)]
≤ exp−Nγ

for each ε > 0, where γ does depend on ε but not on ν. If α < 2/3, the
term 1√

B
dominates B

N , and the estimation of the true spectral densities

(sm)m=1,...,M has an impact on the spectral norm of the error matrix
∆(ν). However, due to some subtle effects, it eventually turns out that for
each ν,

P
[∣∣∣∣ 1

M
Tr
(
f(Ĉ(ν))

)
−
∫
R+

f dµ
(cN )
MP

∣∣∣∣ > N εB

N

]
≤ exp−Nγ (1.10)

still holds provided the function f is smooth enough.
• We eventually show that with high probability, ν → Ĉ(ν) is Lipschitz with

constant O(Nβ) for some constant β. Using this property in conjunction
with a discretization in the frequency domain, we eventually deduce (1.4)
from (1.10).
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1.5. Assumptions and general notations

Assumption 1.1. For each m ≥ 1, (ym,n)n∈Z is a zero mean stationary com-
plex Gaussian time series, ie.

1. E[ym,n] = 0 for any m ≥ 1 and any n ∈ Z
2. every finite linear combination x of the random variables (ym,n)n∈Z is a
NC(0, σ2) distributed random variable for some σ2, i.e. Re(x) and Im(x)
are independent and N (0, σ2/2) distributed.

Assumption 1.2. If m1 6= m2, then the scalar time series (ym1,n)n∈Z and
(ym2,n)n∈Z are independent.

We now formulate the following assumptions on the growth rate of the quan-
tities N,M,B:

Assumption 1.3.

B,M = O(Nα) where
1

2
< α < 1,

M

B + 1
= cN , cN −−−−−→

N→+∞
c ∈ (0, 1)

As M = M(N) converges towards +∞, we assume that an infinite sequence
(y1,n)n∈Z, (y2,n)n∈Z, . . . , (yk,n)n∈Z, . . . of mutually independent zero mean com-
plex Gaussian time series is given.

We denote by (sm)m≥1 the corresponding sequence of spectral densities (i.e.
sm coincides with the spectral density of the times series (ym,n)n∈Z). For each
m ≥ 1, we denote by rm = (rm,u)u∈Z the autocovariance sequence of (ym,n)n∈Z,
i.e. rm,u = E[ym,n+uy

∗
m,n]. We formulate the following assumptions on (sm)m≥1

and (rm)m≥1:

Assumption 1.4. The time series ((ym,n)n∈Z)m≥1 are such that:

inf
m≥1

inf
ν∈[0,1]

|sm(ν)| > 0 (1.11)

and
sup
m≥1

∑
u∈Z

(1 + |u|2)|rm,u| < +∞ (1.12)

Assumption (1.12) of course implies that the spectral densities (sm)m≥1 are
C2 and that

sup
m≥1

sup
ν∈[0,1]

|s(i)
m (ν)| < +∞ (1.13)

for i = 0, 1, 2 (s
(i)
m represents the derivative of order i of sm).

Notations. A zero mean complex valued random vector y is said to be
NC(0,Σ) distributed if E(yy∗) = Σ and if each linear combination x of the
entries of y is a complex Gaussian random variable, i.e. Re(x) and Im(x) are
independent Gaussian random variables sharing the same variance.



10 P. Loubaton and A. Rosuel

If A is a P ×Q matrix, ‖A‖ and ‖A‖F denote its spectral norm and Frobe-
nius norm respectively. If P = Q and A is Hermitian, λ1(A) ≥ . . . ≥ λP (A) are
the eigenvalues of A. The spectrum of A, which is here the set of its eigenvalues
(λk(A))k=1,...,P , is denoted by σ(A). For A and B square Hermitian matrices,
if all the eigenvalues of A − B are non negative, we write A ≥ B. We define
Re A = (A + A∗)/2 and Im A = (A − A∗)/2 where A∗ is the conjugate
transpose of matrix A.

Cp represents the set of all real-valued functions defined on R whose p first
derivatives exist and are continuous.

We recall that S(ν) represents the M × M diagonal matrix
S(ν) = Diag(s1(ν), . . . , sM (ν)). We notice that S depends on M , thus on
N (through M := M(N)), but we often omit to mention the corresponding
dependency in order to simplify the notations. In the following, we will denote
by ym the N–dimensional vector ym = (ym,1, . . . , ym,N )T .

A nice constant is positive a constant that does not depend on the frequency
ν, on the time series index m, as well as on the dimensions B,M and N . C will
represent a generic notation for a nice constant, and the value of C may change
from one line to the other.

If (aN )N≥1 and (bN )N≥1 are two sequences of positive real numbers, we
write aN << bN if aN

bN
→ 0 when N → +∞.

We also recall how a function can be applied to Hermitian matrices. For a
M ×M Hermitian matrix A with spectral decomposition UΛU∗ where Λ =
diag(λm,m = 1, . . . ,M) and the (λm)m=1,...,M are the real eigenvalues of A,
then for any function f defined on R, we define f(A) as:

f(A) = U

f(λ1)
. . .

f(λM )

U∗

C+ is the upper half plane of C, i.e. the set of all complex numbers z for
which Im z > 0.

For µ a probability measure, its Stieltjes transform sµ is the function defined
on C \ Suppµ as

sµ(z) =

∫
dµ(λ)

λ− z
(1.14)

We recall that

|sµ(z)| ≤ 1

Im z
(1.15)

for each z ∈ C+.
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If λ1, . . . , λM denote the eigenvalues of an Hermitian matrix A and if µ :=
1
M

∑M
i=1 δλi denotes the so-called empirical eigenvalue distribution of A, then

we have the following relation:

sµ(z) =
1

M
tr Q(z)

where Q(z) represents the resolvent of A defined by

Q(z) = (A− zIM )−1 (1.16)

We finally mention the following useful control for the norm Q:

‖Q‖ ≤ 1

Im z
(1.17)

1.6. Overview of the paper

We first recall in Section 2 useful technical tools: the concept of stochastic domi-
nation adapted from [13] which allows to considerably simplify the exposition of
the following results, as well as known concentration inequalities expressed using
the stochastic domination framework. We establish in Section 3 the stochastic
representations (1.7) and (1.9) of C̃(ν) and Ĉ(ν). In Section 4, we finally prove
(1.10) and establish the Lipschitz properties that allow to deduce (1.4).

2. Useful technical tools

2.1. Stochastic domination

We now present the concept of stochastic domination introduced in [13]. A nice
introduction to this tool can also be found in the lecture notes [3].

Definition 2.1. Stochastic Domination. Let

X = (X(N)(u) : N ∈ N, u ∈ U (N)), Y = (Y (N)(u) : N ∈ N, u ∈ U (N))

be two families of nonnegative random variables, where U (N) is a set that may
possibly depend on N . We say that X is stochastically dominated by Y if for all
(small) ε > 0, there exists some γ > 0 (which of course depends on ε) such that:

P
[
X(N)(u) > N εY (N)(u)

]
≤ exp−Nγ

for each u ∈ U (N) and for each large enough N > N0(ε), where N0(ε) is inde-
pendent of u, or equivalently

sup
u∈U(N)

P
[
X(N)(u) > N εY (N)(u)

]
≤ exp−Nγ (2.1)
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for each large enough N > N0(ε). If X is stochastically dominated by Y we
use the notation X(N)(u) ≺ Y (N)(u). In order to simplify the notations, we
will very often denote X(N) ≺ Y (N) or X ≺ Y when the context will be clear
enough. Moreover, if for some complex family X we have |X| ≺ Y we also
write X = O≺(Y ).

Finally, we say that a family of events Ξ = Ξ(N)(u) holds with exponentially
high (small) probability if there exist N0 and γ > 0 such that for N ≥ N0,
P[ΞN (u)] > 1− exp−Nγ (P[ΞN (u)] < exp−Nγ) for each u ∈ U (N).

Lemma 2.1. Take two families of non negative random variables X,Y defined
as in Definition 2.1. Then the following holds:

X1 ≺ Y1 and X2 ≺ Y2 =⇒ X1 +X2 ≺ Y1 + Y2 and X1X2 ≺ Y1Y2

Proof. We consider ε > 0 and introduce the quantities γ1 > 0 and γ2 > 0 such
that

P[X1 > N εY1] ≤ exp−Nγ1 , P[X2 > N εY2] ≤ exp−Nγ2

for each N large enough. Then, there exists a γ > 0 such that for N large
enough:

P[X1 +X2 > N ε(Y1 + Y2)] ≤ P[X1 > N εY1] + P[X2 > N εY2]

≤ exp−Nγ1 + exp−Nγ2

≤ exp−Nγ

This proves the first assertion of Lemma 2.1.
Moreover, there exists another quantities γ̃1, γ̃2 and γ̃ such that for large

enough N :

P[X1X2 > N εY1Y2] ≤ P[X1X2 > N εY1Y2, X1 < N ε/2Y1] + P[X1 > N ε/2Y1]

≤ P[X2 > N ε/2Y2] + P[X1 > N ε/2Y1]

≤ exp−N γ̃1 + exp−N γ̃2

≤ exp−N γ̃

which proves the second assertion.

Remark 2.1. Note that Definition 2.1 is slightly different from the original one
[13] which states that the left hand side of (2.1) should be bounded by a quantity
of order N−D for any finite D > 0. In the present paper, all the random variables
are Gaussian, and exponential concentration rates can be achieved.

2.2. Concentration of the smallest and largest eigenvalues of a
Gaussian random matrix

In this paper we will at multiple occasion use the concentration of the smallest
and largest eigenvalues of empirical covariance matrix of iid NC(0, IM ) random
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vectors. [14] proved that if M = M(N) and B = B(N) follow the Assumption
1.3, for any M × (B + 1) matrix XN with iid NC(0, 1) entries, we have for any
ε > 0

P
[
λM

(
XNX∗N
B + 1

)
< (1−

√
c)2 − ε

]
≤ (B + 1) exp−C(B + 1)ε2 (2.2)

P
[
λ1

(
XNX∗N
B + 1

)
> (1 +

√
c)2 + ε

]
≤ (B + 1) exp−C(B + 1)ε2 (2.3)

for some universal constant C.
Consider for ε > 0, the ε–expansion of the support of the Marchenko-Pastur

distribution:

Suppµ
(c)
MP + ε :=

[
(1−

√
c)2 − ε, (1 +

√
c)2 + ε

]
and the event:

ΛN,ε =

{
σ

(
XNX∗N
B + 1

)
⊂ Suppµ

(c)
MP + ε

}
(2.4)

It is clear that using (2.2) and (2.3), ΛN,ε holds with exponentially high
probability for any ε > 0. This will be of high importance in the following since
it will enable us to work on events of exponentially high probability where the

norm of
XNX∗N
B+1 and the norm of its inverse are bounded.

Eventually, the following (weaker) statement is a simple consequence of the
equations (2.2) and (2.3), which will sometimes be enough in the following:

λ1

(
XNX∗N
B + 1

)
+

1

λM

(
XNX∗N
B+1

) ≺ 1 (2.5)

Indeed, fix ε > 0. There exist a N0(ε) large enough such that for any N ≥ N0,
N ε > (1 +

√
c)2 + Nε

2 . Therefore

P
[
λ1

(
XNX∗N
B + 1

)
> N ε

]
≤ P

[
λ1

(
XNX∗N
B + 1

)
> (1 +

√
c)2 +

N ε

2

]
≤ (B + 1) exp−C(B + 1)N ε

which decay in the order exp−CNγ for some γ > 0. The proof for the three
other quantities are similar.

We finally notice that if we consider a family XN (u) ∈ CM×(B+1) with iid
NC(0, 1) entries, u ∈ U (N), where U (N) is a certain set possibly depending on
N , then (2.2) and (2.3) hold for each u ∈ U (N) because the constant C in (2.2)
and (2.3) is universal. This implies that the stochastic domination (2.5) is still
verified by the family XN (u), u ∈ U (N). Moreover, the family of events ΛN,ε(u)
defined by (2.4) when XN is replaced by XN (u) still holds with exponentially
high probability.
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2.3. Concentration of functionals of Gaussian entries

It is well known (see e.g. [30, Th. 2.1.12]) that for any 1-Lipschitz real val-
ued function f defined on RN and any N–dimensional random variable X ∼
N (0, IN ), there exists a universal constant C such that:

P [|f(X)− Ef(X)| > t] ≤ C exp−Ct2 (2.6)

This inequality is still valid when X ∼ NC(0, IN ): in this context, f(X) is re-
placed by a real-valued function f(X,X∗) depending on the entries of X and
X∗. f(X,X∗) can of course be written as f(X,X∗) = f̃(

√
2Re(X),

√
2Im(X))

for some function f̃ defined on R2N . As (
√

2Re(X),
√

2Im(X)) is N (0, I2N )
distributed, the concentration inequality is still valid for f(X,X∗) =
f̃(
√

2Re(X),
√

2Im(X)). We just finally mention that f , considered as a func-
tion of (X,X∗), and f̃ have Lipschitz constants that are of the same order of
magnitude. More precisely, if we define the differential operators ∂

∂z and ∂
∂z̄ by

∂

∂z
=

∂

∂x
− i ∂

∂y
,

∂

∂z̄
=

∂

∂x
+ i

∂

∂y

we can verify immediately that

N∑
i=1

(∣∣∣∣ ∂f∂Xi

∣∣∣∣2 +

∣∣∣∣ ∂f∂X∗i
∣∣∣∣2
)

= ‖ (∇f)(X,X∗) ‖
2 = 4‖

(
∇f̃
)

(
√

2Re(X),
√

2Im(X))
‖2

Within the stochastic domination framework, the concentration inequality
(2.6) implies that for a family XN (u) ∼ N (0, IN ) for u ∈ U (N):

|f(XN (u))− Ef(XN (u))| ≺ 1

The proof is immediate: consider ε > 0 and obtain that

P[|f(XN (u))− Ef(XN (u))| > N ε] ≤ C exp−CN2ε

for each u as expected. This result can easily be extended in the complex case,
ie. when XN (u) ∼ NC(0, IN ).

2.4. Hanson-Wright inequality

The Hanson-Wright inequality [28] is useful to control deviations of a quadratic
form from its expectation. While it is proved in the real case in [28], it can
easily be understood that it can be extended in the complex case as follows: let
X ∼ NC(0, IN ) and A ∈ CN×N . Then

P[|X∗AX− EX∗AX| > t] ≤ 2 exp−C min

(
t2

‖A‖2F
,

t

‖A‖

)
(2.7)
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We now write (2.7) in the stochastic domination framework. Consider a family
of independent NC(0, 1) random variables (Xn(u))n=1,...,N where u ∈ U (N) and
a sequence of N × N matrices AN (u) that possibly depend on u. Take ε > 0
and t = N ε‖AN (u)‖F . Since ‖AN (u)‖ > 0, ‖AN (u)‖F > 0, and ‖AN (u)‖ ≤
‖AN (u)‖F :

min

(
t

‖AN (u)‖
,

t2

‖AN (u)‖2F

)
= min

(
N ε ‖AN (u)‖F
‖AN (u)‖

, N2ε ‖AN (u)‖2F
‖AN (u)‖2F

)
≥ min(N ε, N2ε) = N ε

Therefore, for any u ∈ U (N), it holds that

P [|X∗N (u)AN (u)XN (u)− EX∗N (u)AN (u)XN (u)| > N ε‖AN (u)‖F ] ≤ 2 exp−CN ε

(2.8)
Denoting XN (u) = (X1(u), . . . , XN (u))T , we can rewrite (2.8) as the follow-

ing stochastic domination:

|X∗N (u)AN (u)XN (u)− EX∗N (u)AN (u)XN (u)| ≺ ‖AN (u)‖F (2.9)

3. Stochastic representations of C̃(ν) and Ĉ(ν)

The first step is to show that C̃(ν) and Ĉ(ν) can be approximated by the sample
covariance matrix of a sequence of iid Gaussian random vectors, and to control
the order of magnitude of the corresponding erros. This is the objective of the
following result.

Theorem 3.1. Under Assumptions 1.1, 1.2, 1.3 and 1.4, for any ν ∈ [0, 1], it
exists a M × (B+1) random matrix XN (ν) with NC(0, 1) i.i.d. entries, and two
matrices ∆̃N (ν) ∆N (ν) such that:

C̃N (ν) =
XN (ν)X∗N (ν)

B + 1
+ ∆̃N (ν), ‖∆̃N (ν)‖ ≺ B

N
(3.1)

ĈN (ν) =
XN (ν)X∗N (ν)

B + 1
+ ∆N (ν), ‖∆N (ν)‖ ≺ 1√

B
+
B

N
(3.2)

Remark 3.1. Therefore, up to small additive perturbations, C̃N (ν) and ĈN (ν)
appear as empirical covariance matrices of iid NC(0, IM ) random vectors. We

thus expect that C̃N (ν) and ĈN (ν) will satisfy a number of useful properties of
empirical covariance matrices of iid NC(0, IM ) random vectors.

Remark 3.2. In the following, we will often omit to mention that
the various matrices under consideration depend on N and ν. Ma-
trices ĈN (ν), C̃N (ν),XN (ν),∆N (ν), . . . will therefore be denoted by

Ĉ(ν), C̃(ν),X(ν),∆(ν), . . . or Ĉ, C̃,X,∆, . . .

The proof of Theorem 3.1 will proceed in three steps: first we provide the
result for matrix C̃(ν), then control the deviations between diag(S(ν))−

1
2 and

diag(Ŝ(ν))−
1
2 , and eventually extend the stochastic representation of C̃(ν) to

Ĉ(ν).
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3.1. Step 1: Stochastic representation of C̃

In order to establish (3.1), we prove the following Proposition.

