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We present a detailed non-relativistic study of the atoms H, He, C and K and the molecule CH4

in the center of a spherical soft confinement potential of the form VN (r) = (r/r0)N with stiffness
parameter N and confinement radius r0. The soft confinement potential approaches the hard-wall
limit as N → ∞, giving a more detailed picture of spherical confinement. The confined hydrogen
atom is considered as a base model: it is treated numerically to obtain ground- and excited-state
energies and nodal positions of the eigenstates to study the convergence towards the hard-wall limit.
We also derive some important analytical relations. The use of Gaussian basis sets is analyzed. We
find that, for increasing stiffness parameter N , the convergence towards the basis-set limit becomes
problematic. As an application, we report dipole polarizabilities for different values of N and r0 of
hydrogen. For helium, we determine electron correlation effects with varying N and r0, and discuss
the virial theorem for both soft and hard confinements in the limit r0 → 0. For carbon, a change in
the orbital population from 2s22p2 to 2s02p4 is observed with decreasing r0, while, for potassium,
we observe a change from the 2S to 2D ground state at small r0 values. For CH4, we show that the
one-particle density becomes more spherical with increasing confinement. A possible application of
soft confinement to atoms and molecules under high pressure is discussed.

Dedicated to Prof. Jürgen Gauss on the occasion of his 60th birthday

I. INTRODUCTION

The confined hydrogen atom was introduced more than
80 years ago by Michels et al. [1] in 1937, who studied a
system consisting of one hydrogen atom at the center of
an impenetrable spherical confinement potential. Their
goal was to observe how atomic properties evolve as a
function of compression – that is, with changing the con-
finement radius r0. Since then, many authors have in-
vestigated similar model systems consisting of atoms or
molecules confined by impenetrable or partially penetra-
ble walls of different geometrical shapes such as spherical,
paraboloidal, or prolate spheroidal walls [2–16]. An ex-
ample of such a system is the non-relativistic, artificially
bounded harmonic oscillator, enclosed between potential
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walls. This model has been successfully applied to prob-
lems such as the fundamental mass–radius relation for
white dwarf stars [17], the rate of escape of stars from
galactic and globular clusters [18], the role of the sym-
metrically bounded linear harmonic oscillator in the the-
ory of the specific heat of solids [19], second-order phase
transitions [20], energy levels and transition probabilities
for a bounded linear oscillator [21], anharmonic effects
in solids [22], magnetic properties of metallic solids [23],
and nuclear shell models [24]. Similar model systems
have been employed in various research fields where the
effects of pressure on energy levels [1, 8, 12] and proper-
ties such as polarizabilities [1, 9], hyperfine splittings [7–
9, 11], nuclear magnetic shielding constants [9], hyperfine
interaction energies [10] and electron (de)localization [25]
have been of interest. We note that quark confinement
is at the core of proton stability [26], a necessary condi-
tion for matter as we know it to exist. More detailed
accounts of the work on confined systems are found in
Refs. [27–31].

Over the years, a wide range of analytical and numer-
ical methods have been employed to obtain solutions for
confined systems. Many of the early studies modified and
adapted the well-known analytical solutions for the free
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hydrogen atom – see, for example, Refs. [2, 32, 33]. Al-
ready in 1938, Sommerfeld and Welker [2] presented the
formal solution to the problem proposed by Michels et al.
[1] in terms of confluent hypergeometric functions. Since
the lack of computational resources made it impossible to
obtain accurate energy eigenvalues, they were calculated
using analytical expansions of the hypergeometric func-
tions. Sommerfeld and Welker also identified the critical
cage radius rHW

c at which the energy of the lowest eigen-
value becomes zero. Below this radius, the electron of
the hydrogen atom is bound by the confinement poten-
tial rather than by the Coulomb potential. In 1946, de
Groot and ten Seldam [3] studied energy eigenvalues of
excited states, considering the problem with non-zero an-
gular momentum. In addition, these authors solved the
problem for total energy E > 0 and were the first to re-
alize that, for small values of r0, the kinetic energy of the
system is higher than the Coulomb potential energy.

After Sommerfeld and Welker’s [2] reformulation of
the problem, many authors revisited this model. Surya-
narayana and Weil [7] formulated the wave functions in
terms of the confluent hypergeometric functions and cal-
culated energy eigenvalues numerically to a few signifi-
cant figures. Both Goldman and Joslin [34] and Chuu et
al. [35] used a modified version of Kummer’s differential
equation and represented the formal solutions in terms of
Whittaker functions, computing energy eigenvalues from
a truncated series expansion of the Whittaker functions
with many terms. In 2005, Burrows and Cohen [36, 37]
investigated the model using a combination of group the-
ory and algebraic methods. Recently, in 2007, Aquino et
al. [38] showed that it is possible to obtain the energy
for the confined hydrogen atom to a very high accuracy,
with up to hundred decimal digits. In addition to energy
eigenvalues for the ground state and many excited states,
they computed expectation values 〈r−1〉, 〈r〉 and 〈r2〉, hy-
perfine splitting and magnetic screening constants, polar-
izabilities in the Kirkwood approximation, and pressure
as a function of the confinement radius.

Interest in the confined hydrogen atom [39] also kind-
led the interest in confined multi-electron systems. The
helium atom is the simplest system where electron corre-
lation can be investigated. The first results on the con-
fined helium atom originated in 1952 by ten Seldam and
de Groot [40]. Based on a trial wave function proposed
by Hylleraas in 1929 [41], they performed a variational
calculation on the confined helium system, calculating
the pressure by differentiating the energy with respect to
the volume. In a second publication [42], they calculated
the polarizability of helium and observed the expected
decreasing trend with respect to decreasing confinement
radius.

Since ten Seldam and de Groot’s attempts, a vast
amount of articles have focused on energy shifts of ground
and excited states and various electronic-structure prop-
erties of the confined helium atom. The most up-to-
date results were reported in 2010 by Montgomery Jr. et
al. [43], who solved the time-independent Schrödinger

equation using first-order Rayleigh–Schrödinger pertur-
bation theory and then extended their calculations us-
ing fifth-order variational perturbation theory. Using
density-functional theory, Waugh et al. [44] looked into
the variation of the static dipole polarizability and hy-
perpolarizability with the strength of confinement for
the helium atom. Most recently, de Oliveira Batael and
Drigo Filho investigated H2 in an impenetrable prolate
spheroidal box [45].

Most studies presented so far have considered Coulomb
plus hard-wall potentials, which are ill suited for tradi-
tional quantum-chemistry methods using basis functions
such as Gaussians, which extend to infinity. In this arti-
cle, we focus on a soft spherical confining potential of the
form (r/r0)N with stiffness parameter N ∈ N and con-
finement radius r0. We apply such a confinement poten-
tial to the non-relativistic hydrogen, helium, carbon, and
potassium atoms and to the CH4 molecule in the center
of the spherical confinement, noting that the relativistic
Coulomb plus confinement potentials entails additional
difficulties [46]. For confined hydrogen, a more general
potential including this form was introduced by Dierck-
sen and co-workers [47, 48] and more recently investi-
gated by Katriel and Montgomery, who also discussed
the virial theorem and convergence towards the hard-
wall limit [49]. The harmonic-oscillator case (N = 2)
has been used extensively for Coulombic systems (see
Refs. [48, 50, 51] and references therein), while the lin-
ear case (N = 1) has been used in physics for states of
quarkonia [52]. Interesting applications are, for example,
the stability of doubly negatively charged ions in exter-
nal confinement potentials [53]. We should also mention a
very recent study of Rahm et al. on isotropic compression
of single atoms in a non-reactive neon-like environment
using a pressure polarizable continuum model [54].