Proposition 3.1. Under Assumptions 1.1, 1.2, 1.3 and 1.4, for any ν ∈ [0, 1],
there exist a M × (B + 1) random matrix XN (ν) with NC(0, 1) i.i.d. entries,
and another matrix ΓN (ν) such that:

C̃N (ν) =
(XN (ν) + ΓN (ν))(XN (ν) + ΓN (ν))∗

B + 1
(3.3)

where the family of random variables ‖ΓN (ν)‖2
B+1 , ν ∈ [0, 1] verifies

‖ΓN (ν)‖2

B + 1
≺ B2

N2
(3.4)

Proof. Denote by Σ the M × (B + 1) random matrix defined by

Σ =

(
ξy(ν − B

2N
), . . . , ξy(ν +

B

2N
)

)
(3.5)

where we recall that the normalized Fourier transform ξy is defined in (1.2), so

that Ŝ = ΣΣ∗/(B + 1). Denote by ωm the m–th row of Σ. In other words, ωm
coincides with the (B + 1)–dimensional Gaussian complex row vector defined
by:

ωm =

(
ξym(ν − B

2N
), . . . , ξym(ν +

B

2N
)

)
The covariance matrix E[ω∗mωm] of ω is given by:

E[ω∗mωm] = E


ξym(ν −B/2N)∗

...
ξym(ν +B/2N)∗

 · (ξym(ν − B
2N ) . . . ξym(ν + B

2N )
)

= E

[{
ξym(ν +

b1
N

)∗ξym(ν +
b2
N

)

}B/2
b1,b2=−B/2

]
By Lemma A.1 in Appendix, we have for b and b1 6= b2:

E

[∣∣∣∣ξym (ν +
b

N

)∣∣∣∣2
]

= sm(ν) +O
(

1

N

)

E
[
ξym(ν +

b1
N

)∗ξym(ν +
b2
N

)

]
= O

(
1

N

)
where the error is uniform over m ≥ 1 and ν ∈ [0, 1]. Therefore one can write
that there exist some Hermitian matrix Υm(ν) and some nice constant C such
that:

E[ω∗mωm] = diag

(
sm

(
ν +

b

N

)
: b = −B/2, . . . , B/2

)
+ Υm
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where Υm satisfies

sup
m≥1,b1,b2

∣∣∣(Υm)b1,b2

∣∣∣ ≤ C

N

Moreover, the regularity of the applications ν 7→ sm(ν) specified in Assump-
tion 1.4 implies that there exists quantities εm such that:

diag

(
sm(ν +

b

N
) : b = −B/2, . . . , B/2

)
= sm(ν)IB+1 + diag

(
εm(ν +

b

N
) : b = −B/2, . . . , B/2

)
where:

sup
m≥1

sup
−B/2≤b≤B/2

|εm(ν +
b

N
)| ≤ C B

N

for some nice constant C. Therefore, if we define matrix Φm as:

Φm =
1

sm

[
Υm + diag

(
εm(ν +

b

N
) : b = −B/2, . . . , B/2

)]
then the following relations hold:

E[ω∗mωm] = sm (IB+1 + Φm) , sup
m≥1,b1,b2

|Φmb1,b2
| ≤ C

N
(3.6)

The spectral norm of Φm can be roughly bounded by the following inequality:

sup
m≥1
‖Φm‖ ≤ sup

m≥1
sup

−B/2≤b1≤B/2

B/2∑
b2=−B/2

|(Φm)b1,b2 | ≤ C
B

N

Using the Gaussianity of vector ωm and the expression (3.6), we obtain that
ωm can be represented as

ωm =
√
sm xm (I + Φm)

1/2
, xm ∼ NC(0, IB+1) (3.7)

where xm1
and xm2

are independent for m1 6= m2. This comes from the mutual
independence of the time series ((ym,n)n∈Z)m=1,...,M . Consider the eigenvalue /
eigenvector decomposition of Hermitian matrix Φm, i.e.

Φm = Um ΛmU∗m

where Λm is the diagonal matrix of the eigenvalues of matrix Φm. It is clear

that the entries of Λm are O(B/N) terms, and that matrix (I + Λm)
1/2

can be
written as:

(I + Λm)1/2 = I + Ψm, Ψm = diag(ψm,b : b = −B/2, . . . , B/2) (3.8)
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where ψm,b verifies

sup
m≥1

sup
b=−B/2,...,B/2

|ψm,b| ≤ C
B

N

Therefore, it holds that:

ωm =
√
smxm (I + UmΨmU∗m) =

√
sm (xm + xmUmΨmU∗m)

We denote by X and Γ the M × (B + 1) matrices with rows (xm)m=1,...,M ,
and (xmUmΨmU∗m)m=1,...,M respectively. Then, it holds that

Σ = diag (
√
sm,m = 1, . . . ,M) (X + Γ) (3.9)

where we recall that Σ is defined by (3.5). We recall the definition of matrix C̃
given by

C̃ = diag(
√
sm,m = 1, . . . ,M)−1/2 Ŝ diag(

√
sm,m = 1, . . . ,M)−1/2(3.10)

= diag(
√
sm,m = 1, . . . ,M)−1/2 ΣΣ∗

B + 1
diag(

√
sm,m = 1, . . . ,M)−1/2

The representation (3.9) implies that C̃ can also be written as

C̃ =
(X + Γ)(X + Γ)∗

B + 1

This completes the proof of (3.3). It remains to show (3.4). We denote by Z
the M ×M matrix Z = 1

B+1ΓΓ∗. As ‖Z‖ verifies

‖Z‖ ≤ ‖Z− EZ‖+ ‖EZ‖

it is enough to prove the two following facts:

‖EZ‖ ≤ C B2

N2
(3.11)

‖Z− EZ‖ ≺ B2

N2
(3.12)

We start with (3.11). Using the decomposition of the rows of Γ we have:

E[Zi,j ] =
1

B + 1
E[ΓΓ∗]i,j

=
1

B + 1
E[xiUiΨiU

∗
iUjΨ

∗
jU
∗
jx
∗
j ]

=
1

B + 1
E[tr xiUiΨiU

∗
iUjΨ

∗
jU
∗
jx
∗
j ]

=
1

B + 1
tr (UjΨ

∗
jU
∗
jE[x∗jxi]UiΨiU

∗
i )

= δij
1

B + 1
tr ΨiΨ

∗
j
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so that it is clear that E[Z] is the diagonal matrix with diagonal entries

( 1
B+1

∑B/2
b=−B/2 |ψm,b|

2)m=1,...,M . By the estimation in equation (3.8), we eas-

ily have (3.11).
It remains to prove (3.12). We use the observation that ‖Z − E[Z]‖ =

max‖h‖=1 |h∗(Z− E[Z])h|, and use a classical ε–net argument that allows to de-
duce the behaviour of ‖Z−E[Z]‖ from the behaviour of any recentered quadratic
form g∗Zg−Eg∗Zg where g ∈ CM is a deterministic unit norm vector. We thus
first concentrate g∗Zg − Eg∗Zg using the Hanson-Wright inequality (2.9). For
this, we need to express g∗Zg as a quadratic form of a certain complex Gaussian
random vector with iid entries. We denote by z the M–dimensional random vec-

tor z = Γ∗(ν)g√
B+1

. Its covariance matrix G = G(ν) is equal to (recall that Ψm(ν)

is real, so Ψm(ν)Ψm(ν)∗ = Ψm(ν)2)

G(ν) = E[zz∗] =
1

B + 1

M∑
m=1

|gm|2Um(ν)Ψm(ν)2Um(ν)∗

Therefore, z can be written z = G1/2w for some w ∼ NC(0, IM ) random vector.
As a consequence, the quadratic form g∗Zg − Eg∗Zg can be written as

g∗Zg − Eg∗Zg = w∗Gw − Ew∗Gw

The Hanson-Wright inequality (2.9) can now be applied:

|w∗Gw − Ew∗Gw| ≺ ‖G‖F (3.13)

Since
∑M
m=1 |gm|2 = 1, it is clear that ‖G‖ ≤

1
B+1 supm=1,...,M supb=−B/2,...,B/2 ψ

2
m,b. Therefore, (3.8) and the rough

evaluation ‖G‖2F ≤ (B + 1)‖G‖2 leads to

‖G‖ ≤ C 1

B + 1

(
B

N

)2

, ‖G‖2F ≤ C
1

B + 1

(
B

N

)4

(3.14)

The substitution of (3.14) in equation (3.13) gives the following control of
g∗Zg − Eg∗Zg:

|g∗Zg − Eg∗Zg| ≺ 1√
B

(
B

N

)2

(3.15)

Consider ε > 0, and an ε–net Nε of CM , that is a set of CM unit norm vectors
{hk : k = 1, . . . ,K} such that for each unit norm vector u ∈ CM , it exists a
vector h ∈ Nε for which ‖u − h‖ ≤ ε. It is well known that the cardinal of

Nε is bounded by C
(

1
ε

)2M
where C is a universal constant. Then, denote gs a

(random) unit norm vector such that |g∗sZgs−Eg∗sZgs| = ‖Z−EZ‖, and define
hs ∈ Nε as the closest vector from gs. Therefore, we have

‖Z− EZ‖ = |g∗s(Z− EZ)gs|
= |(g∗s − h∗s + h∗s)(Z− EZ)(gs − hs + hs)|
≤ |(g∗s − h∗s)(Z− EZ)(gs − hs)|+ |(g∗s − h∗s)(Z− EZ)hs|

+ |h∗s(Z− EZ)(gs − hs)|+ |h∗s(Z− EZ)hs|
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It is clear that:

|(g∗s−h∗s)(Z−EZ)(gs−hs)| ≤ ε2‖Z−EZ‖, |(g∗s−h∗s)(Z−EZ)hs| ≤ ε‖Z−EZ‖

and
‖Z− EZ‖ ≤ |h∗s(Z− EZ)hs|+ ε2‖Z− EZ‖+ 2ε‖Z− EZ‖

which leads to
(1− 2ε− ε2)‖Z− EZ‖ ≤ |h∗s(Z− EZ)hs|

This implies that for each t > 0,

{‖Z− EZ‖ > t} ⊂ ∪h∈Nε{|h∗(Z− EZ)h| > Ct}

for some nice constant C. Using the union bound, we obtain that

P [‖Z− EZ‖ > t] ≤
∑
h∈Nε

P [|h∗(Z− EZ)h| > Ct] (3.16)

Here, we would like to use equation (3.15) to conclude. By the definition of
≺, (3.15) is valid uniformly on any set of vector with cardinality polynomial
in N . Here the set Nε is strictly bigger: it’s cardinal is O(ε−2M ) and therefore
exponential in M . As a consequence, we have to accept to loose some speed
when going from the stochastic domination of |g∗(Z − EZ)g| for a fixed g to
the same stochastic domination but uniformly over Nε.

More precisely, write again (3.15) but here without the notation ≺ in order
to understand precisely how a change in speed affects the probability. Take tN a
sequence of positive number such that tN ≥ B2/N2. Using the estimates (3.14)
of ‖G‖ and ‖G‖2F , and the fact that min(a1, a2) > min(b1, b2) when a1 > b1
and a2 > b2, we obtain that there exist some nice constant C > 0 such that:

min

(
tN
‖G‖

,
t2N
‖G‖2F

)
≥ C Bmin

tN (N
B

)2

,

(
tN

(
N

B

)2
)2
 = C B tN

(
N

B

)2

The Hanson-Wright inequality (2.7) provides:

P [|g∗ [Z− EZ)] g| > tN ] ≤ 2 exp

{
−CB tN

(B/N)2

}
Eventually, the union bound on Nε gives:∑
h∈Nε

P [|h∗(Z− EZ)h| > CtN ] ≤ 2 exp

{
−CB tN

(B/N)2
+ 2CM log 1/ε

}
If we take tN = N ε′(B2/N2), then, it exists γ > 0 such that

exp

{
−CB tN

(B/N)2
+ 2CM log 1/ε

}
≤ exp−Nγ

holds for each N large enough. (3.16) thus implies (3.12). This completes the
proof of (3.3).
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Corollary 3.1 is a rewriting of Proposition 3.1 in a more concise way. Define:

∆̃ =
XΓ∗ + ΓX∗ + ΓΓ∗

B + 1
(3.17)

Corollary 3.1. For any ν ∈ [0, 1], C̃(ν) can be written as

C̃(ν) =
X(ν)X∗(ν)

B + 1
+ ∆̃(ν) (3.18)

where the family of random variable ‖∆̃(ν)‖, ν ∈ [0, 1] verifies

‖∆̃‖ ≺ B

N
(3.19)

Proof. Let ν ∈ [0, 1]. By the definition (3.17) of ∆̃, we indeed have:

C̃ =
(X + Γ)(X + Γ)∗

B + 1
:=

XX∗

B + 1
+ ∆̃

By equation (3.4) from Theorem 3.1 and equation (2.5) from Paragraph 2.2,
we have the two following estimates:

‖Γ‖√
B + 1

≺ B

N
,

‖X‖√
B + 1

≺ 1

The result is immediate using decomposition ∆̃ from (3.17):

‖∆̃‖ ≺ B

N
+
B

N
+
B2

N2

We now take benefit of Corollary 3.1 to analyse the location of the eigenvalues
of matrices C̃ and Ŝ. In order to formulate the corresponding result, we define

some notations. We introduce the event ΛC̃
ε (ν) defined by

ΛC̃
ε (ν) = {σ(C̃(ν)) ⊂ Suppµ

(c)
MP + ε} (3.20)

We remark that ΛC̃
ε (ν) also depends on N , but again omit to mention this

in order to simplify the notations. We also denote by D and D̂ the matrices
D = D(ν) := diag(S(ν))

1
2 and D̂ = D̂(ν) := diag(Ŝ(ν))

1
2 . Denote by s̄ and s

the quantities such that:

s := inf
m≥1

inf
ν∈[0,1]

sm(ν), s̄ := sup
m≥1

sup
ν∈[0,1]

sm(ν)

which are by Assumption 1.4 in (0,+∞). We consider the event:

ΛŜ
ε (ν) =

{
σ(Ŝ(ν)) ⊂ Suppµ

(c)
MP × [s, s̄] + ε

}
(3.21)
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where the notation Suppµ
(c)
MP × [s, s̄] stands for [(1−

√
c)2s, (1 +

√
c)2s̄]. Note

that in our settings, c ∈ (0, 1) so Suppµ
(c)
MP is bounded and away from zero. In

conjunction with Assumption 1.4, the same holds for Suppµ
(c)
MP × [s, s̄]. We also

note that ΛŜ
ε (ν) of course depends on N .

Corollary 3.2. For any ε > 0, the families of events ΛC̃
ε (ν), ν ∈ [0, 1] and

ΛŜ
ε (ν), ν ∈ [0, 1] hold with exponentially high probability.

Proof. Equation (3.18) implies that

XX∗

B + 1
− ‖∆̃‖IM ≤ C̃ ≤ XX∗

B + 1
+ ‖∆̃‖IM

Therefore, the event {λ1(C̃) > (1 +
√
c)2 + ε} is included in {λ1(XX∗

B+1 ) + ‖∆̃‖ >
(1 +

√
c)2 + ε}, which is itself included into{

λ1(
XX∗

B + 1
) > (1 +

√
c)2 + ε/2

}
∪
{
‖∆̃‖ > ε/2

}
Therefore,

P
[
λ1(C̃) > (1 +

√
c)2 + ε

]
≤ P

[
λ1(

XX∗

B + 1
) > (1 +

√
c)2 + ε/2

]
+P
[
‖∆̃‖ > ε/2

]
Equations (2.3) and (3.19) imply that P

[
λ1(C̃) > (1 +

√
c)2 + ε

]
converges to-

wards 0 exponentially. A similar evaluation of P
[
λM (C̃) < (1−

√
c)2 − ε

]
leads

to the same conclusion. This, in turn, establishes that ΛC̃
ε (ν), ν ∈ [0, 1] holds

with exponential high probability.

In order to establish that the same property holds for ΛŜ
ε (ν), ν ∈ [0, 1], we

just need to write (1.6) as:

Ŝ = D1/2C̃D1/2

Therefore, for each k = 1, . . . ,M , the eigenvalues of Ŝ verify

s λM (C̃) ≤ λk(Ŝ) ≤ s̄ λ1(C̃)

This, of course, implies that ΛŜ
ε (ν), ν ∈ [0, 1] holds with exponential high prob-

ability (indeed, one can change ε to ε̃ such that (Suppµ
(c)
MP + ε̃) × [s, s̄] ⊂

Suppµ
(c)
MP × [s, s̄] + ε

Remark 3.3. Corollary 3.2 implies the following weaker property, which will
be useful:

‖Ŝ(ν)‖ ≺ 1 (3.22)
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Before ending the section and proving Theorem 3.1, we need some stochastic
control on the diagonal elements of Ŝ in order to evaluate Θ defined by

Θ := Ĉ− C̃ (3.23)

Using the definition of Ĉ from (1.3) and C̃ from (1.6), Θ can be written as

Θ = (D̂−1/2 −D−1/2)ŜD̂−1/2 + D−1/2Ŝ(D̂−1/2 −D−1/2) (3.24)

Since we proved that ‖Ŝ‖ ≺ 1, it remains to show that ‖D̂−1/2‖ and ‖D̂−1/2 −
D−1/2‖ can also be stochastically dominated by some relevant quantity in order
to control ‖Θ‖. Define

ŝm(ν) := Ŝm,m(ν)

the diagonal elements of Ŝ(ν) spectral density estimator (note that they coincide
with the traditional smoothed periodogram estimator of the spectral density
sm). The aim of the following Paragraph 3.2 is to establish stochastic domination

results for ŝm, ‖D̂−1/2‖ and ‖D̂−1/2 −D−1/2‖.

3.2. Step 2: Estimates for ŝm(ν)

For all this section, we write sm(ν) := sm, D(ν) := D, etc in order to simplify
the notations. Define as in (3.21) the following quantity

ΛD̂
ε (ν) = {σ(D̂(ν)) ⊂ [s, s̄] + ε} (3.25)

Lemma 3.1. Let ε > 0. The family of events ΛD̂
ε (ν), ν ∈ [0, 1] holds with

exponentially high probability.

Proof. See Appendix A.2.

Roughly speaking, this ensure that with exponentially high probability, ŝm
stays bounded and away from zero. This result implies the following (weaker)
statement, but will still be enough for some proofs and reduces the complexity
of the arguments.

Lemma 3.2. The family of random variables (|ŝm(ν)|+ 1
|ŝm(ν)| )m=1,...,M , ν ∈

[0, 1], verifies (
|ŝm|+

1

|ŝm|

)
≺ 1

Proof. Immediate from Lemma 3.1.

Lemma 3.3. The set of random variable (|ŝm(ν)−1/2 − sm(ν)−1/2|)m=1,...,M

and (|
√

sm(ν)
ŝm(ν) − 1|)m=1,...,M , ν ∈ [0, 1], verifies

|ŝ−1/2
m − s−1/2

m | ≺ 1√
B

+
B2

N2
,

∣∣∣∣√sm
ŝm
− 1

∣∣∣∣ ≺ 1√
B

+
B2

N2
(3.26)

Proof. See Appendix A.3
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3.3. Step 3: Stochastic representation of Ĉ

We are now in position to prove the result concerning Ĉ of Theorem 3.1.

Proof. We have to control the operator norm of:

∆ = Ĉ− XX∗

B + 1
= Ĉ− C̃ + C̃− XX∗

B + 1
= Θ + ∆̃ (3.27)

The operator norm of ‖∆̃‖ has already been proved in Corollary 3.1 to satisfy

‖∆̃‖ ≺ (B/N). Moreover, recall that Θ can be written as a function of D̂−1/2−
D−1/2 in (3.24), so that one can use Lemma 3.2 and Lemma 3.3 to dominate
each term and get:

‖Θ‖ ≺ 1√
B

+
B2

N2
(3.28)

Summing the estimate of Θ and the one of ∆̃, one get:

‖∆‖ ≺ 1√
B

+
B2

N2
+
B

N

which is the desired result.

As a consequence, we state here Corollary 3.3 about the localization of the
eigenvalues of Ĉ(ν).

Corollary 3.3. For each ε > 0, we define ΛĈ
ε (ν) as the event

ΛĈ
ε (ν) =

{
σ(Ĉ(ν)) ⊂ Suppµ

(c)
MP + ε

}
(3.29)

Then, the family of events ΛĈ
ε (ν), ν ∈ [0, 1] holds with exponentially high prob-

ability.

Proof. We simply write:

XX∗

B + 1
− ‖∆‖IM ≤ Ĉ ≤ XX∗

B + 1
+ ‖∆‖IM

and use the same arguments as in the proof of Corollary 3.2.

4. Control of Linear Spectral Statistics of Ĉ

In the following, we consider LSS for function f satisfying the following assump-
tions.

Assumption 4.1. f is defined on R+ and there exist some ε > 0 such that its

restriction on Supp
(c)
MP +ε is Cp where p is some integer p ≥ 9.

We now state the main result, which controls with exponentially high prob-
ability the maximum deviation rate of any LSS of Ĉ(ν).
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Theorem 4.1. Let f be an application satisfying the conditions of Assumption
4.1. Then, under Assumptions 1.1, 1.2, 1.3 and 1.4, we have:

sup
ν∈[0,1]

∣∣∣∣ 1

M
tr f(Ĉ(ν))−

∫
R
f dµ

(cN )
MP

∣∣∣∣ ≺ B

N
(4.1)

Remark 4.1. This theorem ensures that under H0, 1
M tr f(Ĉ(ν)) and

∫
f dµ

(cN )
MP

are O(1) terms, but their dominant behaviour is the same so that the left hand
side of (4.1) becomes of reduced order O(BN ). We expect that under some al-
ternative hypothesis, the order of magnitude of the l.h.s. of (4.1) will be larger,
typically of order 1.

Remark 4.2. We also notice that (4.1) is stronger than the property that the

family of random variables
∣∣∣ 1
M tr f(ĈN (ν))−

∫
R f dµ

(cN )
MP

∣∣∣ , ν ∈ [0, 1] verifies∣∣∣∣ 1

M
tr f(ĈN (ν))−

∫
R
f dµ

(cN )
MP

∣∣∣∣ ≺ B

N
(4.2)

Indeed, in (4.2), the stochastic domination holds for each ν, but not uniformly
on ν ∈ [0, 1]. More precisely, (4.2) is equivalent to for any ε, there exist N0(ε)
and α > 0 such that for any N ≥ N0(ε)

sup
ν∈[0,1]

P
[∣∣∣∣ 1

M
tr f(ĈN (ν))−

∫
R
f dµ

(cN )
MP

∣∣∣∣ ≥ N εB

N

]
≤ e−CN

α

(4.3)

whereas (4.1) is equivalent to

P

[
sup
ν∈[0,1]

∣∣∣∣ 1

M
tr f(ĈN (ν))−

∫
R
f dµ

(cN )
MP

∣∣∣∣ ≥ N εB

N

]
≤ e−CN

α

(4.4)

which are not equivalent since the set [0, 1] is not finite, so the union bound
cannot be applied directly.

Outline of the proof. We will first prove (4.2) using Gaussian concentration
inequalities. The extension to the supremum over any finite grid will then be
immediate since the concentration results rates are exponential. Eventually, we
will extend the supremum to the whole interval [0, 1] by a Lipschitz argument

on the application ν 7→ Ĉ(ν).

4.1. Step 1: proof of (4.2)

The quantity of interest in equation (4.1) will be split into the three following
terms:∣∣∣∣ 1

M
tr f(Ĉ(ν))− 1

M
tr f(C̃(ν))

∣∣∣∣+

∣∣∣∣ 1

M
tr f(C̃(ν))− 1

M
tr f

(
X(ν)X∗(ν)

B + 1

)∣∣∣∣
+

∣∣∣∣ 1

M
tr f

(
X(ν)X∗(ν)

B + 1

)
−
∫
R
f dµ

(cN )
MP

∣∣∣∣
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As we shall see, the evaluations of the second and third terms are rather easy,
but the first term is more demanding.

Proposition 4.1. The family of random variables∣∣∣ 1
M tr f

(
XN (ν)X∗N (ν)

B+1

)
−
∫
R f dµ

(cN )
MP

∣∣∣ , ν ∈ [0, 1] verifies∣∣∣∣ 1

M
tr f

(
XN (ν)X∗N (ν)

B + 1

)
−
∫
R
f dµ

(cN )
MP

∣∣∣∣ ≺ 1

M
<<

B

N
(4.5)

where we recall that 1
M << B

N because α > 1
2 .

Proof. As usual, we omit the dependence with respect to ν. Since f is well
defined on R+, the quantity tr f(XX∗/(B + 1)) is also well defined. First, we
need to localize the eigenvalues of XX∗

B+1 in order to work on an appropriate
compact. Let ε > 0 and let χ : R→ R be a C∞ application such that:

χ(λ) =

{
1 if λ ∈ Suppµ

(c)
MP + ε

0 if λ /∈ Suppµ
(c)
MP + 2ε

(4.6)

and f̄ : R→ R defined by f̄ = f × χ. Note that f̄ is compactly supported. We
write:∣∣∣∣ 1

M
tr f

(
XX∗

B + 1

)
−
∫
R
f dµ

(cN )
MP

∣∣∣∣ ≤ ∣∣∣∣ 1

M
tr f

(
XX∗

B + 1

)
− 1

M
tr f̄

(
XX∗

B + 1

)∣∣∣∣
+

∣∣∣∣ 1

M
tr f̄

(
XX∗

B + 1

)
− E

1

M
tr f̄

(
XX∗

B + 1

)∣∣∣∣
+

∣∣∣∣ 1

M
Etr f̄

(
XX∗

B + 1

)
−
∫
R
f̄ dµ

(cN )
MP

∣∣∣∣+

∣∣∣∣∫
R
f̄ dµ

(cN )
MP −

∫
R
f dµ

(cN )
MP

∣∣∣∣ (4.7)

For M,B large enough, (1 − √cN )2 ≥ (1 −
√
c)2 − ε and (1 +

√
cN )2 ≤

(1 +
√
c)2 + ε, i.e.

[(1−
√
cN )2, (1 +

√
cN )2] ⊂ Suppµ

(c)
MP + ε

interval on which χ is constant equal to 1. Therefore, for N large enough, f and
f̄ coincide on [(1−√cN )2, (1 +

√
cN )2]. Therefore,∫

R
f̄ dµ

(cN )
MP =

∫ (1+
√
cN )2

(1−√cN )2
f(λ)χ(λ) dµ

(cN )
MP =

∫ (1+
√
cN )2

(1−√cN )2
f(λ) dµ

(cN )
MP =

∫
R
f dµ

(cN )
MP

so the last term in the right hand side of (4.7) vanishes.
In order to evaluate the third term of the right hand side of (4.7), we notice

that since Supp(f̄) is compact and f̄ is Cp for p ≥ 9, Theorem 6.2 of [15] proves2

that the following results holds:∣∣∣∣E [ 1

M
tr f̄

(
XX∗

B + 1

)]
−
∫
R
f̄ dµ

(cN )
MP

∣∣∣∣ = O
(

1

M2

)
2while Theorem 6.2 of [15] is stated with f̄ ∈ C∞, the proof actually only needs f ∈ C8
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Recall the definition of Λε from (2.4) which holds with exponentially high
probability. The first term in the right hand side of (4.7) can be handled as

follows: on the event Λε, tr f
(

XX∗

B+1

)
and tr f̄

(
XX∗

B+1

)
coincides. Therefore, we

have for any q ≥ 0

P
[∣∣∣∣ 1

M
tr f

(
XX∗

B + 1

)
− 1

M
tr f̄

(
XX∗

B + 1

)∣∣∣∣ > N−q
]

≤ P
[∣∣∣∣ 1

M
tr f

(
XX∗

B + 1

)
− 1

M
tr f̄

(
XX∗

B + 1

)∣∣∣∣ > N−q,Λε

]
+ P [Λcε]

= P [Λcε]

which decays to zero exponentially fast in N . Therefore, we showed that:

∣∣∣∣ 1

M
tr f

(
XX∗

B + 1

)
− 1

M
tr f̄

(
XX∗

B + 1

)∣∣∣∣ ≺ 1

Nq

for any q ∈ N. Therefore, we obtain in particular that

∣∣∣∣ 1

M
tr f

(
XX∗

B + 1

)
− 1

M
tr f̄

(
XX∗

B + 1

)∣∣∣∣ ≺ 1

M

It remains to study the second term in the right hand side of (4.7). We will use
the concentration result for Lipschitz transformation of Gaussian entries from
Paragraph 2.3. We consider the real valued function ψ defined by ψ(X,X∗) =

tr f̄
(

XX∗

B+1

)
, and establish that it is O(1)–Lipschitz. For this, we evaluate

‖∇ψ(X,X∗)‖2 =
∑
i,j

∣∣∣∣ ∂ψ∂Xi,j

∣∣∣∣2 +

∣∣∣∣ ∂ψ∂Xi,j

∣∣∣∣2 (4.8)

Using classic identities for derivation of Hermitian matrices, the first term in
the sum is:

∂tr ψ

∂Xij
(X,X∗) =

1

B + 1

[
X∗f̄ ′

(
XX∗

B + 1

)]
ji

=
1√
B + 1

[
X∗√
B + 1

f̄ ′
(

XX∗

B + 1

)]
ji

and similarly:

∂tr ψ

∂Xij

(X,X∗) =
1

B + 1

[
f̄ ′
(

XX∗

B + 1

)
X

]
ij

=
1√
B + 1

[
f̄ ′
(

XX∗

B + 1

)
X√
B + 1

]
ij
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Replacing these expressions in (4.8) gives:

‖∇ψ‖2(X,X∗) =
1

B + 1

∑
i,j

∣∣∣∣∣
[

X∗√
B + 1

f̄ ′
(

XX∗

B + 1

)]
ji

∣∣∣∣∣
2

+
1

B + 1

∑
i,j

∣∣∣∣∣
[
f̄ ′
(

XX∗

B + 1

)
X√
B + 1

]
ij

∣∣∣∣∣
2

= 2
1

B + 1
tr

X∗√
B + 1

f̄ ′
(

XX∗

B + 1

)
f̄ ′
(

XX∗

B + 1

)∗
X√
B + 1

=
2

B + 1
tr |f̄ ′|2

(
XX∗

B + 1

)
XX∗

B + 1

=
2M

B + 1

1

M
tr

(
|f̄ ′|2

(
XX∗

B + 1

)
XX∗

B + 1

)

As f̄ ∈ Cp, p ≥ 9, is compactly supported, so is the function λ→ λ |f̄ ′(λ)|2.
Therefore, λ → λ |f̄ ′(λ)|2 is bounded, and there exists a nice constant C such
that

1

M
tr

(
|f̄ ′|2

(
XX∗

B + 1

)
XX∗

B + 1

)
≤ C

for each X. Moreover, since the ratio M
B+1 = cN converges towards the finite

constant c, we obtain that

‖∇ψ‖2 ≤ C = O(1)

for some nice constant C. This proves that ψ is O(1)–Lipschitz and Paragraph
2.3 provides:

|ψ(X,X∗)− Eψ(X,X∗)| ≺ 1

Therefore, we have shown that∣∣∣∣tr (f̄ ( XX∗

B + 1

))
− E tr

(
f̄

(
XX∗

B + 1

))∣∣∣∣ ≺ 1 (4.9)

This completes the proof of
∣∣∣ 1
M tr f

(
XN (ν)X∗N (ν)

B+1

)
−
∫
R f dµ

(cN )
MP

∣∣∣ ≺ 1
M .

Proposition 4.2. The family of random variables∣∣∣ 1
M tr f(C̃N (ν))− 1

M tr f
(

XN (ν)X∗N (ν)
B+1

)∣∣∣ , ν ∈ [0, 1] verifies

∣∣∣∣ 1

M
tr f(C̃(ν))− 1

M
tr f

(
X(ν)X∗(ν)

B + 1

)∣∣∣∣ ≺ B

N
(4.10)
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Proof. Write, for ε > 0,

P
[∣∣∣∣ 1

M
tr f(C̃(ν))− 1

M
tr f

(
X(ν)X∗(ν)

B + 1

)∣∣∣∣ > N εB

N

]
≤ P

[∣∣∣∣ 1

M
tr f(C̃(ν))− 1

M
tr f

(
X(ν)X∗(ν)

B + 1

)∣∣∣∣ > N εB

N
,Λε ∩ ΛC̃

ε

]
+ P

[
(Λε ∩ ΛC̃

ε )c
]

We recall that Λε and ΛC̃
ε are the events defined by (2.4) and (3.20) respec-

tively. It has been proved in Paragraph 2.2 that Λε holds with exponentially

high probability, and in Corollary 3.2 that ΛC̃
ε also holds with exponentially

high probability. Therefore, it remains to study:∣∣∣∣ 1

M
tr f(C̃)− 1

M
tr f

(
XX∗

B + 1

)∣∣∣∣1(Λε ∩ ΛC̃
ε )

On the event Λε ∩ ΛC̃
ε , the eigenvalues of XX∗

B+1 and C̃ are localized in a

compact support. Using the representation (3.18) of C̃, we get:

XX∗

B + 1
− ‖∆̃‖IM ≤ C̃ ≤ XX∗

B + 1
+ ‖∆̃‖IM

As in the context of the proof of Proposition 4.1, we replace f by the Cp com-
pactly supported function f̄ = f χ where χ is defined by (4.6). The derivative
of f̄ is bounded by some nice constant C. Therefore, for any m ∈ {1, . . . ,M}
we have:∣∣∣∣f(λm(C̃))− f(λm

(
XX∗

B + 1

)
)

∣∣∣∣1(Λε ∩ ΛC̃
ε )

=

∣∣∣∣f̄(λm(C̃))− f̄(λm

(
XX∗

B + 1

)
)

∣∣∣∣1(Λε ∩ ΛC̃
ε )

≤ C
∣∣∣∣λm(C̃)− λm

(
XX∗

B + 1

)∣∣∣∣
≤ C ‖∆̃‖

It remains to use the concentration result on ˜‖∆‖ from Theorem 3.1 and get
the following bound:∣∣∣∣ 1

M
tr f(C̃)− 1

M
tr f

(
XX∗

B + 1

)∣∣∣∣1(Λε ∩ ΛC̃
ε ) ≤ C‖∆̃‖ ≺ B

N

This completes the proof of Proposition 4.2.

Now, we focus on proving the same kind of stochastic domination for the
following quantity: ∣∣∣∣ 1

M
tr f(Ĉ(ν))− 1

M
tr f(C̃(ν))

∣∣∣∣
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Proposition 4.3. Under Assumption 4.1, the family of random variables∣∣∣ 1
M tr f(Ĉ)(ν)− 1

M tr f(C̃)(ν)
∣∣∣ , ν ∈ [0, 1] verifies∣∣∣∣ 1

M
tr f(Ĉ)(ν)− 1

M
tr f(C̃)(ν)

∣∣∣∣ ≺ B

N
(4.11)

Remark 4.3. As we shall see below, the rate B
N in (4.11) is pessimistic, but

easier to establish than a tighter factor. However, we note that the factor B/N
in the statement of Theorem 4.1 cannot be improved since it appears in (4.10).
Therefore, it is not useful to improve the evaluation (4.11).

Remark 4.4. (4.11) seems at first surprising . Using the stochastic domination
result (3.28) for Θ , we can directly obtain:∣∣∣∣ 1

M
tr f(Ĉ)(ν)− 1

M
tr f(C̃)(ν)

∣∣∣∣ ≺ B

N
+

1√
B

where 1√
B

is the limiting speed for α < 2/3. 1√
B

comes from the error of estima-

tion of the spectral densities of the M scalar times series. Due to subtle effects,
it turns out that this error term eventually doesn’t contribute in the LSS (4.11).
This can be easily understood if f(λ) = log λ. In this case, the left hand side of
(4.11) is reduced to

1

M
tr f(Ĉ)(ν)− 1

M
tr f(C̃)(ν) =

1

M

M∑
m=1

(log sm(ν)− log ŝm(ν))

which depends only on the estimators (ŝm(ν))m=1,...,M . It then easy to show that
(4.11) holds. We just provide a sketch of proof. For this, we first remark that is

possible to study 1
M

∑M
m=1 (log sm(ν)− log ŝm(ν)) on the event ΛD̂

ε (ν) defined
by (3.25). For each m, we expand around sm the logarithm up to the second
order, and obtain that

1

M

M∑
m=1

(log sm(ν)− log ŝm(ν)) = − 1

M

M∑
m=1

(ŝm−sm)
1

sm
+

1

M

M∑
m=1

1

2

(
ŝm − sm
θm

)2

(4.12)
where for each m, θm is located between sm and ŝm. Lemma A.5 allows to
conclude that the second term of the right hand side of (4.12) is dominated by
1
B +

(
B
N

)4
. In order to evaluate the first term of the r.h.s. of (4.12), we first use

Lemma A.2 to obtain that

1

M

M∑
m=1

(E(ŝm − sm))
1

sm
= O

(
B

N

)2

and finally remark that, by Eq. (A.13),

1

M

M∑
m=1

ŝm − E(ŝm)

sm



High dimensional independence testing of Gaussian time series 31

can be interpreted as a recentered quadratic form of the MN dimensional vector
y = (yT1 , . . . ,y

T
M )T . The stochastic domination relation∣∣∣∣∣ 1

M

M∑
m=1

ŝm − E(ŝm)

sm

∣∣∣∣∣ ≺ 1

B

then follows from the Hanson-Wright inequality. Putting all the pieces together,
and using that 1

B << B
N because α > 1

2 , we eventually obtain (4.11) if f(λ) =
log λ.

Proof. First, as in Proposition 4.1 and Proposition 4.2, it is possible to replace
f ∈ Cp(R) with the function f̄ ∈ Cp(R) supported by SuppµcMP + 2κ, for some
κ > 0, defined by f̄ = f × χ where χ is defined by (4.6). In order to simplify
the notations, we drop in the following the notation f̄ and simply associate f
with its compactly supported version.