Like similar confining potentials, the soft confinement
potential (r/r0)N allows us to study the effects of the spa-
tial restrictions on a system by changing the confinement
radius r0. In addition, by varying the stiffness parameter
N , we can observe the transition from a system placed in
a ’soft’ spherical box to one that is confined in an hard-
wall spherical box. Importantly, unlike hard-wall con-
fined many-electron systems, a soft-wall potential does
not possess a discontinuity [49], leading to eigenfunc-
tions defined over the whole complex space. This lack
of discontinuity simplifies its use with existing numerical
algorithms and with standard Gaussian-based electronic-
structure software packages enormously, opening the way
for quantum-theoretical studies of atoms or molecules in
relatively stiff potentials, with N � 0. Many-electron
systems in a soft confinement potential have not been in-
vestigated in great detail except for the harmonic case,
which is the reason for the present study.
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II. SOFT-WALL CONFINEMENT

A. Confinement potentials

The Hamiltonian of a spherically confined n-electron
atom with nuclear charge Z is given by (in atomic units)

Hc =

n∑
i=1

[
−1

2
∇2
i −

Z

ri
+ Vconf(ri)

]
+

n∑
i=1

n∑
j>i

1

rij
(1)

where ri = |ri| and rij = |ri − rj |, and where Vconf(ri)
represents the spherical confining potential. The archety-
pal choice for Vconf is a spherical box of confinement ra-
dius r0 with an impenetrable wall (the hard-wall poten-
tial) [1]:

VHW(r) =

{
0 if 0 ≤ r < r0,

+∞ if r ≥ r0.
(2)

Because of the discontinuity of the potential at r0, any
eigenfunction ψ(r1, . . . rn) of the Hamiltonian Eq. (1)
with Vconf(ri) = VHW(ri) must vanish when ri = r0 for
some coordinate i, satisfying the Dirichlet boundary con-
ditions ψ(r1, . . . rn) = 0 at the boundary surface.

Here, we consider instead the soft-wall (or polynomial)
confining potential, introduced early on by Diercksen and
co-workers [47, 48, 55]. For a multi-electron system, it is
given by

VN (ri) =

n∑
i=1

(
ri
r0

)N
, (3)

where r0 is the radius of the spherical box and N ∈ N the
stiffness parameter (the nuclei are confined by placing the
center of mass at the origin of the sphere). By increasing
N , the potential becomes steeper at r0, thereby mak-
ing the wall stiffer and less penetrable. Considering the
limit N → +∞, it is readily seen that VN (r) → VHW(r)
point-wise as shown in Figure 1. Yet, in contrast to
VHW(r), the potential VN (r) does not possess a disconti-
nuity at r0, thereby removing the necessity to employ the
Dirichlet boundary condition. Still, it can be expected
that any eigenfunctions of the Hamiltonian Eq. (1) with
Vconf(ri) = VN (ri) will decay quite rapidly for |ri| > r0.

B. Virial theorem for confined atoms

The virial theorem for homogeneous potentials was
considered by Fock already in 1930 [56]. Following his
scaling argument, we here consider a many-electron sys-
tem described by the n-electron Hamiltonian of Eq. (1)
written in the form

H = T + VC + VN , (4)

where T is the kinetic-energy operator T = − 1
2

∑
i∇2

i ,
VC is the one- and two-electron Coulomb operator with
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FIG. 1. The potential −1/r+VN (r) plotted with r0 = 1a0 and
different stiffness parameters N . For a fixed r0, all potentials
meet at (r0, 1− 1/r0) with slope 1/r20 +N/r0.

VC = −
∑
i Zr

−1
i +

∑
i>j r

−1
ij = V1+V2, and VN is the soft

confinement potential defined in Eq. (3). Note that the
Coulomb and confinement potentials are homogeneous
Laurent polynomials of degrees −1 and N , respectively.

The n-electron ground-state energy

E = 〈Ψ|T + VC + VN |Ψ〉 = 〈T 〉+ 〈VC〉+ 〈VN 〉 (5)

is stationary with respect to all norm-conserving varia-
tions in the exact n-electron ground-state wave function
Ψ. Consider, in particular, the norm-conserving uniform
scaling of all coordinates:

Ψα(ri) = α3n/2Ψ(αri) (6)

such that Ψ1 = Ψ. Some elementary considerations show
that the expectation value for the scaled wave function
is given by

〈Ψα|H|Ψα〉 = 〈Ψ|α2T + αVC + α−NVN |Ψ〉. (7)

From the Hellmann–Feynman theorem, we then obtain

d〈Ψα|H|Ψα〉
dα

∣∣∣∣
α=1

= 〈Ψ|2T + VC −NVN |Ψ〉. (8)

Using the stationarity of the energy for α = 1 to set the
result equal to zero, we arrive at the virial relation for
soft confinement:

2〈T 〉+ 〈VC〉 = N〈VN 〉. (9)

Using scaling arguments, Katriel and Montgomery estab-
lished this expression for one-electron systems [49]. In
the absence of a confining potential (i.e., when N = 0),
it reduces to the standard virial relation 2〈T 〉+ 〈VC〉 = 0
for atoms.

Differentiating the ground-state energy with respect to
the confinement radius r0 and invoking the Hellmann–
Feynman theorem again, we obtain

dE

dr0
=

〈
Ψ

∣∣∣∣∂VN∂r0

∣∣∣∣Ψ〉 = −N
r0
〈VN 〉 . (10)
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For soft confinement, we may therefore write the virial
relation in the alternative form

2〈T 〉+ 〈VC〉 = −r0
dE

dr0
. (11)

Since the stiffness parameter N does not appear explic-
itly in this expression, it must hold also for hard confine-
ment, in the limit N →∞. Indeed, the virial theorem in
this form was established for hard-wall confinement by
Fernández and Castro [57].

Using the virial relation in Eq. (9) to eliminate 〈VN 〉
from the expression for the total energy in Eq. (5), we
obtain

E =
N + 2

N
〈T 〉+

N + 1

N
〈VC〉 . (12)

Letting N → ∞ and comparing with the energy expres-
sion in Eq. (5), we find that the confinement potential
does not contribute directly to the energy in the hard-
wall limit

lim
N→∞

〈VN 〉 = 0 , (13)

only indirectly by setting up the boundary conditions, in
agreement with the energy expression E = 〈T 〉+〈VC〉 for
hard-wall confinement.

Let us now consider the relation between the Coulomb
energy and the kinetic energy for small confinement radii.
Dividing the virial relation in Eq. (9) by 〈VC〉, we obtain
the equivalent relation(

2
〈T 〉
〈VC〉

+ 1

)
= N

〈VN 〉
〈VC〉

. (14)

Letting r0 → 0 on both sides for fixed N , we find that if

lim
r0→0

〈T 〉
〈VC〉

=∞ ⇐⇒ lim
r0→0

〈VN 〉
〈VC〉

=∞ . (15)

The kinetic energy thus dominates over the Coulomb en-
ergy if (and only if) the confinement potential dominates
over the Coulomb energy. This result holds for soft con-
finement potentials with N > 1. Letting N → ∞, we
find that it holds also for the hard-wall confinement.

This behavior of the kinetic and Coulomb energies for
small confinement radii is also suggested by the behav-
ior of the expectation values of T and VC upon scaling
of the ground-state wave function Ψα. From the expres-
sion in Eq. (7), we find that the kinetic energy increases
quadratically and the Coulomb energy only linearly as
the wave function Ψα contracts uniformly with increas-
ing α. Since the ground-state wave function may con-
tract in a non-uniform manner as the confinement radius
becomes small, the ground-state kinetic and Coulomb en-
ergies may behave differently.

III. THE SOFT-WALL CONFINED
HYDROGEN-LIKE ATOM

A. Theory

For a confined hydrogen-like atom with nuclear charge
Z, we must solve the radial Schrödinger equation[
−1

2

d2

dr2
+
`(`+ 1)

2r2
− Z

r
+ Vconf(r)

]
Pn`(r) = En`Pn`(r).

(16)
with boundary conditions Pn`(r) → 0 for r → 0 and
r →∞. In the absence of confinement, solutions may be
expressed in terms of confluent hypergeometric functions
as

Pn`(r) ∼ x`+1F (`+ 1− n; 2`+ 2;x)e−x/2, (17)

with x = 2kr, where k2 = −2En` and the quantum num-
ber n = Z/k ∈ N is introduced to have bound solutions.
Under confinement, it is convenient to keep n, but it now
serves as a counting number [58, 59], as will be further
elaborated in the following. No analytical solution with
the potential Vconf(r) = VN (r) over the whole domain
is known, and the well-known n2 orbital degeneracy of
the En` levels for a given principal quantum number n
and different ` < n values present for Vconf(r) = 0 is lifted
under confinement [3]. More specifically, for a given prin-
cipal quantum number n > 0 of the hard-wall confined
hydrogen-like atom (Vconf(r) = VHW(r)), states of high `
become stabilized over states of low ` upon confinement,
leading to several excited-state level crossings (accidental
degeneracies) at small confinement radii r0 [39, 58–61].