In order to prove Proposition 4.3, we use the so-called Helffer-Sjöstrand for-
mula to express 1

M tr f(Ĉ(ν)) − 1
M tr f(C̃(ν)) as a quantity depending on the

resolvent of Ĉ and the resolvent of C̃. In order to introduce this tool, we remark
that the compactly supported function f is of class Ck+1 for a certain integer k
verifying k+ 1 ≥ 9, and denote by Φk(f) : C→ C the function defined on C by

Φk(f)(x+ iy) =

k∑
l=0

(iy)l

l!
f (l)(x)ρ(y)

where ρ : R → R+ is smooth, compactly supported, with value 1 in a neigh-
bourhood of 0. Function Φk(f) coincides with f on the real line and extends it
to the complex plane. Let ∂̄ = ∂x + i∂y. It is well known that

∂̄Φk(f)(x+ iy) =
(iy)k

k!
f (k+1)(x) (4.13)

(a proof of this result can be found in [9] or [18]) if y belongs to the neighbour-
hood of 0 in which ρ is equal to 1. If µ is a probability measure, with sµ(z)
representing its Stieltjes transform (which definition is recalled in (1.14)), the
Helffer-Sjöstrand formula can be written as∫

f dµ =
1

π
Re

∫
C+

∂̄Φk(f)(z)sµ(z) dz (4.14)

In order to understand why the integral at the right hand side of (4.14) is well
defined, we take, to fix the ideas, ρ ∈ C∞ such that ρ(y) = 1 for |y| ≤ 1 and
ρ(y) = 0 for |y| > 2 throughout this paragraph. Using this with the fact that f
is compactly supported on the interval [a1, a2], with a1 = (1 −

√
c)2 − 2κ and

a1 = (1+
√
c)2 +2κ, it first appears that the integral is in fact over the compact

set D = {x+ iy : x ∈ [a1, a2], y ∈ [0, 2]}. Moroever, as |sµ(z)| ≤ 1
y if z ∈ D (see

(1.15)), (4.13) for k = 1 leads to the conclusion that

|∂̄Φk(f)(z)sµ(z)| ≤ C
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for z ∈ {x + iy ∈ D, y ≤ 1}. Therefore, the right hand side of (4.14) is well
defined.

At this point, we have to introduce some new notations. We denote by Q(z),

Q̃(z) and Q̂(z) the resolvents of matrices XX∗

B+1 , C̃ and Ĉ respectively, while

µ̃N and µ̂N represent the empirical eigenvalue distributions of matrices C̃ and Ĉ.

The term 1
M tr f(Ĉ)− 1

M tr f(C̃) can be written as

1

M
tr f(Ĉ)− 1

M
tr f(C̃) =

∫
R
f dµ̂N −

∫
R
f dµ̃N

Applying (4.14) to the empirical eigenvalue distributions µ̂N and µ̃N , we obtain
that

1

M
tr f(Ĉ)− 1

M
tr f(C̃) =

1

π
Re

∫
D

dz ∂̄Φk(f)(z)
1

M
(tr Q̂(z)− tr Q̃(z)) (4.15)

In the following, we will drop the notation Q(z), Q̃(z), Q̂(z) and use instead

Q, Q̃ Q̂. Therefore, we can reformulate (4.11) as follows:∣∣∣∣ 1

M
tr f(Ĉ)− 1

M
tr f(C̃)

∣∣∣∣ ≺ B

N
⇐⇒

∣∣∣∣ 1πRe

∫
D
∂̄Φk(f)(z)tr {Q̂− Q̃} dz

∣∣∣∣ ≺ B2

N

4.1.1. Reduction to the study of∫
D dz ∂Φk(f)(z)

∑M
m=1(Q + zQ2)mm

(
1− ‖xm‖

2
2

B+1

)
We define

ζ =

∫
D

dz∂Φk(f)(z)

M∑
m=1

(Q + zQ2)mm

(
1− ‖xm‖

2
2

B + 1

)
(4.16)

where we recall that the row vectors (xm)m=1,...,M are the rows of the i.i.d.
matrix X. We establish in this paragraph that∣∣∣∣∫

D
dz ∂̄Φk(f)(z)tr {Q̂− Q̃} − ζ

∣∣∣∣ ≺ B2

N
(4.17)

It turns out that by Lemma 4.1 and Lemma 4.2 in Paragraph 4.1.2 below, ζ
verifies the key properties

|ζ| ≤ |ζ − Eζ|+ |Eζ| ≺ 1

B
+ 1 ≺ 1

As the condition α ∈ (1/2, 1) implies that 1� B2

N , Lemma 4.1 and Lemma 4.2

lead to ζ ≺ B2

N . Proposition 4.3 will then follow directly from (4.17).
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Plugging in the integral expression of ζ, we get:∣∣∣∣∫
D
∂̄Φk(f)(z)tr {Q̂− Q̃}dz − ζ

∣∣∣∣
=

∣∣∣∣∣
∫
D

dz∂Φk(f)(z)

(
tr {Q̂− Q̃} −

M∑
m=1

(Q + zQ2)mm

(
1− ‖xm‖

2
2

B + 1

))∣∣∣∣∣
We will proceed in three steps:

1. ∣∣∣∣∫
D

dz∂Φk(f)(z)
(

tr {Q̂− Q̃} − tr {Q2Θ}
)∣∣∣∣ ≺ B2

N
(4.18)

2. ∣∣∣∣∫
D

dz∂Φk(f)(z)

(
tr {Q2Θ} − 2 tr

XX∗

B + 1
Q2(D̂−1/2D1/2 − I)

)∣∣∣∣ ≺ B2

N
(4.19)

3. ∣∣∣∣∫
D

dz∂Φk(f)(z)×(
2 tr

XX∗

B + 1
Q2(D̂−1/2D1/2 − I)−

M∑
m=1

(Q + zQ2)mm

(
1− ‖xm‖

2
2

B + 1

))∣∣∣∣∣ ≺ B2

N

(4.20)

Step 1. Using the well known identity A−1 −B−1 = A−1(B −A)B−1, we

express Q̂− Q̃ as:
Q̂− Q̃ = −Q̃ΘQ̂ (4.21)

where we recall that Θ = Ĉ−C̃, as defined in (3.23). We claim that it is possible

to approximate tr Q̃ΘQ̂ by tr QΘQ. Indeed, we have

|tr Q̃ΘQ̂− tr QΘQ|

= |tr Q̃ΘQ̂− tr Q̃ΘQ̃ + tr Q̃ΘQ̃− tr Q̃ΘQ + tr Q̃ΘQ− tr QΘQ|

≤ |tr Q̃ΘQ̂− tr Q̃ΘQ̃|+ |tr Q̃ΘQ̃− tr Q̃ΘQ|+ |tr Q̃ΘQ− tr QΘQ|
:= T1 + T2 + T3

The following rough bounds are enough to control T1 (we used (1.17) to control
the norm of the resolvents):

T1 = |tr Q̃Θ(Q̂− Q̃)| = |tr Q̃ΘQ̃ΘQ̂| ≤M‖Q̃‖2‖Q̂‖‖‖Θ‖2 ≤ 1

Im3z
M‖Θ‖2

Concerning T2 and T3, we write similarly that Q̃−Q = −Q̃∆̃Q, and obtain
that

T2 = |tr Q̃ΘQ̃− tr Q̃ΘQ| ≤M‖Q̃‖2‖Q‖‖∆̃‖Θ‖ ≤ 1

Im3z
M‖∆̃‖‖Θ‖
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T3 = |tr Q̃ΘQ− tr QΘQ| ≤M‖Q̃‖‖Q‖2‖∆̃‖Θ‖ ≤ 1

Im3z
M‖∆̃‖‖Θ‖

Plugging these estimations into the left hand side of (4.18), we obtain that

∣∣∣∣∫
D

dz∂Φk(f)(z)
(

tr {Q̂− Q̃} − tr {Q2Θ}
)∣∣∣∣

≤
∫
D

dz|∂Φk(f)(z)|(T1 + T2 + T3)

≤M(‖Θ‖2 + 2‖∆̃‖Θ‖)
∫
D

dz|∂Φk(f)(z)| 1

Im3z

The use of (4.13) for k = 3 leads to the conclusion that

∫
D

dz|∂Φk(f)(z)| 1

Im3z
< +∞

Moreover, the concentration results (3.27) for ‖Θ‖ and (3.19) for ‖∆̃‖ from
Proposition 3.1, as well as α > 1/2 imply that

‖Θ‖2 + 2‖Θ‖‖∆̃‖ ≺ 1

B
+

1√
B

B

N
+

(
B

N

)3

<<
B

N

This eventually provides:

∣∣∣∣∫
D

dz∂Φk(f)(z)
(

tr {Q̂− Q̃} − tr {Q2Θ}
)∣∣∣∣ ≺ B2

N

which proves (4.18) and ends Step 1.

Step 2. We claim that:∥∥∥∥Θ− ((D̂−1/2D1/2 − I)
XX∗

B + 1
+

XX∗

B + 1
(D1/2D̂−1/2 − I)

)∥∥∥∥ ≺ B

N
(4.22)

We recall that Ŝ can be written using the definition (1.6) of C̃, and use the
decomposition (3.18) of C̃ from Corollary 3.1. Using these results, we get that

Ŝ = D1/2 C̃ D1/2 = D1/2

(
XX∗

B + 1
+ ∆̃

)
D1/2
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Plugging this expression of Ŝ into (3.24), we obtain that

Θ = (D̂−1/2 −D−1/2)ŜD̂−1/2 + D−1/2Ŝ(D̂−1/2 −D−1/2)

= (D̂−1/2 −D−1/2)D1/2

(
XX∗

B + 1
+ ∆̃

)
D1/2D̂−1/2

+

(
XX∗

B + 1
+ ∆̃

)
D1/2(D̂−1/2 −D−1/2)

= (D̂−1/2D1/2 − I)

(
XX∗

B + 1
+ ∆̃

)
D1/2D̂−1/2

+

(
XX∗

B + 1
+ ∆̃

)
(D1/2D̂−1/2 − I)

:= Θ1 + Θ2

As ∆̃ is a negligible quantity, one should expect that the leading quan-
tity in Θ1 and Θ2 is respectively (D̂−1/2D1/2 − I)XX∗

B+1 D1/2D̂−1/2 and
XX∗

B+1 (D1/2D̂−1/2 − I). To prove it, write:∥∥∥∥Θ1 − (D̂−1/2D1/2 − I)
XX∗

B + 1
D1/2D̂−1/2

∥∥∥∥
=
∥∥∥(D̂−1/2D1/2 − I)∆̃D1/2D̂−1/2

∥∥∥
≤ ‖D̂−1/2D1/2 − I‖‖∆̃‖‖D1/2D̂−1/2‖ (4.23)

∆̃ is controlled by (3.19) from Corollary 3.1, and D̂−1/2D1/2−I is controlled
by (3.26) from Lemma 3.3 (it is a diagonal matrix which elements are stochas-
tically dominated by Lemma 3.3). Moreover, from Lemma 3.3, it holds that

‖D1/2D̂−1/2‖ ≺ 1. Combining these estimations into (4.23), one get:∥∥∥∥Θ1 − (D̂−1/2D1/2 − I)
XX∗

B + 1
D1/2D̂−1/2

∥∥∥∥ ≺ ( 1√
B

+
B2

N2

)
B

N
≺ B

N
(4.24)

Using (2.5) from Paragraph 2.2 to control the norm of XX∗/(B+1), one can

further approximate (D̂−1/2D1/2− I)XX∗

B+1 D1/2D̂−1/2 by (D̂−1/2D1/2− I)XX∗

B+1 .
To check this, we use Lemma 3.3 and write that∥∥∥∥(D̂−1/2D1/2 − I)

XX∗

B + 1
D1/2D̂−1/2 − (D̂−1/2D1/2 − I)

XX∗

B + 1

∥∥∥∥
=

∥∥∥∥(D̂−1/2D1/2 − I)
XX∗

B + 1
(D1/2D̂−1/2 − IM )

∥∥∥∥
≤ ‖D̂−1/2D1/2 − I‖2

∥∥∥∥ XX∗

B + 1

∥∥∥∥
≺
(

1√
B

+
B2

N2

)2

≺ B

N
(4.25)
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Collecting (4.23), (4.24) and (4.25), we obtain the desired approximation of
Θ1: ∥∥∥∥Θ1 − (D̂−1/2D1/2 − I)

XX∗

B + 1

∥∥∥∥ ≺ B

N
(4.26)

Similarly for Θ2, one would obtain:∥∥∥∥Θ2 −
XX∗

B + 1
(D1/2D̂−1/2 − I)

∥∥∥∥ ≺ B

N
(4.27)

Combining (4.26) and (4.27), we obtain (4.22). To finish the proof of Step 2,
it remains to consider tr Q2Θ and prove (4.19). Remark that XX∗/(B+1) and
its resolvent Q commutes.

tr Q2

(
(D̂−1/2D1/2 − I)

XX∗

B + 1
+

XX∗

B + 1
(D1/2D̂−1/2 − I)

)
= tr Q2(D̂−1/2D1/2 − I)

XX∗

B + 1
+ tr Q2 XX∗

B + 1
(D̂−1/2D1/2 − I)

= 2 tr
XX∗

B + 1
Q2(D̂−1/2D1/2 − I) (4.28)

Therefore, using (4.28):∥∥∥∥tr Q2Θ− 2 tr
XX∗

B + 1
Q2(D̂−1/2D1/2 − I)

∥∥∥∥
=

∥∥∥∥tr Q2Θ− tr Q2

(
(D̂−1/2D1/2 − I)

XX∗

B + 1
+

XX∗

B + 1
(D1/2D̂−1/2 − I)

)∥∥∥∥
≤M‖Q‖2

∥∥∥∥Θ− ((D̂−1/2D1/2 − I)
XX∗

B + 1
+

XX∗

B + 1
(D1/2D̂−1/2 − I)

)∥∥∥∥
(4.29)

so that the left hand side of (4.22) is recognised in the right hand side of (4.29).
We can eventually prove (4.19) by following the same idea as in Step 1:∣∣∣∣∫

D
dz∂Φk(f)(z)

(
tr {Q2Θ} − 2tr

XX∗

B + 1
Q2(D̂−1/2D1/2 − I)

)∣∣∣∣
≤M

∥∥∥∥Θ− ((D̂−1/2D1/2 − I)
XX∗

B + 1
+

XX∗

B + 1
(D1/2D̂−1/2 − I)

)∥∥∥∥
×
∫
D
|∂Φk(f)(z)| 1

Im2z
dz︸ ︷︷ ︸

<+∞

≺ B2

N

This proves (4.19) and ends Step 2.
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Step 3. By definition of the resolvent, the following identity holds(
XX∗

B+1 − zIM
)

Q(z) = IM , which leads to the so-called resolvent identity:

XX∗

B + 1
Q = IM + zQ (4.30)

Using (4.30) one can write:

tr
XX∗

B + 1
Q2(D1/2D̂−1/2 − I) = tr (I + zQ)Q(D1/2D̂−1/2 − I)

= tr (Q + zQ2)(D1/2D̂−1/2 − I)

=

M∑
m=1

(
Q + zQ2

)
mm

(√
sm
ŝm
− 1

)
(4.31)

To handle
√

sm
ŝm
− 1 we use the following Taylor expansion: define the appli-

cation h by h(u) = 1√
u
− 1, with h′(u) = −1

2
1

u3/2 and h′′(u) = 3
4

1
u5/2 . A Taylor

expansion to the second order of h around 1 provides:

h

(
ŝm
sm

)
= h(1) +

(
ŝm
sm
− 1

)
h′(1) +

1

2

(
ŝm
sm
− 1

)2

h′′(θm)

= − 1

2sm
(ŝm − sm) +

1

2

h′′(θm)

s2
m

(ŝm − sm)2

where θm is some random quantity between ŝm and sm. Therefore (4.31) be-
comes

tr (Q + zQ2)(D1/2D̂−1/2 − I)

= tr (Q + zQ2)diag

(
− ŝm − sm

2sm
+

1

2

h′′(θm)(ŝm − sm)2

s2
m

: m ∈ {1, . . . ,M}
)

Lemma 3.1 implies that the set ΛD̂
ε (ν) defined by (3.25) holds with ex-

ponentially high probability. Therefore, it is sufficient to study the term

tr XX∗

B+1 Q2(D1/2D̂−1/2 − I) on the event ΛD̂
ε (ν). If ΛD̂

ε (ν) holds, θm belongs
to [s, s̄] + ε for each m ∈ {1, . . . ,M}, and supm≥1 |h′′(θm)| is bounded by a
nice constant. Moreover, as infν infm≥1 sm(ν) is bounded away from zero, there
exists a nice constant C for which the inequality

tr (Q + zQ2)diag

(
1

2

h′′(θm)(ŝm − sm)2

s2
m

: m ∈ {1, . . . ,M}
)

≤ C(‖Q‖+ z‖Q‖2)

M∑
m=1

(ŝm − sm)2
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holds on ΛD̂
ε (ν). Following again the same argument as in Step 1, we obtain

that∣∣∣∣∫
D

dz∂Φk(f)(z)
{

tr (Q + zQ2)(D̂−1/2D1/2 − I)

−tr (Q + zQ2)diag

(
− ŝm − sm

2sm
: m ∈ {1, . . . ,M}

)}∣∣∣∣
≤ C

M∑
m=1

(ŝm − sm)2

∫
D

dz|∂Φk(f)(z)|
(

1

Im z
+
|z|

Im2z

)
on ΛD̂

ε (ν). Lemma A.5 in Appendix implies that

M∑
m=1

(ŝm − sm)2 ≺ 1 +
B5

N4
≺ B2

N

Moreover, as
∫
D dz|∂Φk(f)(z)|( 1

Im z + z
Im2z

) <∞ for k ≥ 2, we obtain immedi-
ately that∣∣∣∣∫

D
dz∂Φk(f)(z)

{
tr (Q + zQ2)(D̂−1/2D1/2 − I)

−tr (Q + zQ2)diag

(
− ŝm − sm

2sm
: m ∈ {1, . . . ,M}

)}∣∣∣∣
≺ B2

N

Therefore the dominant term that remains is the order one quantity from the
previous Taylor expansion:∫

D
dz∂Φk(f)(z)tr (Q + zQ2)diag

(
sm − ŝm

2sm
: m ∈ {1, . . . ,M}

)
We now claim (see the proof below) that the following holds:∣∣∣∣sm − ŝmsm

−
(

1− ‖xm‖
2
2

B + 1

)∣∣∣∣ ≺ B

N
(4.32)

which since that:∣∣∣∣tr (Q + zQ2)diag

(
sm − ŝm

2sm
− 1

2

(
1− ‖xm‖

2
2

B + 1

))∣∣∣∣
≤ M

2
(‖Q‖+ z‖Q‖2) sup

m=1,...,M

∣∣∣∣sm − ŝmsm
−
(

1− ‖xm‖
2
2

B + 1

)∣∣∣∣
eventually proves (4.20). To show that (4.32) is indeed true, we recall equation

(3.7), and deduce that ŝm = ‖ωm‖2
B+1 can be written as

ŝm = sm
x∗m(I + Φm)xm

B + 1
= sm

‖xm‖22
B + 1

+ sm
x∗mΦmxm
B + 1
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where

sup
m≥1

sup
i,j
|(Φm)ij | = O

(
1

N

)
This gives: ∣∣∣∣(sm − ŝm)− sm

(
1− ‖xm‖

2
2

B + 1

)∣∣∣∣ =

∣∣∣∣smx∗mΦmxm
B + 1

∣∣∣∣
Since xm ∼ NC(0, IB+1), and∥∥∥∥sm Φm

B + 1

∥∥∥∥2

F

= O
(

(B + 1)2 1

(N(B + 1))2

)
= O

(
1

N2

)
the complex Hanson-Wright inequality from Paragraph 2.4 can be applied, and
provides: ∣∣∣∣smx∗mΦmxm

B + 1
− E

[
sm

x∗mΦmxm
B + 1

]∣∣∣∣ ≺ 1

N
� B

N
(4.33)

Moreover, it is clear that

E
[

x∗mΦmxm
B + 1

]
=

B+1∑
b=1

E
[
|Xmb|2

] (Φm)bb
B + 1

≤ C

N
(4.34)

Combining the variance estimation (4.33) and the bias estimation (4.34) of

sm
x∗mΦmxm
B+1 , (4.32) is indeed true.

Up to the Lemma 4.1 and Lemma 4.2, Proposition 4.3 is proved.

4.1.2. Proof of Lemma 4.1 and Lemma 4.2

We now establish Lemma 4.1 and Lemma 4.2.

Lemma 4.1. The family of random variables ζ(ν)− Eζ(ν), ν ∈ [0, 1] verifies

|ζ(ν)− Eζ(ν)| ≺ 1 (4.35)

Proof. ζ defined by (4.16) can be written as

ζ = −
∫
D

dz∂Φk(f)(z)

M∑
m=1

Qmm

(
‖xm‖22
B + 1

− 1

)

−
∫
D

dz∂Φk(f)(z)

M∑
m=1

z(Q2)mm

(
‖xm‖22
B + 1

− 1

)
:= −ζ1 − ζ2

In the following, we omit to evaluate |ζ1(ν)− E(ζ1(ν))|, and just establish that
|ζ2(ν) − E(ζ2(ν))| ≺ 1 using the Gaussian concentration inequality from Para-
graph 2.3.
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Recall that ‖xm‖22 is a χ2
2(B+1) random variable. Therefore it is clear that:∣∣∣∣‖xm‖22B + 1

− 1

∣∣∣∣ ≺ 1√
B

Knowing this, the idea is to show that, conditioned on the event where the

random variables
(
‖xm‖22
B+1 − 1

)
m=1,...,M

are localized, which holds with exponen-

tially high probability, ζ2 is a O(1)–Lipschitz function of the entries of matrix
X. For ε < 1

2 , we define the family of events Am(ν), m = 1, . . . ,M, ν ∈ [0, 1]
given by

Am(ν) =

{
‖xm(ν)‖22
B + 1

∈
[
1− Bε√

B
, 1 +

Bε√
B

]}
(4.36)

as well as A(ν) = ∩Mm=1Am(ν). It is clear that the family of events Am(ν),
m = 1, . . . ,M , ν ∈ [0, 1] holds with exponentially high probability, and that the
same property holds for the family A(ν), ν ∈ [0, 1]. We claim that it exists a
family of C∞ functions (gB)B≥1 verifying

gB(t) =

{
t− 1 if t ∈ [1− Bε√

B
, 1 + Bε√

B
]

0 if t /∈ [1− 2 Bε√
B
, 1 + 2 Bε√

B
]

and

sup
t
|gB(t)| ≤ C Bε√

B
, sup

t
|g′B(t)| ≤ C (4.37)

for each B, where C is a nice constant. Indeed consider h ∈ C∞ such that it
verifies |h(t)| ≤ 2|t| for each t and

h(t) =

{
t if t ∈ [−1, 1]

0 if t /∈ [−2, 2]

Then, it is easy to check that the family (gB)B≥1 defined by

gB(t) =
Bε√
B
h

(√
B

Bε
(t− 1)

)
satisfies the requirements (4.37).

We define ζ̃2 by

ζ̃2 = Re

∫
D

dz∂Φk(f)(z)

M∑
m=1

(zQ2)mmgB

(
‖xm‖22
B + 1

)
, (Q2)mm =

M∑
k=1

QmkQkm

and notice that ζ2 and ζ̃2 coincide on the exponentially high probability event
A. We claim that if |ζ̃2 − E(ζ̃2| ≺ 1, then |ζ2 − E(ζ2| ≺ 1. To justify this, we
evaluate P

(
|ζ2 − E(ζ2)| > Nδ

)
for each δ > 0. It holds that

P
(
|ζ2 − E(ζ2)| > Nδ

)
≤ P

(
|ζ2 − E(ζ2)| > Nδ, A

)
+ P(Ac)



High dimensional independence testing of Gaussian time series 41

As P(Ac) converges towards zero exponentially, we have just to consider

P
(
|ζ2 − E(ζ2)| > Nδ, A

)
On A, ζ2 and ζ̃2 coincide. Therefore, it holds that

P
(
|ζ2 − E(ζ2)| > Nδ, A

)
≤ P

(
|ζ̃2 − E(ζ̃2)| > Nδ − |E(ζ2 − ζ̃2)|, A

)
We now prove that |E(ζ2 − ζ̃2)| converges towards 0 exponentially. For this, we
notice that as ζ2 and ζ̃2 coincide on A, then

|E(ζ2 − ζ̃2)| =
∣∣∣E((ζ2 − ζ̃2)IAc)

∣∣∣ ≤ (E ∣∣∣ζ2 − ζ̃2∣∣∣2)1/2

(P(Ac))
1/2

A rough evaluation of

(
E
∣∣∣ζ2 − ζ̃2∣∣∣2)1/2

leads to

(
E
∣∣∣ζ2 − ζ̃2∣∣∣2)1/2

≤ CM

for some nice constant C. Therefore,

(
E
∣∣∣ζ2 − ζ̃2∣∣∣2)1/2

(P(Ac))
1/2

, and thus

|E(ζ2 − ζ̃2)|, converge towards 0. For each N large enough, we thus have

P
(
|ζ̃2 − E(ζ̃2)| > Nδ − |E(ζ2 − ζ̃2)|, A

)
≤ P

(
|ζ̃2 − E(ζ̃2)| > Nδ/2, A

)
≤ P

(
|ζ̃2 − E(ζ̃2)| > Nδ/2

)
Therefore, if |ζ̃2 − E(ζ̃2)| ≺ 1, there exist γ > 0 such that

P
(
|ζ2 − E(ζ2)| > Nδ, A

)
≤ exp−Nγ . This implies that |ζ2 − E(ζ2)| ≺ 1

as expected.

It is thus enough to establish that |ζ̃2 − E(ζ̃2| ≺ 1. In order to simplify the
notations, we drop the notation ζ̃2 and write simply ζ2 instead of ζ̃2.

In the following, we evaluate the norm square of the gradient of ζ2 w.r.t. the

variables Xi,j ,X
∗
i,j and just compute

∑
i,j

∣∣∣ ∂ζ2∂Xij

∣∣∣2 because
∑
i,j

∣∣∣ ∂ζ2∂X∗ij

∣∣∣2 is of the

same order of magnitude.

We recall that Q = (XX∗

B+1 − zIM )−1, and its corresponding derivative with
respect to Xij is

∂Qmk
∂Xij

=
−1

B + 1
Qmi(X

∗Q)jk
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Therefore, we have

∂(Q2)mm
∂Xij

=

M∑
k=1

∂(QmkQkm)

∂Xij

=

M∑
k=1

{
Qmk

∂Qkm
∂Xij

+Qkm
∂Qmk
∂Xij

}
= −

(
(Q2)mi(X

∗Q)jm
B + 1

+
Qmi(X

∗Q2)jm
B + 1

)
(4.38)

Moreover it is clear that

∂

∂Xij

(
gB

(
‖xm‖22
B + 1

))
= δim

Xm,j

B + 1
g′B

(
‖xm‖22
B + 1

)
(4.39)

Collecting the derivatives (4.38) and (4.39) we get:

∂

∂Xij

(
M∑
m=1

(Q2)mmgB

(
‖xm‖22
B + 1

))

=

M∑
m=1

{
gB

(
‖xm‖22
B + 1

)
∂(Q2)mm
∂Xij

+ (Q2)mm
∂

∂Xij
gB

(
‖xm‖22
B + 1

)}
(4.40)

=

M∑
m=1

{−gB
(
‖xm‖22
B + 1

)(
(Q2)mi(X

∗Q)jm
B + 1

+
Qmi(X

∗Q2)jm
B + 1

)
+ δim

Xm,j

B + 1
g′B

(
‖xm‖22
B + 1

)
(Q2)mm}

=
Xi,j

B + 1
g′B

(
‖xi‖22
B + 1

)
(Q2)ii

−
M∑
m=1

gB

(
‖xm‖22
B + 1

)(
(Q2)mi(X

∗Q)jm
B + 1

+
Qmi(X

∗Q2)jm
B + 1

)
(4.41)

It remains to control
∑
i,j

∣∣∣ ∂ζ2∂Xij

∣∣∣2. From the integral representation of ζ2, the

derivative with respect to Xij is applied only on the integrand as follows:

∂ζ2
∂Xij

= Re

∫
D

dz∂Φk(f)(z)
∂

∂Xij

(
M∑
m=1

z(Q2)mmgB

(
‖xm‖22
B + 1

))
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Plugging in the derivative computed in (4.40) we get:

∂ζ2
∂Xij

= Re

∫
D

dz∂Φk(f)(z) z

{
Xi,j

B + 1
g′B

(
‖xi‖22
B + 1

)
(Q2)ii

−
M∑
m=1

gB

(
‖xm‖22
B + 1

)(
(Q2)mi(X

∗Q)jm
B + 1

+
Qmi(X

∗Q2)jm
B + 1

)}

Using the bounds of gB and g′B from inequalities (4.37), the observation that
g′B(t) = 0 if |t− 1| ≥ 2Bε√

B
, and that |z| is bounded on D, one can write:

∣∣∣∣ ∂ζ2∂Xij

∣∣∣∣2 ≤ C ∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 ∣∣∣∣ Xi,j

B + 1
g′B

(
‖xi‖22
B + 1

)
(Q2)ii

+

M∑
m=1

gB

(
‖xm‖22
B + 1

)(
(Q2)mi(X

∗Q)jm
B + 1

+
Qmi(X

∗Q2)jm
B + 1

)∣∣∣∣∣
2

≤ C
∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 ∣∣∣∣ Xi,j

B + 1
(Q2)ii

∣∣∣∣2 1(∣∣∣∣‖xm‖22B + 1
− 1

∣∣∣∣ ≤ 2Bε√
B

)

+ C

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 ∣∣∣∣∣
M∑
m=1

Bε√
B

(Q2)mi(X
∗Q)jm

B + 1

∣∣∣∣∣
2

+ C

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 ∣∣∣∣∣
M∑
m=1

Bε√
B

Qmi(X
∗Q2)jm

B + 1

∣∣∣∣∣
2

:= C(T
(1)
ij + T

(2)
ij + T

(3)
ij )

so that seeing a matrix product in the expression of T
(2)
ij and T

(3)
ij , one can

rewrite them as follows:

T
(2)
ij = T

(3)
ij =

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 ∣∣∣∣ Bε√B (X∗Q3)ji
B + 1

∣∣∣∣2
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It remains to sum over i, j.

M∑
i,j=1

T
(1)
ij

=

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 M∑
i,j=1

∣∣∣∣ Xi,j

B + 1
(Q2)ii

∣∣∣∣2 1(∣∣∣∣ ‖xi‖22B + 1
− 1

∣∣∣∣ ≤ 2Bε√
B

)

≤
∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 M∑
i=1

|(Q2)ii|2 1
(∣∣∣∣ ‖xi‖22B + 1

− 1

∣∣∣∣ ≤ 2Bε√
B

) M∑
j=1

∣∣∣∣ Xi,j

B + 1

∣∣∣∣2

=
C

B + 1

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 M∑
i=1

|(Q2)ii|2
‖xi‖22
B + 1

1

(∣∣∣∣ ‖xi‖22B + 1
− 1

∣∣∣∣ ≤ 2Bε√
B

)

≤ C

B + 1
(1 +

2Bε√
B

)

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 M∑
i=1

|(Q2)ii|2

Since
M∑
i=1

|(Q2)ii|2 ≤M‖Q‖4

it can be written that:
M∑

i,j=1

T
(1)
ij ≤ C

M

B + 1

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 ‖Q‖4
Similarly:

M∑
i,j=1

T
(2)
ij =

∫
D

dz|∂Φk(f)(z)|2
(
Bε√
B

)2 M∑
i,j=1

∣∣∣∣ (X∗Q3)ji
B + 1

∣∣∣∣2

=
B2ε

B

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 ∥∥∥∥X∗Q3

B + 1

∥∥∥∥2

F

=
B2ε

B

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 tr
X∗Q3Q∗

3

X

(B + 1)2

=
B2ε

B

1

B + 1

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 tr

((
XX∗

B + 1
Q

)
Q2Q∗

3

)
=
B2ε

B

1

B + 1

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 tr
(

(IM + zQ)Q2Q∗
3
)

≤ B2ε

B

M

B + 1

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 (‖Q‖5 + |z|‖Q‖6)

and the same holds for
∑M
i,j=1 T

(3)
ij . Collecting the terms in T

(1)
ij , T

(2)
ij and T

(3)
ij ,

we can write:∑
i,j

∣∣∣∣ ∂ζ2∂Xij

∣∣∣∣2 ≤ C M

B + 1

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2 (‖Q‖4 + ‖Q5‖+ |z|‖Q6‖)
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Since |z| is bounded on D in conjunction with the bound ‖Q‖ ≤ 1
Im z , we

obtain that∑
i,j

∣∣∣∣ ∂ζ2∂Xij

∣∣∣∣2 ≤ C M

B + 1

∫
D

dz
∣∣∂Φk(f)(z)

∣∣2( 1

Im4z
+

1

Im5z
+

1

Im6z

)
(4.42)

This integral at the right hand side of (4.42) is finite as soon as k ≥ 3. Therefore,
we proved that: ∑

i,j

∣∣∣∣ ∂ζ2∂Xij

∣∣∣∣2 ≤ C M

B + 1
≤ C = O(1)

ζ2 is thus a O(1) Lipschitz function of the entries of matrices X and X∗. There-
fore, the results presented in Paragraph 2.3 imply that |ζ2 − Eζ2| ≺ 1. The
stochastic domination relation |ζ1−Eζ1| ≺ 1 is proved similarly. The completes
the proof of Lemma 4.1.

It remains to study E[ζ], and establish the following Lemma.

Lemma 4.2.
Eζ = O(1)

Proof. In order to prove Lemma 4.2, we will need the following useful result
(Lemma 2.7 of [2]).

Lemma 4.3. For X = (X1, . . . , Xn)T a NC(0, In) random vector, A a n × n
matrix (with complex valued entries) we have for any q ≥ 2

E|X∗AX− tr A|q ≤ Cq
((

E|X1|4tr (AA∗)
)q/2

+ E|X1|2qtr (AA∗)q/2
)

for some constant Cq depending only on q.

As in the proof of Lemma 4.1, we only consider

ζ2 = Re

∫
D

dz∂Φk(f)(z)

M∑
m=1

z(Q2)mm

(
‖xm‖22
B + 1

− 1

)
As |z| is bounded on D, it is clear that is enough to show that for any m,

|E[βm]| ≤ C

B
(4.43)

holds for some nice constant C where βm is defined by

βm :=

∫
D
∂Φk(f)(z)

(
‖xm‖22
B + 1

− 1

)
(Q2)mm dz

We notice that ∂Q
∂z (z) = −Q2(z). Therefore, βm can be rewritten as

βm = −
∫
D
∂Φk(f)(z)

(
‖xm‖22
B + 1

− 1

)
∂Qmm
∂z

(z) dz
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It is well known that

Qmm(z) =
−1

z(1 +
xmQ̃(m)x∗m

B+1 )
(4.44)

where Q̃(m) is defined as:

Q̃(m)(z) =

(
X(m)∗X(m)

B + 1
− zIM

)−1

where X(m) is the matrix X without row m. In the following, we decouple in
the expression of βm the part of ∂Qmm

∂z which depends on xm and the quantity
which does not.

∂Qmm
∂z

=
1

z2

1

1 +
xmQ̃(m)x∗m

B+1

+
1

z

xm
∂Q̃(m)

∂z x∗m
B+1

(1 +
xmQ̃(m)x∗m

B+1 )2
(4.45)

The derivative of the resolvent Q̃(m) with respect to z is given by

∂Q̃(m)

∂z
= −(Q̃(m))2

Therefore (4.45) can be expressed as:

∂Qmm
∂z

== −1

z
Qmm(z)− zQ2

mm

xm(Q̃(m))2x∗m
B + 1

We now express βm as βm = β
(1)
m + β

(2)
m where:

β(1)
m =

∫
D
∂Φk(f)(z)

(
‖xm‖22
B + 1

− 1

)
1

z
Qmm(z) dz (4.46)

β(2)
m =

∫
D
∂Φk(f)(z)

(
‖xm‖22
B + 1

− 1

)
zQ2

mm

xm(Q̃(m))2x∗m
B + 1

dz (4.47)

Control of
∣∣∣Eβ(1)

m

∣∣∣. The idea is to approximate the quadratic form

xmQ̃(m)x∗m by tr Q̃(m), and show that both the main term and the approx-
imation error are small enough.