For the soft-wall confined hydrogen atom (Vconf(r) =
VN (r)), the behavior is similar, as shown by treating
VN (r) as a perturbation to the free hydrogen atom at
large r0. For fixed n, we must then consider the expec-
tation values 〈rN 〉nl for different values of ` < n.

We note that since Pn`(r) vanishes as r`+1 as r →
0 the expectation values 〈rM 〉nl are divergent for real
M ≤ −2` − 3, as illustrated in Figure 2. A closed for-
mula for mean values of all powers in r in hydrogen-
like atoms has been given recently in a seminal paper
by Suslov and Trey [62], which also contains a rich bib-
liography of work in this area (see also [63]). Here we
shall rather use the recurrence relations developed inde-
pendently by Pasternack[64] and Kramers[65]. Whereas
Pasternack exploited properties of hypergeometric func-
tions, Kramers multiplied the radial equation, Eq. (16),
(with Vconf(r) = 0) by

rM+1 dPn`
dr
− 1

2
(M + 1) rMPn`, (18)

and obtained, after radial integration (with suitable in-
tegration by parts) and inserting the energy expression
for bound states, the Kramers–Pasternack recurrence re-
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lation (in atomic units)

(M + 1)
Z2

n2
〈rM 〉n` − (2M + 1)Z〈rM−1〉n`

+
1

4
M
(
(2`+ 1)2 −M2

)
〈rM−2〉n` = 0 , (19)

(Z > 0, ` ≥ 0, n ≥ 1, 〈rM 〉n,l > 0) with the following
initial terms for upward and downward recursion in M ,
respectively

〈r0〉 = 1, 〈r〉n` =
1

2Z

{
3n2 − `(`+ 1)

}
, (20)

〈r−1〉n =
Z

n2
, 〈r−2〉n` =

2Z2

n3(2`+ 1)
,

and the identity

〈rM−1〉 =
(2`+M + 1)!

(2`−M)!

( n

2Z

)2M+1

〈r−M−2〉 . (21)

for 0 ≤ M ≤ 2`. The expectation value 〈r−1〉 follows
directly from the virial theorem, and the 〈r−2〉 follows
immediately from (21). From these relations, the strict
inequality

〈rN 〉n,`−1 > 〈rN 〉n` (22)

for a fixed Z value follows. Surprisingly, a proof for this
inequality is not available in the literature. To fill this
gap, we provide a proof by induction in Appendix A.

As a result, for the confining potential Eq. (3) with
a finite radius r0 � 1 and stiffness parameter N ∈ N,
we obtain the following strict inequality to first order in
perturbation theory,

En,`−1(r0, N) > En`(r0, N), (23)

which holds in the hard-wall limit as well [58].

We also introduce a second inequality

Z〈rN+1〉n` − n2〈rN 〉n` > 0 ∀n, ` < n,N ∈ N0 (24)

n2〈r−N−1〉n` − Z〈r−N 〉n` > 0 ∀n, ` < n,N ∈ N (25)

and for the latter expression we are limited to N < 2`+2
(forN=0 the latter equation becomes exactly zero). Note
that the r-expectation values are Z-dependent. Further,
if (24) holds, (25) follows from the identity (21). A proof
of eq.(24) is provided in Appendix B. In first-order per-
turbation theory for finite r0 and N ∈ N, we therefore
get

En`(r0, N + 1) >
n2

Zr0
En`(r0, N). (26)

With increasing stiffness, this implies an increasing effect
on the energy levels with higher principal quantum num-
ber and smaller confinement radius, as is intuitively clear.
The relativistic formulation of the Kramers–Pasternack
recurrence relation is far more complicated [66, 67] and
similar inequalities still need to be explored.