E
[(
‖xm‖22
B + 1

− 1

)
Qmm

]

= E

(‖xm‖22
B + 1

− 1

)
−1

z(1 +
xmQ̃(m)x∗m

B+1 )


= E

(‖xm‖22
B + 1

− 1

) −1

z(1 +
xmQ̃(m)x∗m

B+1 )
+

1

z(1 + tr Q̃(m)

B+1 )


+ E

[(
‖xm‖22
B + 1

− 1

)
−1

z(1 + tr Q̃(m)

B+1 )

]
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Since Q̃(m) is independent of xm and E‖xm‖
2
2

B+1 = 1, the second term vanishes.
It remains to study the first term. The use of the Cauchy Schwartz leads to∣∣∣∣∣∣E

(‖xm‖22
B + 1

− 1

) −1

z(1 +
xmQ̃(m)x∗m

B+1 )
+

1

z(1 + tr Q̃(m)

B+1 )

∣∣∣∣∣∣
≤

√√√√√E
∣∣∣∣‖xm‖22B + 1

− 1

∣∣∣∣2 E
∣∣∣∣∣∣ −1

z(1 +
xmQ̃(m)x∗m

B+1 )
+

1

z(1 + tr Q̃(m)

B+1 )

∣∣∣∣∣∣
2

= |z|

√√√√√E
∣∣∣∣‖xm‖22B + 1

− 1

∣∣∣∣2 E
∣∣∣∣∣∣ 1

B + 1

xmQ̃(m)x∗m − tr Q̃(m)

z(1 +
xmQ̃(m)x∗m

B+1 )z(1 + tr Q̃(m)

B+1 )

∣∣∣∣∣∣
2

To control this term, it is enough to bound the three following quantities:
E
∣∣∣‖xm‖22B+1 − 1

∣∣∣2
E|xmQ̃(m)x∗m − tr Q̃(m)|2

z 7→
∣∣∣(z(1 +

xmQ̃(m)x∗m
B+1 ))−1

∣∣∣ , z 7→
∣∣∣(z(1 + tr Q̃(m)

B+1 ))−1
∣∣∣

‖xm‖22 is a χ2 random variable with 2(B + 1) degrees of freedom, therefore
it is clear that:

E
∣∣∣∣‖xm‖22B + 1

− 1

∣∣∣∣2 = O
(

1

B

)
(4.48)

Then, note that z 7→ (−z(1 +
xmQ̃(m)x∗m

B+1 ))−1 and z 7→ (−z(1 + tr Q̃(m)

B+1 ))−1

are Stieltjes transforms of probability measures (see e.g. item 4.b of Proposition
2.3 in [16]). Therefore, for each z ∈ C+, we have:∣∣∣∣∣∣ 1

z(1 +
xmQ̃(m)x∗m

B+1 )

∣∣∣∣∣∣ ≤ 1

Im z
,

∣∣∣∣∣ 1

z(1 + tr Q̃(m)

B+1 )

∣∣∣∣∣ ≤ 1

Im z
(4.49)

As xm and Q̃(m) are independent, Lemma 4.3 provides the following control:

E(m)|xmQ̃(m)x∗m − tr Q̃(m)|2 ≤ C(B + 1)‖Q̃(m)‖2 ≤ CB + 1

Im2z
(4.50)

where E(m) is the mathematical expectation operator w.r.t. xm.
Collecting (4.48), (4.49) and (4.50), we get:∣∣∣∣∣∣E

(‖xm‖22
B + 1

− 1

) −1

z(1 +
xmQ̃(m)x∗m

B+1 )
+

1

z(1 + tr Q̃(m)

B+1 )

∣∣∣∣∣∣
≤ |z|

√
C

B + 1

1

(B + 1)2

1

Im4z

B + 1

Im2z

≤ C

(B + 1)

|z|2

Im3z
,



48 P. Loubaton and A. Rosuel

As |z| is bounded on D, we obtain that

|Eβ(1)
m | ≤

C

B + 1

∫
D

1

Im3z
|∂Φk(f)(z)|dz = O

(
1

B

)

because the integral is finite as soon as k ≥ 3.

Control of Eβ(2)
m . We use the same idea: approximation of the quadratic

forms by the trace, split out the xm dependent quantity, and use Lemma 4.3 to
control the remaining terms. We recall that

β(2)
m =

∫
D
∂Φk(f)(z)

(
‖xm‖22
B + 1

− 1

)
zQ2

mm

xm(Q̃(m))2x∗m
B + 1

dz

Equation (4.44) leads to:

Q2
mm =

1

z2

1

(1 +
xmQ̃(m)x∗m

B+1 )2

=
1

z2

 1

(1 +
xmQ̃(m)x∗m

B+1 )2
− 1

(1 + tr Q̃(m)

B+1 )2

+
1

z2

1

(1 + tr Q̃(m)

B+1 )2

β
(2)
m can be written as

β(2)
m =

∫
D

dz∂Φk(f)(z) z

 1

(z(1 +
xmQ̃(m)x∗m

B+1 ))2
− 1

(z(1 + tr Q̃(m)

B+1 ))2

×
xm(Q̃(m))2x∗m

B + 1

(
‖xm‖22
B + 1

− 1

)
+

∫
D

dz∂Φk(f)(z) z
1

(z(1 + tr Q̃(m)

B+1 ))2

xm(Q̃(m))2x∗m
B + 1

(
‖xm‖22
B + 1

− 1

)
= β(2,1)

m + β(2,2)
m

Control of E(β
(2,1)
m ). We remark that |z| is bounded on D, and first use twice
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the Cauchy Schwartz inequality to split the different quantities to evaluate.

|Eβ(2,1)
m |

≤
∫
D
|∂Φk(f)(z)|E

∣∣∣∣∣∣
 1

(z(1 +
xmQ̃(m)x∗m

B+1 ))2
− 1

(z(1 + tr Q̃(m)

B+1 ))2

 xm(Q̃(m))2x∗m
B + 1

×
(
‖xm‖22
B + 1

− 1

)∣∣∣∣dz
≤
∫
D
|∂Φk(f)(z)|

√√√√√E

∣∣∣∣∣∣
 1

(z(1 +
xmQ̃(m)x∗m

B+1 ))2
− 1

(z(1 + tr Q̃(m)

B+1 ))2

 xm(Q̃(m))2x∗m
B + 1

∣∣∣∣∣∣
2

×

√
E
∣∣∣∣‖xm‖22B + 1

− 1

∣∣∣∣2 dz

≤
∫
D
|∂Φk(f)(z)|

E

∣∣∣∣∣∣ 1

(z(1 +
xmQ̃(m)x∗m

B+1 ))2
− 1

(z(1 + tr Q̃(m)

B+1 ))2

∣∣∣∣∣∣
4


1
4

E

∣∣∣∣∣xm(Q̃(m))2x∗m
B + 1

∣∣∣∣∣
4
 1

4

dz ×

√
E
∣∣∣∣‖xm‖22B + 1

− 1

∣∣∣∣2
By (4.48), we already have:√

E
∣∣∣∣‖xm‖22B + 1

− 1

∣∣∣∣2 = O
(

1√
B

)
We use (4.49) and the Cauchy Schwartz inequality, and obtain that:

E

∣∣∣∣∣∣ 1

(z(1 +
xmQ̃(m)x∗m

B+1 ))2
− 1

(z(1 + tr Q̃(m)

B+1 ))2

∣∣∣∣∣∣
4

≤ |z|8E

∣∣∣∣∣∣ (1 + tr Q̃(m)

B+1 )2 − (1 + xm
Q̃(m)

B+1 x∗m)2

(z(1 + tr Q̃(m)

B+1 ))2(z(1 + xm
Q̃(m)

B+1 x∗m))2

∣∣∣∣∣∣
4

≤ |z|8

Im16z
E

∣∣∣∣∣∣
(

1 +
tr Q̃(m)

B + 1

)2

−

(
1 + xm

Q̃(m)

B + 1
xm

)2
∣∣∣∣∣∣
4

=
|z|8

Im16z
E

∣∣∣∣∣
(

1 +
tr Q̃(m)

B + 1
+ 1 + xm

Q̃(m)

B + 1
x∗m

)(
tr Q̃(m)

B + 1
− xm

Q̃(m)

B + 1
x∗m

)∣∣∣∣∣
4

≤ |z|8

Im16z

√√√√E

∣∣∣∣∣2 +
tr Q̃(m)

B + 1
+ xm

Q̃(m)

B + 1
x∗m

∣∣∣∣∣
8

E

∣∣∣∣∣ tr Q̃(m)

B + 1
− xm

Q̃(m)

B + 1
x∗m

∣∣∣∣∣
8
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Using again Lemma 4.3 with q = 8, we get:

E

∣∣∣∣∣ tr Q̃(m)

B + 1
− xm

Q̃(m)

B + 1
x∗m

∣∣∣∣∣
8

≤ C

(B + 1)8
tr (Q̃(m)(Q̃(m))∗)4

≤ C 1

Im8z

1

(B + 1)7

In order to evaluate E
∣∣∣2 + tr Q̃(m)

B+1 + xm
Q̃(m)

B+1 x∗m

∣∣∣8, we remark that

E

∣∣∣∣∣2 +
tr Q̃(m)

B + 1
+ xm

Q̃(m)

B + 1
xm

∣∣∣∣∣
8

≤ C

1 + E

∣∣∣∣∣ tr Q̃(m)

B + 1

∣∣∣∣∣
8
+ E

∣∣∣∣∣xm Q̃(m)

B + 1
xm

∣∣∣∣∣
8


As
∣∣∣ 1
B+1 tr Q̃(m)

∣∣∣ ≤ ‖Q̃(m)‖ and that Q̃(m) is the resolvent of a certain matrix,

we deduce from (1.17) that ∣∣∣∣ 1

B + 1
tr Q̃(m)

∣∣∣∣ ≤ 1

Im z

Moreover, writing that

E

∣∣∣∣∣xm Q̃(m)

B + 1
x∗m

∣∣∣∣∣
8

≤ C E

∣∣∣∣∣xm Q̃(m)

B + 1
x∗m −

1

B + 1
tr Q̃(m)

∣∣∣∣∣
8

+ C E
∣∣∣∣ 1

B + 1
tr Q̃(m)

∣∣∣∣8
≤ C

Im8z

for each z ∈ C+, we obtain that

E

∣∣∣∣∣2 +
tr Q̃(m)

B + 1
+ xm

Q̃(m)

B + 1
x∗m

∣∣∣∣∣
8

≤ C
(

1 +
1

Im8z

)
≤ C

Im8z

for each z ∈ D. Using the same kind of arguments, it is easily checked that

E

∣∣∣∣∣xm(Q̃(m))2x∗m
B + 1

∣∣∣∣∣
4

≤ C

Im8z

for each z ∈ C+. Putting all the pieces together, we finally get that∣∣∣E(β(2,1)
m )

∣∣∣ ≤ C

(B + 1)11/8

∫
D

∣∣∂Φk(f)
∣∣ 1

Im8z
dz
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Taking k + 1 ≥ 9 leads to
∫
D

∣∣∂Φk(f)
∣∣ 1

Im8z
dz < +∞ and to∣∣∣E(β

(2,1)
m )

∣∣∣ = O( 1
(B+1)11/8

).

Control of β
(2,2)
m . In order to evaluate E(β

(2,2)
m ), we write β

(2,2)
m as

β(2,2)
m =

(
‖xm‖22
B + 1

− 1

) ∫
D

dz∂Φk(f)(z) z
1

(z(1 + tr Q̃(m)

B+1 ))2

×

xm(Q̃(m))2x∗m
B + 1

−
tr
(

(Q̃(m))2
)

B + 1


+

(
‖xm‖22
B + 1

− 1

) ∫
D

dz∂Φk(f)(z) z
1

(z(1 + tr Q̃(m)

B+1 ))2

tr
(

(Q̃(m))2
)

B + 1

Using the independence between xm and Q̃(m), we obtain that

Eβ(2,2)
m =

∫
D

dz∂Φk(f)(z) z

× E

 1

(z(1 + tr Q̃(m)

B+1 ))2

(
‖xm‖22
B + 1

− 1

) xm(Q̃(m))2x∗m
B + 1

−
tr
(
Q̃(m))2

)
B + 1


The Schwartz inequality leads immediately to∣∣∣E[β(2,2)

m ]
∣∣∣ ≤ C

B + 1

as soon as k + 1 ≥ 4.

Since E[βm] = E[β
(1)
m +β

(2,1)
m +β

(2,2)
m ], we obtain that E[ζ2] = z

(∑M
m=1 E[βm]

)
verifies |E[ζ2]| = O(1) provided k + 1 ≥ 9. This completes the proof of Lemma
4.2.

We are now in position to complete the proof of (4.2). For this, we use
Proposition 4.1, Proposition 4.2, and Proposition 4.3, and write that∣∣∣∣ 1

M
tr f(Ĉ(ν))−

∫
R
f dµ

(cN )
MP

∣∣∣∣
≤
∣∣∣∣ 1

M
tr f(Ĉ(ν))− 1

M
tr f(C̃(ν))

∣∣∣∣+

∣∣∣∣ 1

M
tr f(C̃(ν))− 1

M
tr f

(
XX∗

B + 1

)∣∣∣∣
+

∣∣∣∣ 1

M
tr f

(
XX∗

B + 1

)
−
∫
R
f dµ

(cN )
MP

∣∣∣∣
≺ B

N
+
B

N
+

1

M

≺ B

N
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as expected.

4.2. Step 2: Lipschitz argument

The following lemma states that with overwhelming probability uniformly over
ν ∈ [0, 1], the application ν 7→ Ŝ(ν) is O(MN3/2)–Lipschitz.

Proposition 4.4. It holds that

sup
δ 6=0

sup
ν∈[0,1]

‖Ŝ(ν)− Ŝ(ν + δ)‖
|δ|

≺MN3/2 (4.51)

Proof. Let δ ∈ R and ν ∈ [0, 1]. As the random variables (ym,n)m=1,...,M,n=1,...,N

are complex Gaussian and that supm≥1 E|ym,n|2 < +∞, the family
(ym,n)m=1,...,M verifies ym,n ≺ 1. Therefore, it holds that

1√
N

N∑
n=1

|ym,n| ≺
√
N (4.52)

For the same reasons, the family ξym(ν),m = 1, . . . ,M, ν ∈ [0, 1] satisfies.

ξym(ν) ≺ 1 (4.53)

We also claim that
sup
ν∈[0,1]

|ξym(ν)| ≺ 1 (4.54)

In order to verify (4.54), we first observe that for any n ≥ 1 we have the following
control:

| exp−2iπnν − exp−2iπn(ν + δ)| ≤ 2| sinπnδ| ≤ 2πn|δ|

(4.52) implies that

sup
δ 6=0

sup
ν∈[0,1]

∣∣∣∣ξym(ν)− ξym(ν + δ)

δ

∣∣∣∣
= sup

δ 6=0
sup
ν∈[0,1]

1√
N

∣∣∣∣∣
N∑
n=1

ym,n
e−2iπnν − e−2iπn(ν+δ)

δ

∣∣∣∣∣
≤ 2πN

1√
N

N∑
n=1

|ym,n|

≺ N3/2 (4.55)

We consider a frequency ν∗ ∈ [0, 1] (depending on m) where |ξym(ν)| is max-
imum, and have thus to establish that for each ε > 0, then it exists γ > 0
depending only on ε such that

P(|ξym(ν∗)| > N ε) ≤ exp−Nγ
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for each N larger than a certain integer N0(ε). We introduce the discrete the
set

VpN =

{
k

Np
: k ∈ {0, . . . , Np − 1}

}
(4.56)

which cardinal is |VpN | = Np. We notice that (4.53) in conjunction with the union
bound implies that supνp∈VpN |ξym(νp)| ≺ 1. We denote by ν∗,p the element of

VpN for which |ν∗ − νp| is minimum, and notice that |ν∗ − ν∗,p| ≤ 1
Np . Then, we

have the following inequality

P(|ξym(ν∗)| > N ε)

≤ P
(
|ξym(ν∗)− ξym(ν∗,p)| >

N ε

2

)
+ P

(
|ξym(ν∗,p)| >

N ε

2

)
≤ P

(
|ξym(ν∗)− ξym(ν∗,p)| >

N ε

2

)
+ P

(
sup
νp∈VpN

|ξym(νp)| >
N ε

2

)
(4.57)

As supνp∈VpN |ξym(νp)| ≺ 1, the second term of the right hand side of (4.57)
converges exponentially towards 0. In order to evaluate the first term of the
r.h.s. of (4.57), we use (4.55), and obtain that

P
(
|ξym(ν∗)− ξym(ν∗,p)| >

N ε

2

)
≤ P

[
N

1√
N

N∑
n=1

|ym,n| ≥
1

2|ν∗ − ν∗,p|
N ε

]

≤ P

[
1√
N

N∑
n=1

|ym,n| ≥
1

2
Np+ε−1

]
We choose p so that p − 1 > 3/2, and use (4.52) to conclude that
P
(
|ξym(ν∗)− ξym(ν∗,p)| > Nε

2

)
converges towards 0 exponentially. This

establishes (4.54).

In order to complete the proof of Proposition 4.4, we consider an individual
entry Ŝij(ν) of Ŝ(ν) for i, j ≤M , and write that∣∣∣Ŝij(ν)− Ŝij(ν + δ)

∣∣∣
=

1

B + 1

∣∣∣∣∣∣
B/2∑

b=−B/2

ξi

(
ν +

b

N

)
ξj

(
ν +

b

N

)∗

− ξi

(
ν + δ +

b

N

)
ξj

(
ν + δ +

b

N

)∗∣∣∣∣
≤ 1

B + 1

B/2∑
b=−B/2

∣∣∣∣ξi(ν +
b

N

)(
ξj

(
ν +

b

N

)∗
− ξj

(
ν + δ +

b

N

)∗)∣∣∣∣
+

∣∣∣∣(ξi(ν +
b

N

)
− ξi

(
ν + δ +

b

N

))
ξj

(
ν + δ +

b

N

)∗∣∣∣∣
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Uing the estimations (4.54) and (4.55), we get:

sup
i,j

sup
δ 6=0

sup
ν∈[0,1]

∣∣∣∣∣ Ŝij(ν)− Ŝij(ν + δ)

δ

∣∣∣∣∣ ≺ N3/2 (4.58)

and deduce (4.51) from the rough bound

sup
ν∈[0,1]

‖Ŝ(ν)− Ŝ(ν + δ)‖ ≤ sup
ν∈[0,1]

sup
i

∑
j

|Ŝij(ν)− Ŝij(ν + δ)|

≤M sup
ν∈[0,1]

sup
i,j
|Ŝij(ν)− Ŝij(ν + δ)|

Combining the eigenvalue localisation result from Corollary 3.2 and the Lip-
schitz behaviour of Ŝ from Proposition 4.4, the following statement holds.

Corollary 4.1. (ν uniform version of Corollary 3.2.) Denote for ε > 0:

ΛŜ
ε =

{
∀ν ∈ [0, 1] : σ(Ŝ(ν)) ⊂ Suppµ

(c)
MP × [s, s̄] + ε

}
ΛD̂
ε =

{
∀ν ∈ [0, 1] : σ(D̂(ν)) ⊂ [s, s̄] + ε

}
Then, ΛŜ

ε and ΛD̂
ε hold with exponentially high probability.

Proof. As the proof for ΛD̂
ε is strictly similar to the one of ΛŜ

ε , we will only write

the arguments for ΛŜ
ε . For any fixed ν ∈ [0, 1], Corollary 3.2 ensures that ΛŜ

ε (ν)
holds with exponentially high probability. For p ≥ 1, we still consider the set

VpN defined by (4.56) and denote by ΛŜ
ε,p the event defined by

ΛŜ
ε,p =

{
∀νp ∈ VpN : σ(Ŝ(νp)) ⊂ Suppµ

(c)
MP × [s, s̄] + ε

}
which is ΛŜ

ε but where ν runs only on the finite grid VpN . It is immediate (by the

union bound) that ΛŜ
ε,p holds with exponentially high probability for any fixed

p ∈ N. Moreover, it is clear from the definitions of ΛŜ
ε and ΛŜ

ε,p that ΛŜ
ε ⊂ ΛŜ

ε,p.
We now show the following inclusion:(

ΛŜ
ε

)c
⊂
(

ΛŜ
ε/2,p

)c
∪

{
∃ν ∈ [0, 1] : ‖Ŝ(ν)− Ŝ(ν∗p)‖ > ε/2 where ν∗p ∈ argmin

νp∈VpN
|ν − νp|

}
(4.59)

Suppose that (ΛŜ
ε )c is realized, and denote by ν∗ ∈ [0, 1] a frequency such

that σ(Ŝ)(ν∗) 6⊂ Supp
(c)
MP ×[s, s̄] + ε. Denote also ν∗p ∈ argminνp∈VpN |νp − ν

∗|.
We just consider the case where λ1(Ŝ(ν∗)) > s̄(1 +

√
c)2 + ε, since in the case

where λM (Ŝ(ν∗)) < s(1−
√
c)2 − ε, the proof is similar. Then, either:
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1. ‖Ŝ(ν∗p) − Ŝ(ν∗)‖ ≤ ε/2, which implies the following estimation for the

location of λ1(Ŝ(ν∗p)):

λ1(Ŝ(ν∗))− ε

2
≤ λ1(Ŝ(ν∗p)) ≤ λ1(Ŝ(ν∗)) +

ε

2

and in particular, λ1(Ŝ(ν∗p)) ≥ s̄(1+
√
c)2+ε/2. This means that

(
ΛŜ
ε/2,p

)c
holds.

2. ‖Ŝ(ν∗p) − Ŝ(ν∗)‖ > ε/2, which exactly means that{
∃ν ∈ [0, 1] : ‖Ŝ(ν)− Ŝ(ν∗p)‖ > ε/2 where ν∗p ∈ argminνp∈VpN |ν − νp|

}
is realized

(4.59) is now proved.

We already showed that
(

ΛŜ
ε/2,p

)c
holds with exponentially small probability,

and establish now that the set{
∃ν ∈ [0, 1] : ‖Ŝ(ν∗p)− Ŝ(ν)‖ > ε/2 where ν∗p ∈ argmin

νp∈VpN
|ν − νp|

}
has the same property. To justify this claim, we remark that Proposition 4.4
implies that for each κ > 0, the probability

P

[{
∃ν, ν′ ∈ [0, 1],

‖Ŝ(ν)− Ŝ(ν′)‖
|ν − ν′|

> NκMN3/2

}]
converges to 0 exponentially fast. As the following inclusion{

∃ν ∈ [0, 1],
‖Ŝ(ν)− Ŝ(ν∗p)‖
|ν − ν∗p |

, > NκMN3/2, where ν∗p ∈ argmin
νp∈VpN

|ν − νp|

}

⊂

{
∃ν, ν′ ∈ [0, 1],

‖Ŝ(ν)− Ŝ(ν′)‖
|ν − ν′|

> NκMN3/2

}
holds, we get that

P
[{
∃ν ∈ [0, 1], ‖Ŝ(ν)− Ŝ(ν∗p)‖ > |ν − ν∗p |NκMN3/2

}]
→ 0

exponentially fast. Moreover, as for each ν, |ν − ν∗p | ≤ 1
Np , we obtain that

P
[{
∃ν ∈ [0, 1], ‖Ŝ(ν)− Ŝ(ν∗p)‖ > 1

Np
NκMN3/2

}]
→ 0

exponentially fast as well. For p large enough, Nκ 1
NpMN3/2 will eventually

become smaller than ε/2. This proves that{
∃ν ∈ [0, 1], ‖Ŝ(ν∗p)− Ŝ(ν)‖ > ε/2 where ν∗p ∈ argmin

νp∈VpN
|ν − νp|

}
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holds with exponentially small probability.

The same argument can be used in order to control ΛD̂
ε . This completes the

proof of Corollary 4.1.

We deduce immediately from Corollary 4.1 the following result that can be
seen as a refinement of (3.22) and of Lemma 3.1.

Corollary 4.2. It holds that

sup
ν∈[0,1]

‖D̂(ν)−1/2‖ ≺ 1, sup
ν∈[0,1]

‖Ŝ(ν)‖ ≺ 1

A useful consequence of this is the following corollary, which states that the
Lipschitz result holds for Ĉ(ν).

Corollary 4.3. It holds that

sup
δ 6=0

sup
ν∈[0,1]

∥∥∥∥∥Ĉ(ν)− Ĉ(ν + δ)

δ

∥∥∥∥∥ ≺MN3/2 (4.60)

Proof. For more clarity in the following argument, denote ν1 = ν and ν2 = ν+δ.
Recall that D̂ = diagŜ. Using the definition of Ĉ from equation (1.3), we write:

Ĉ(ν2)− Ĉ(ν1) = D̂−1/2(ν2)Ŝ(ν2)D̂−1/2(ν2)− D̂−1/2(ν1)Ŝ(ν1)D̂−1/2(ν1)

= (D̂−1/2(ν2)− D̂−1/2(ν1))Ŝ(ν2)D̂−1/2(ν2)

+ D̂−1/2(ν1)(Ŝ(ν2)D̂−1/2(ν2)− Ŝ(ν1)D̂−1/2(ν1))

Moreover, we write that

Ŝ(ν2)D̂−1/2(ν2)− Ŝ(ν1)D̂−1/2(ν1)

= (Ŝ(ν2)− Ŝ(ν1))D̂−1/2(ν2) + Ŝ(ν1)(D̂−1/2(ν2)− D̂−1/2(ν1))

Therefore, applying the operator norm, we get by the triangle inequality:

‖Ĉ(ν2)− Ĉ(ν1)‖ ≤ ‖D̂−1/2(ν2)− D̂−1/2(ν1)‖‖Ŝ(ν2)‖‖D̂−1/2(ν2)‖

+ ‖D̂−1/2(ν1)‖‖Ŝ(ν2)− Ŝ(ν1)‖‖D̂−1/2(ν2)‖

+ ‖D̂−1/2(ν1)‖‖Ŝ(ν1)‖‖D̂−1/2(ν2)− D̂−1/2(ν1)‖

It is easy to check that

sup
δ 6=0

sup
|ν2−ν1|=δ

∥∥∥∥∥D̂−1/2(ν2)− D̂−1/2(ν1)

δ

∥∥∥∥∥ ≺ N3/2

holds. Therefore, Proposition 4.4 and Corollary 4.2 immediately imply (4.60).
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Finally, we can write for the spectrum of Ĉ the same kind of result as in
Corollary 4.1.

Corollary 4.4. For each ε > 0, we define ΛĈ
ε as the event

ΛĈ
ε =

{
∀ν ∈ [0, 1] : σ(Ĉ(ν)) ⊂ Suppµ

(c)
MP + ε

}
Then, ΛĈ

ε holds with exponentially high probability.

Proof. The proof is similar to the proof of Corollary 4.1 and is thus omitted.

4.3. Step 3: Extension to ν ∈ [0, 1]

We are now in position to establish Theorem 4.1.

Proof. Proof of Theorem 4.1. We recall that (4.2) holds. We consider again
the set VpN defined by (4.56), and obtain from (4.2) that the following stochastic
domination property

sup
ν∈VpN

∣∣∣∣ 1

M
tr f(Ĉ(ν))−

∫
R
f dµ

(cN )
MP

∣∣∣∣ ≺ B

N
(4.61)

holds.
It remains to extend this result to the supremum over ν ∈ [0, 1]. We consider

κ > 0 and evaluate

P

[
sup
ν∈[0,1]

∣∣∣∣ 1

M
tr f(Ĉ(ν))−

∫
R
f dµ

(cN )
MP

∣∣∣∣ > NκB

N

]

We denote by ν∗ ∈ [0, 1] an element where the supremum is achieved, and
consider ν∗p the the closest element of VpN from ν∗. Therefore, one can write:

P

[
sup
ν∈[0,1]

∣∣∣∣ 1

M
tr f(Ĉ(ν))−

∫
R
f dµ

(cN )
MP

∣∣∣∣ > NκB

N

]

≤ P
[∣∣∣∣ 1

M
tr f(Ĉ(ν∗))− 1

M
tr f(Ĉ(ν∗p))

∣∣∣∣
+

∣∣∣∣ 1

M
tr f(Ĉ(ν∗p)−

∫
R
f dµ

(cN )
MP

∣∣∣∣ > NκB

N

]
≤ P

[∣∣∣∣ 1

M
tr f(Ĉ(ν∗))− 1

M
tr f(Ĉ(ν∗p))

∣∣∣∣ > Nκ B

2N

]
+ P

[∣∣∣∣ 1

M
tr f(Ĉ(ν∗p))−

∫
R
f dµ

(cN )
MP

∣∣∣∣ > Nκ B

2N

]
P
[∣∣∣ 1
M tr f(Ĉ(ν∗p))−

∫
R f dµ

(cN )
MP

∣∣∣ > Nκ B
2N

]
converges expo-

nentially towards 0 by (4.61). It thus remains to study
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P
[∣∣∣ 1
M tr f(Ĉ(ν∗))− 1

M tr f(Ĉ(ν∗p))
∣∣∣ > Nκ B

2N

]
. For this, we will of course

use Corollary 4.3, and write that

P
[∣∣∣∣ 1

M
tr f(Ĉ(ν∗))− 1

M
tr f(Ĉ(ν∗p))

∣∣∣∣ > Nκ B

2N

]
= P

[∣∣∣∣∣ 1

M

M∑
m=1

f(λm(Ĉ(ν∗)))− f(λm(Ĉ(ν∗p)))

∣∣∣∣∣ > Nκ B

2N

]

By conditioning on the event ΛĈ
ε which by Corollary 4.4 holds with exponen-

tially high probability, we get:

P

[
1

M

∣∣∣∣∣
M∑
m=1

f(λm(Ĉ(ν∗)))− f(λm(Ĉ(ν∗p)))

∣∣∣∣∣ > Nκ B

2N

]

≤ P

[∣∣∣∣∣ 1

M

M∑
m=1

f(λm(Ĉ(ν∗)))− f(λm(Ĉ(ν∗p)))

∣∣∣∣∣ > Nκ B

2N
, ΛĈ

ε

]
+ P

[(
ΛĈ
ε

)c]
(4.62)

As P
[(

ΛĈ
ε

)c]
holds with exponentially low probability, it remains to study the

first term of the right-hand side of (4.62). Since f is differentiable on a neigh-

borhood of Supp
(c)
MP , there exist some random quantities (ν̃m)1≤m≤M between

ν∗ and ν∗p such that:

P

[∣∣∣∣∣ 1

M

M∑
m=1

f(λm(Ĉ(ν∗)))− f(λm(Ĉ(ν∗p)))

∣∣∣∣∣ > Nκ B

2N
, ΛĈ

ε

]

≤ P

[
1

M

M∑
m=1

∣∣∣f ′(λm(Ĉ(ν̃m)))
∣∣∣ ∣∣∣λm(Ĉ(ν∗))− λm(Ĉ(ν∗p))

∣∣∣ > Nκ B

2N
, ΛĈ

ε

]

Using the following eigenvalue inequality for Hermitian matrices:∣∣∣λm(Ĉ(ν∗))− λm(Ĉ(ν∗p))
∣∣∣ ≤ ‖Ĉ(ν∗)− Ĉ(ν∗p)‖

in conjunction with the fact that sup1≤m≤M |f ′(λm(Ĉ(ν̃m)))| is bounded by

some nice constant C on the event ΛĈ
ε , we get:

P

[
1

M

M∑
m=1

∣∣∣f ′(λm(Ĉ(ν̃m)))
∣∣∣ ∣∣∣λm(Ĉ(ν∗))− λm(Ĉ(ν∗p))

∣∣∣ > Nκ B

2N
, ΛĈ

ε

]

≤ P
[
C‖Ĉ(ν∗)− Ĉ(ν∗p)‖ > Nκ B

2N
, ΛĈ

ε

]
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Recall that |ν∗ − ν∗p | < N−p. Therefore, we have:

P
[
C‖Ĉ(ν∗)− Ĉ(ν∗p)‖ > Nκ B

2N
, ΛĈ

ε

]
= P

[∥∥∥∥∥Ĉ(ν∗)− Ĉ(ν∗p)

ν∗ − ν∗p

∥∥∥∥∥ > C
1

|ν∗ − ν∗p |
Nκ B

2N
, ΛĈ

ε

]

≤ P

[∥∥∥∥∥Ĉ(ν∗)− Ĉ(ν∗p)

ν∗ − ν∗p

∥∥∥∥∥ > CNpNκ B

2N
, ΛĈ

ε

]

We choose p large enough such that MN3/2 � Np B
N . Then, it is clear that

P

[∥∥∥∥∥Ĉ(ν∗)− Ĉ(ν∗p)

ν∗ − ν∗p

∥∥∥∥∥ > CNpNκ B

2N
, ΛĈ

ε

]

≤ P

[∥∥∥∥∥Ĉ(ν∗)− Ĉ(ν∗p)

ν∗ − ν∗p

∥∥∥∥∥ > MN3/2Nκ, ΛĈ
ε

]

≤ P

[
∃ν, ν′ ∈ [0, 1],

∥∥∥∥∥Ĉ(ν∗)− Ĉ(ν′)

ν − ν′

∥∥∥∥∥ > MN3/2Nκ

]

Corollary 4.3 thus implies that P
[
C‖Ĉ(ν∗)− Ĉ(νp)‖ > Nκ B

2N , ΛĈ
ε

]
converges

towards 0 exponentially fast. This completes the proof of Theorem 4.1.

5. Applications and numerical simulation

5.1. Definition of the test statistics

In order to test the decorrelation of the signals (ym)m=1,...,M , we consider for
ε > 0 the statistics Tε defined by

Tε = sup
ν∈[0,1]

∣∣∣ 1
M tr f(Ĉ(ν))−

∫
R f dµ

(cN )
MP

∣∣∣
N ε(B/N)

(5.1)

and compare Tε to a certain threshold κ > 0. Hypothesis H0 is accepted if
Tε ≤ κ and rejected otherwise. The test is consistent in the sense that under
H0, Theorem 4.1 ensures that Tε → 0 almost surely . Therefore,

PH0
[Tε > κ] −−−−→

N→∞
0

In the following numerical experiments, motivated by [26], we consider f(λ) =
log λ for which ∫

f(λ) dµ
(cN )
MP (λ) =

cN − 1

cN
log(1− cN ) + 1
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(see e.g. [1]) and f(λ) = (λ− 1)2 where∫
f(λ) dµ

(cN )
MP (λ) = cN

We notice that f(λ) = log λ is not defined for λ = 0, but the results of this
paper can still be used by defining tr logA = log detA = −∞ if A ≥ 0 and
detA = 0.

5.2. Signal model for the alternative

We consider the following simple and flexible model:

xn+1 = Axn + Bεn
yn+1 = Cxn + Dεn

(5.2)

where (εn)n∈Z is an independent sequence of NC(0, IM ) distributed random
vectors, and where B = IM , C = IM , A is the bidiagonal lower triangular
matrix defined by

A =



θ 0 . . . . . . . . . 0
β θ 0 . . . . . . 0
0 β θ 0 . . . 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . . . . 0 β θ


for θ ≥ 0, β ≥ 0, θ + β < 1, and D is the triangular matrix

D = δ



γM−1 γM−2 . . . . . . . . . 1
0 γM−1 γM−2 . . . . . . γ
0 0 γM−1 γM−2 . . . γ2

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . γM−2

0 . . . . . . 0 0 γM−1


for δ ≥ 0 and 0 ≤ γ < 1. As θ + β < 1, for each frequency ν ∈ [0, 1], matrix
e2iπνI −A is invertible, and its inverse (e2iπνI −A)−1 is the lower triangular
matrix given by

(e2iπνI−A)−1 =
1

e2iπν − θ



1 0 . . . . . . . . . 0
β

e2iπν−θ 1 0 . . . . . . 0(
β

e2iπν−θ

)2
β

e2iπν−θ 1 0 . . . 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0(
β

e2iπν−θ

)M−1

. . . . . . . . . β
e2iπν−θ 1


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Therefore, for each m = 1, . . . ,M , the multivariate signal yn is given by

yn =

[
1

e2iπν − θ

]


ε1,n

ε2,n +
[

β
e2iπν−θ

]
ε1,n

...

...

εM,n +
[

β
e2iπν−θ

]
εM−1,n + . . .+

[(
β

e2iπν−θ

)M−1
]
ε1,n



+ δ



γM−1ε1,n + . . .+ εM,n

γM−1ε2,n + . . .+ γεM,n

...

...
γM−1εM,n


where if h(ν) =

∑
k∈Z hke

−2iπkν with
∑
k |hk|2 < +∞ and (un)n∈Z is an i.i.d.

sequence, the notation [h(ν)]un represents
∑
k∈Z hkun−k. After some calcula-

tions, we obtain that the entry (k, l), k ≥ l, of the spectral density S(ν) of y is
given by:

S(ν)k,l =

1

|e2iπν − θ|2

(
β

e2iπν − θ

)k−l (
1 +

∣∣∣∣ β

e2iπν − θ

∣∣∣∣2 + . . .+

∣∣∣∣ β

e2iπν − θ

∣∣∣∣2(l−1)
)

+
δ

e2iπν − θ

k−l∑
p=0

γp+M−1−(k−l)
(

β

e2iπν − θ

)p

+
δ

e−2iπν − θ
+

k−l∑
p=0

γp+M−1−(k−l)
(

β

e−2iπν − θ

)p
+ δ2 γk+l−2

(
1 + γ2 + . . .+ γ2(M−k)

)
It is clear that the signals y1, . . . , yM are independent if β = δ = 0.