It is interesting to note that the stabilization of states
of high angular momentum over those of low angular
momentum is observed also for atoms and molecules in
magnetic fields [68]. In a non-relativistic treatment, the
magnetic field affects the energy levels in two ways: para-
magnetically through the spin and orbital Zeeman op-
erators (splitting energy levels, favoring the states with
the lowest component of angular momentum in the field
direction) and the diamagnetic operator (raising the en-
ergy of all states). The diamagnetic operator corresponds
to a harmonic confinement potential in the plane per-
pendicular to the field direction, raising the energy of
all states but least for the radially more compact high-
angular-momentum states.

Before closing this section, we note that if we follow
the approach of Kramers [65], starting from the radial
equation, Eq. (16), with a soft confinement potential
Vconf(r) = VN (r)), we obtain

− 2E(M + 1)〈rM 〉 − (2M + 1)Z〈rM−1〉 (27)

+
M

4

(
(2`+ 1)2 −M2

)
〈rM−2〉

+
(2M + 2 +N)

rN0
〈rM+N 〉 = 0 .

Again, setting M = 0 we obtain the energy expression

E =
1

2
〈VC〉+

N + 2

2
〈VN 〉 (28)

which can also be obtained from the virial relation, Eq.
(9).

B. Z Scaling

Here we analyze the Z scaling for hydrogen-like atoms
in a soft confinement potential. Hylleraas used coordi-
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nate scaling r → r/Z to show that hydrogenic eigenval-
ues and eigenstates for Z > 1 have simple relations to
the Z = 1 case [69, 70]:

EZ = Z2EZ=1; ϕZ (r) = Z3/2ϕZ=1 (Zr) . (29)

Introducing this scaling for the confined hydrogen atom
in Eq. (16), we obtain[
Z2

(
−1

2

d2

dr2
+
`(`+ 1)

2r2
− Z

r

)
+ Z−N

(
r

r0

)N]
Pn`(r/Z)

= En`Pn`(r/Z) . (30)

To connect one-electron atoms of different nuclear charge,
we must also scale the confinement radius r0:

rN0 → rN0 /Z
N+2 =⇒ r0 → r0/Z

1+ 2
N , (31)

which in the hard-wall limit (N →∞) gives r0 → r0/Z.
The energy of a hard-wall confined one-electron atom

of charge Z and confinement radius r0/Z is therefore
given by Z2En,` where En,` is the energy of a one-electron
atom of unit nuclear charge and confinement radius r0,
as already pointed out by Patil and Varshni [71]. Hence,
without loss of generality, we can restrict our study of
one-electron atoms to the hydrogen atom, with Z = 1.
From the recursion formula Eq. (19), we immediately see
that 〈rN 〉n`;Z = Z−N 〈rN 〉n`;Z=1, ∀n ∈ Z, ` < n. These
observations further allow the extension of the 1/Z ex-
pansion for the ground-state energy of the free helium
isoelectronic sequence to the confined case, as will be
discussed in Section IV B.

C. Asymptotic behavior

The asymptotic behavior of the radial wave functions
Pn`(r) for confined hydrogen-like atoms as r → 0 is iden-
tical to that of the free atom, that is, Pn`(r) vanishes
as r`+1. On the other hand, the asymptotic behavior of
the radial functions Pn`(r) as r → +∞ is expected to
be markedly different and needs to be analyzed for fu-
ture basis-set studies. In the asymptotic limit and with
N > 0, the term in brackets of Eq. (16) is dominated by
the kinetic energy and the (r/r0)N terms. We may there-
fore disregard the Coulomb, angular momentum and en-
ergy terms. Thus, we solve for the simplified differential
equation

− 1

2

d2P (r)

dr2
+

(
r

r0

)N
P (r) = 0, (32)

which for N = 2 is identical to the one-dimensional har-
monic oscillator differential equation. Substituting

b =

√
2

rN0
and c = N + 2 (33)

into Eq. (32) we get

d2P (r)

dr2
− b2rc−2P (r) = 0. (34)

With the transformation P (r) =
√
rF (r) we can rewrite

Eq. (34) as[
r2

d2

dr2
+ r

d

dr
−
(
b2rc +

1

4

)]
F (r) = 0. (35)

Changing variables ξ = 2brc/2/c and introducing α =
1/c, we obtain the modified Bessel’s equation,

ξ2
d2F (ξ)

dξ2
+ ξ

dF (ξ)

dξ
−
(
ξ2 + α2

)
F (ξ) = 0. (36)

Solutions are given in terms of the modified Bessel func-
tions of the first and second kinds – that is, Iα(ξ) and
Kα(ξ). Both are real when α is real and arg ξ = 0, which
is the case here. Relevant asymptotic forms in our case
are (see Eqs. 10.30.4, 10.25.3 in Ref.[72])

Iα (z) ∼ ez√
2πz

, |arg z| < π

2
, (37)

Kα (z) ∼
√

π

2z
e−z, |arg z| < 3π

2
. (38)

We may therefore exclude the modified Bessel function
of the first kind since it is exponentially increasing.

After back substitution, we may write the asymptotic
form for the physically acceptable solution of Eq. (32) as

P (r) ∼
(
r

r0

)−N/4
exp

[
− 2
√

2r

(N + 2)

(
r

r0

)N/2]
. (39)

For N = 0, we retrieve the expected Z-dependent ex-
ponential decay of the (free) hydrogenic wave function,
whereas for N 6= 0, the Z-dependence vanishes and the
asymptotics are fully driven by the confinement. For
N = 2 (harmonic confinement), we obtain a Gaussian de-
cay in agreement with the harmonic-oscillator wave func-
tion. For N > 2, we get stronger than Gaussian decay
[48], suggesting that, for strong confinements, Gaussian
basis sets are perhaps not so well suited for the problem
and large basis-set expansions will be required. This will
be analyzed in more detail below.

Figure 3 shows the 2s wave function for r0 = 10a0
and N = 10 in comparison with the respective functions
of the free system and the hard-wall confinement. We
see that spatial confinement pushes the wave function
towards the nucleus, forcing it to approach zero more
rapidly for r → +∞.

D. Convergence towards hard-wall results

Hard-wall confinement of the hydrogen atom has been
reviewed by Aquino [29] and Laughlin [73]. More re-
cently, Katriel and Montgomery analyzed the conver-
gence to the hard-wall limit for the confined hydrogen
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atom at a given confinement radius [49]. Analytical solu-
tions to the soft confinement problem is not known even
for the hydrogen atom and we shall rather seek numerical
solutions. However, placing the hard wall at the nodes
of the free hydrogenic eigenstates gives eigenvalues and
eigenstates for the confined system that are identical to
analytical solutions of the free hydrogen atom [49]. It is
not known how the position of the nodes of an eigenstate
in a soft confinement potential depends on the stiffness
parameter N . To analyze this in more detail, we discuss
nodal features for the hard-wall potential first.

Let Pn`: [0,∞) → R be the solution of the ra-
dial Schrödinger equation of the free hydrogen atom
in Eq. (16) with Vc = 0. If n > `+1, then Pn` has n− `−
1 > 0 nodes at 0 < wn`,1 < wn`,2 < · · · < wn`,n−`−1 <∞
where Pn`(wn`,i) = 0. For each i ∈ {1, 2, . . . n − ` − 1},
the restriction Pn`|[0,wn`,i] : [0, wn`,i]→ R of Pn` from the
non-negative axis [0,∞) to the finite interval [0, wn`,i] is
the radial wave function of the hard-wall confined hydro-
gen atom with i− 1 radial nodes and confinement radius
r0 = wn`,i. These confined systems have the same energy
as the free hydrogen atom, En = −1/(2n2). Hence, for
each state Ψn`m of the free hydrogen atom, there exist
n−`−1 hard-wall confined systems with the same energy
and the same wave function inside the walls. More gen-
erally, this result follows from a piecewise decomposition
of the wave function with nodal boundaries as detailed
by Courant and Hilbert [74]; see also Refs. [75, 76].