We denote by r the ratio defined by

r :=

∫
‖Sy(ν)− diagSy(ν)‖2F dν∫

‖Sy(ν)‖2F dν
=

∑
l∈Z ‖R(l)− diagR(l)‖2F∑

l∈Z ‖R(l)‖2F

where R(l) := E[yn+ly
∗
n] is the autocovariance matrix of y at lag l. We will

choose β, δ and γ such that this ratio is constant for different settings in the
simulation (e.g. various values of M or choice of f). Indeed, the ”strength” of
the joint dependence of the observations y depends on the dimension M .
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Figure 1 and Figure 2 represent the value of the maximum deviation over ν of
1
M tr f(Ĉ(ν)) from

∫
R f dµ

(cN )
MP for increasing values of N (the x-axis represents

B := B(N)). More precisely, if we define

ν∗ = argmax
ν∈[0,1]

∣∣∣∣ 1

M
tr f(Ĉ(ν))−

∫
R
f dµ

(cN )
MP

∣∣∣∣
then, the value of the test statistics 1

M tr f(Ĉ(ν)) is shown for the frequency
ν∗. We compare this value under H0 (β = 0 and δ = 0, whereas θ and γ are
not precised), and under an alternative H1 (with the same θ as the one used
for H0, but β 6= 0 and δ 6= 0) such that r > 0. On the left of Figure 1 is shown
these values with f representing the Frobenius norm test, and on the right of
Figure 1 the log det test.

On Figure 1 we show that as r increases, the separation of the test statistics

from
∫
R f dµ

(cN )
MP also increases. For r = 0, ie. under H0, we see that the

maximum deviation of 1
M tr f(Ĉ) from

∫
R f dµ

(cN )
MP seems to converge toward

zero, as stated in Theorem 4.1.

On Figure 2, we show the impact of the rate α (recall its definition from
Assumption 1.3). As α is close to 1, N becomes closer to B (the limit α = 1
corresponds to B, M and N of the same order), so intuitively, the sample
size is very limited. On the opposite, as α is close to 1/2, N is much larger

than B and M , which implies that the behaviour of Ĉ under H0 should be
better approximated by the Marchenko-Pastur distribution. This is confirmed in
the simulations: as α grows, the separation betweenH0 andH1 becomes smaller.
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Fig 1. maximum deviation of 1
M

tr f(Ĉ) from
∫
R f dµ

(cN )
MP for various alternatives, with α =

0.7 and c = 0.5. Left is the Frobenius Norm Test and right is the Logdet test.

.

Figure 3 and Figure 4 represent numerical estimation of ROC curves : for
various settings of α, θ, c and r, we simulate observations (yn)n=1,...,N using
the state space model (5.2). The probability of false alarm and the probability
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Fig 2. maximum deviation of 1
M

tr f(Ĉ) from
∫
R f dµ

(cN )
MP for c = 0.8 and various values of

(from top to bottom) α = 0.5, α = 0.75, α = 0.95, and from left to right for the Frobenius
Norm Test and the Logdet test.

of detection are estimated via Monte Carlo with 10.000 repetitions. Note that
the axis scale is log-log.

On Figure 3 is shown the impact of the alternative factor r. As it increases,
the detection becomes easier. On Figure 4 the impact of the rate α is shown.
As it is close to 1/2, N is much larger to M and B and the detection is easier.
On Figure 5, the parameter δ is fixed to 0, and the impact of θ is shown.
When θ = 0, each time series (ym,n)n∈Z is i.i.d. under the 2 hypotheses, or
equivalently, the observations y1, . . . ,yN are i.i.d. In this rather simple context,
the performance of the test appears of course better than if θ 6= 0. As θ
increases, the various time series become more dependent, and the performance
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decreases.
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Fig 3. ROC for various r, with α = 0.6, c = 0.8 and M = 33. Left is Frobenius Norm Test
and right is Logdet test.
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Fig 4. ROC for various α, with r = 0.06, c = 0.8 and M = 33. Left is Frobenius Norm Test
and right is Logdet test.

We notice that the Frobenius test seems to outperform the log det test in all
our simulations. This is in accordance with the conclusions of [26] devoted to
the case where the observations y1, . . . ,yN are i.i.d.
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Fig 5. ROC for various θ with c = 0.8, r = 0.09 and M = 33. Left is Frobenius Norm Test
and right is Logdet test.

Appendix A: Appendix

A.1. Proof of Lemma A.1

Lemma A.1 is a slight variation of Theorem 4.3.2 [5].

Lemma A.1. For any ν1 and ν2 in [0, 1], such that there exists k ∈
{0, 1, . . . , N − 1} satisfying ν2 − ν1 = k/N , the following bound holds:

sup
m≥1
|E [ξym(ν1)ξym(ν2)∗]− sm(ν1)δν1=ν2 | = O

(
1

N

)
(A.1)

Proof.

E [ξym(ν1)ξym(ν2)∗]

=
1

N

N∑
n1,n2=1

E[ym,n1y
∗
m,n2

]e−2iπ(n1−1)ν1e2iπ(n2−1)ν2

=
1

N

N∑
n1,n2=1

rm,n1−n2
e−2iπ(n1−1)ν1+2iπ(n2−1)ν2

=
1

N

(N−1)∑
u=−(N−1),n1,n2∈0,...,N−1

rm,u
∑

n1−n2=u

e−2iπn1ν1+2iπn2ν2

Splitting this expression for u = 0, u > 0 and u < 0 provides



66 P. Loubaton and A. Rosuel

E[ξym(ν1)ξym(ν2)∗] =
1

N
rm,0

N−1∑
n1=0

e−2iπn1(ν2−ν1)

+
1

N

(N−1)∑
u=1

rm,u

N−1−u∑
n2=0

e−2iπ(u+n2)ν1e2iπn2ν2

+
1

N

−1∑
u=−(N−1)

rm,u

N−1∑
n2=−u

e−2iπ(u+n2)ν1e2iπn2ν2 (A.2)

The first term of the right hand side of (A.2) can be computed in the case
ν1 = ν2:

1

N
rm,0

N−1∑
n1=0

e−2iπn1(ν2−ν1) = rm,0

and in the case ν1 6= ν2,

1

N
rm,0

N−1∑
n1=0

e−2iπn1
k
N = 0

Therefore, the first term of the right hand side of (A.2) is equal to rm,0δν1=ν2 .
Consider now the second term of (A.2) (where u > 0):

1

N

N−1∑
u=1

rm,u

N−1−u∑
n2=0

e−2iπ(u+n2)ν1e2iπn2ν2

=
1

N

N−1∑
u=1

rm,ue
−2iπuν1

N−1−u∑
n2=0

e−2iπn2(ν2−ν1) (A.3)

The right hand side of (A.3) can also be explicitly written in the case ν1 = ν2

:

1

N

N−1∑
u=1

rm,ue
−2iπuν1

N−1−u∑
n2=0

e−2iπn2(ν2−ν1)

=
1

N

N−1∑
u=1

rm,ue
−2iπuν1(N − u)

=

N−1∑
u=1

rm,ue
−2iπuν1

N − u
N

=

N−1∑
u=1

rm,ue
−2iπuν1 − 1

N

N−1∑
u=1

u rm,ue
2iπuν1
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By Assumption 1.4, supm≥1

∑
u∈Z |u||rm,u| < +∞, so we have:

sup
m≥1

1

N

∣∣∣∣∣
N−1∑
u=1

u rm,ue
2iπuν1

∣∣∣∣∣ = O
(

1

N

)
Therefore:

sup
m≥1

∣∣∣∣∣ 1

N

N−1∑
u=1

rm,ue
−2iπuν1

N−1−u∑
n2=0

e−2iπn2(ν2−ν1) −
N−1∑
u=1

rm,ue
−2iπuν1

∣∣∣∣∣ = O
(

1

N

)
(A.4)

In the case where ν1 6= ν2, note that ν1 − ν2 = k/N with k 6= 0, therefore:

N−1∑
n2=0

e−2iπn2(ν2−ν1) =

N−1∑
n2=0

e−2iπn2
k
N = 0 (A.5)

Using (A.5), one can rewrite the right hand side of (A.3) as∣∣∣∣∣ 1

N

N−1∑
u=1

rm,ue
−2iπuν1

N−1−u∑
n2=0

e−2iπn2(ν2−ν1)

∣∣∣∣∣
=

∣∣∣∣∣− 1

N

N−1∑
u=1

rm,ue
−2iπuν1

N∑
n2=N−u

e−2iπn2(ν2−ν1)

∣∣∣∣∣
≤ 1

N

N−1∑
u=1

|u||rm,u|

which, again by Assumption 1.4, provides the bound:

sup
m≥1

∣∣∣∣∣ 1

N

N−1∑
u=1

rm,ue
−2iπuν1

N−1−u∑
n2=0

e−2iπn2(ν2−ν1)

∣∣∣∣∣ = O
(

1

N

)
(A.6)

Combining (A.4) and (A.6), the second term of the right hand side of (A.2)
can be estimated as follow:

sup
m≥1

∣∣∣∣∣∣ 1

N

(N−1)∑
u=1

rm,ue
−2iπuν1

N−1−u∑
n2=0

e−2iπn2(ν2−ν1) − δν1=ν2

N−1∑
u=1

rm,ue
−2iπuν1

∣∣∣∣∣∣
= O

(
1

N

)
The term for u < 0 in equation (A.2) is similar. Gathering the three terms

of equation (A.2) leads to

sup
m≥1

∣∣∣∣∣∣E[ξym(ν1)ξym(ν2)∗]− δν1=ν2

 N−1∑
u=−(N−1)

rm,ue
−2iπuν1

∣∣∣∣∣∣ = O
(

1

N

)
(A.7)
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Eventually, using again Assumption 1.4 we have:∣∣∣∣∣∣
∑
|u|>N

rm(u)e−2iπuν1

∣∣∣∣∣∣ ≤ 1

N

∑
|u|>N

|u||rm(u)| = O
(

1

N

)

Inserting this into equation (A.7), we obtain equation (A.1)

A.2. Proof of Lemma 3.1

Proof. Consider the complement of the event ΛD̂
ε (ν) and notice that:

ΛD̂
ε (ν)c ⊂ {∃m ∈ {1, . . . ,M} : ŝm > s̄+ ε} ∪ {∃m ∈ {1, . . . ,M} : ŝm < s− ε}

(A.8)

We start by proving that the first set of the right handside of (A.8) holds
with is exponentially small probability, ie. for any ε > 0, there exist γ > 0 such
that:

P [∃m ∈ {1, . . . ,M} : ŝm > s̄+ ε] ≤ exp−Nγ

By Lemma A.2 (see below), |Eŝm− sm| = O(B2/N2) so for N large enough,
this biais term will be smaller than ε/2. Moreover, for any m ∈ {1, . . . ,M},
sm − s̄ ≤ 0. Therefore, one can write for large enough N :

P [∃m ∈ {1, . . . ,M} : ŝm > s̄+ ε]

= P

[
sup

m∈{1,...,M}
(ŝm − Eŝm + Eŝm − sm + sm − s̄) > ε

]

≤ P

[
sup

m∈{1,...,M}
|ŝm − Eŝm| > ε/2

]

which holds with exponentially high probability by Lemma A.3 (see below). The
proof for the lower bound is similar.

It remains to prove Lemma A.2 and Lemma A.3. Concerning the proof of
Lemma A.2, we follow the same approach as the one used in Theorem 5.4.2 in
[5].

Lemma A.2. For any ν ∈ [0, 1], the following bound holds:

sup
m=1,...,M

|Eŝm(ν)− sm(ν)| = O
(
B2

N2

)
(A.9)
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Proof. Let ν ∈ [0, 1]. Inserting sm(ν + b
N ) in (A.9), one can write:

|Eŝm(ν)− sm(ν)|

=

∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

{
E
∣∣∣∣ξym (ν +

b

N

)∣∣∣∣2 − sm(ν)

}∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

{
E
∣∣∣∣ξym (ν +

b

N

)∣∣∣∣2 − sm(ν +
b

N

)

+sm

(
ν +

b

N

)
− sm(ν)

}∣∣∣∣
≤

∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

{
E
∣∣∣∣ξym (ν +

b

N

)∣∣∣∣2 − sm(ν +
b

N

)}∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

{
sm

(
ν +

b

N

)
− sm(ν)

}∣∣∣∣∣∣
Lemma A.1 provides the following control for the first term of the right-hand

side:∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

{
E
∣∣∣∣ξym (ν +

b

N

)∣∣∣∣2 − sm(ν +
b

N

)}∣∣∣∣∣∣ = O
(

1

N

)
(A.10)

Moreover, by Assumption 1.4, a Taylor-Lagrange expansion of sm around
ν + b

N , provides the existence of a quantity νb such that:

sm

(
ν +

b

N

)
= sm(ν) +

b

N
s′m(ν) +

1

2

b2

N2
s′′m(νb)

where by Assumption 1.4, supm≥1 supν∈[0,1] |s′′m(ν)| < +∞. Therefore, it holds
that:∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

{
sm

(
ν +

b

N

)
− sm(ν)

}∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

{
b

N
s′m(ν) +

1

2

b2

N2
s′′m(νb)

}∣∣∣∣∣∣
≤ 1

N
|s′m(ν)|

∣∣∣∣∣∣∣∣∣∣
1

B + 1

B/2∑
b=−B/2

b

︸ ︷︷ ︸
=0

∣∣∣∣∣∣∣∣∣∣
+

1

2

1

N2

∣∣∣∣∣∣ 1

B + 1

B/2∑
b=−B/2

b2s′′m(νb)

∣∣∣∣∣∣
= O

(
B2

N2

)
(A.11)
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Combining the estimations (A.10) and (A.11), one get:

|Eŝm(ν)− sm(ν)| = O
(

1

N

)
+O

(
B2

N2

)
which is the desired result since 1

N �
B2

N2 in our asymptotic regime defined in
Assumption 1.3.

Lemma A.3. The family of random variables supm=1,...,M |ŝm(ν) −
E[ŝm(ν)]|, ν ∈ [0, 1] verifies

sup
m=1,...,M

|ŝm − E[ŝm]| ≺ 1√
B

(A.12)

Proof. Let m ∈ {1, . . . ,M} and matrix ΠN defined as:

ΠN =
1

B + 1

B/2∑
b=−B/2

aN

(
ν +

b

N

)
aN

(
ν +

b

N

)∗
where aN = 1√

N
[1, e2iπν , . . . , e2iπν(N−1)]T . We also recall that ym is defined by

ym = (ym,1, . . . ,ym,N )T . ŝm can be written in a convenient way we get as

ŝm = y∗mΠNym (A.13)

Note that (B + 1)ΠN is an orthonormal projection matrix on a B + 1–
dimensional subspace. Its operator norm is therefore 1, which leads to the fol-
lowing equalities:

‖ΠN‖ =
1

B + 1
, tr Π2

N =
1

(B + 1)

If Rm represents the covariance matrix of ym, ym can be written as

ym = R
1/2
m zm with zm ∼ NC(0, IM ). Therefore, ŝm is given by ŝm =

z∗mR
1/2
m ΠNR

1/2
m zm. By Assumption 1.4, supm≥1 ‖Rm‖ < +∞, and using the

inequality tr (AB) ≤ ‖B‖tr (A) for A a positive semi-definite matrix and B
Hermitian, it holds that:

sup
m≥1
‖R1/2

m ΠNR1/2
m ‖2F = sup

m≥1
tr R1/2

m ΠNRmΠNR1/2
m

= sup
m≥1

tr RmΠNRmΠN

≤ sup
m≥1
‖Rm‖2tr ΠNΠN

= O
(

1

B

)
The Hanson-Wright inequality (2.9) provides:

sup
m≥1
|ŝm − Eŝm| ≺

1√
B
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A.3. Proof of Lemma 3.3

Proof. These estimates can be proved in a compact way by using the calculus
rules available in the stochastic domination framework introduced in Definition
2.1 and proved in Lemma 2.1. Using Lemma 3.2 and Lemma A.4 (see below):∣∣∣∣ 1√

ŝm
− 1
√
sm

∣∣∣∣ =

∣∣∣∣√sm −√ŝm√
sm
√
ŝm

∣∣∣∣
≤
∣∣∣√sm −√ŝm∣∣∣︸ ︷︷ ︸
O≺( 1√

B
+B2

N2 )

×
∣∣∣∣√ 1

sm

∣∣∣∣︸ ︷︷ ︸
O≺(1)

×
∣∣∣∣√ 1

ŝm

∣∣∣∣︸ ︷︷ ︸
O≺(1)

≺ 1√
B

+
B2

N2

The second inequality is similar to prove:∣∣∣∣√sm
ŝm
− 1

∣∣∣∣ =

∣∣∣∣√sm −√ŝm√
ŝm

∣∣∣∣
≤ |sm − ŝm|︸ ︷︷ ︸
O≺( 1√

B
+B2

N2 )

×
∣∣∣∣ 1

ŝm(
√
sm + ŝm)

∣∣∣∣︸ ︷︷ ︸
O≺(1)

≺ 1√
B

+
B2

N2

Lemma A.4. The family of random variables (supm=1,...,M |ŝm(ν) − sm(ν)|),
ν ∈ [0, 1] verifies

sup
m=1,...,M

|ŝm − sm| ≺
1√
B

+
B2

N2

Proof. It is sufficient to check that the family of random variables (|ŝm −
sm|)m=1,...,M , ν ∈ [0, 1] verifies |ŝm − sm| ≺ 1√

B
+ B2

N2 . Using Lemma A.2 and

Lemma A.3, we obtain as expected that

|ŝm − sm| = |sm − Eŝm + Eŝm − ŝm| ≤ |sm − Eŝm|︸ ︷︷ ︸
O(B

2

N2 )

+ |Eŝm − ŝm|︸ ︷︷ ︸
O≺( 1√

B
)

≺ 1√
B

+
B2

N2

A.4. Proof of Lemma A.5

Lemma A.5. The set of random variable (
∑M
m=1 |ŝm(ν)− sm(ν)|2), ν ∈ [0, 1]

verifies
M∑
m=1

|ŝm − sm|2 ≺ 1 +
B5

N4
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Proof. Using Lemma A.4, we have

|ŝm − sm|2 ≺
1

B
+
B4

N4

and summing over m = 1 . . .M , one immediately get:

M∑
m=1

|ŝm − sm|2 ≺ 1 +
B5

N4
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