We remind the reader that the integer n that appears
in the discussion above is the principal quantum num-
ber of the free hydrogen atom but not of the confined
atom. For all (confined or unconfined) atoms, the prin-
cipal quantum number is equal to the total number of
radial and angular nodes plus one. For a confined hy-
drogen atom of radius r0 = wnl,i, the principal quantum

number is thus given by n′ = i+ ` and we get

EHW
n′,` (wn`,i) = EHW

i+`,`(wn`,i) = En. (40)

Note that, for the confined hydrogen atom, states of the
same principal quantum number n′ but different angular-
momentum quantum numbers ` are not degenerate, as
discussed later in this section.

Letting n → ∞ in Eq. (40), using the continuity of
EHW
i+`,` and the limit lim

n→∞
En = 0, we obtain

EHW
i+`,`(w∞,`,i) = 0. (41)

For example, the critical radius at which the lowest en-
ergy of a hard-wall confined system of angular momen-
tum ` becomes non-negative is therefore given by

rHW
c,` = w∞,`,1. (42)

The radial nodes at the n → ∞ limit can be obtained
from the Sommerfeld–Welker relation [2, 59, 77],

w∞,`,i =
1

8
z22`+1,i, (43)

where z2`+1,i is the ith root of the Bessel function
J2`+1(x) with x ≥ 0. With i = 1, from (42) we obtain for
` = 0, 1, 2, 3, respectively, the following increasing criti-
cal radii rHW

c,` in atomic units: 1.835246330, 5.088308227,

9.617366042, 15.36345002. Hence, rHW
c,0 is the smallest

nodal position that can be obtained for an analytical
closed-form solution of the wave function. They do, how-
ever, arise from zeros of special confluent hypergeometric
functions [58, 59].

The question now arises as to how these nodes and the
critical radius are influenced by soft confinement. To an-
alyze numerically the convergence of the nodal positions,
energies and critical radii in more general terms, we use
Numerov’s method [78, 79] to obtain accurate solutions
for Eq. (16) with Vconf(r) = VN (r). This fourth-order lin-
ear multi-step method is used in standard applications to
solve ordinary second-order differential equations. The
method is implicit but can be made explicit if the differ-
ential equation is linear, as in our case. The efficiency
of the Numerov method arises since we obtain a local
error of O(h6) with respect to step size h, with just one
evaluation of the function per step. By comparison, the
Runge–Kutta algorithm requires six function evaluations
per step to achieve a local error of O(h6) [80].

The step size of the numerical calculations has been
fixed to δr = 0.0001a0, whereas the upper integration
limit for the range [0, rint] was adjusted to the stiffness
parameter chosen. For increasing stiffness parameter N ,
the integration limit rint was set closer to the confinement
radius to avoid numerical instabilities. However, rint >
r0 was always kept as large as possible to ensure that the
error due to the integration limit is below the numerical
accuracy of Numerov’s method. The hard-wall potential
was obtained by setting the value of the last grid point to
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SW
c ) = 0 towards the hard-wall limit (bottom).

The log-log inset plots showcase the power-law asymptotics.

zero. Our results are in perfect agreement with previous
results by Aquino et al. [38].

Numerical calculations were also performed using
a modified version of the finite-element-based atomic
MCHF program LUCAS [81, 82]. The radial grid for hy-
drogen consisted of 200 non-equidistant elements, whose
length increases exponentially with the radial distances,
except for the first element. Within each element, the
wave function is expanded using five equidistant La-
grange interpolation polynomials.

For a fixed radius r0 and increasing stiffness parameter
N , the nodal positions in the wave functions approach as
expected the corresponding hard-wall nodes. Consider
the difference between soft- and hard-wall nodes

∆wn`,i(r0, N) = wSW
n`,i(r0, N)− wHW

n`,i (r0), (44)

where wHW
n`,i (r0) = wSW

n`,i(r0, N → ∞). In Figure 4, we
illustrate the convergence of the soft-wall nodal positions
towards the hard-wall nodes. It is clear that the conver-
gence is slow – very large N values are required to ap-
proach the hard-wall limit. In general, the N -dependence
of wSW

n`,i is non-monotonic, becoming monotonic only with

tighter confinement (smaller r0). However, we note that,
in the asymptotic region (N > 1000), the inequality
wSW
n`,i(r0, N) > wHW

n`,i (r0) always holds, meaning that wSW
n`,i

converges towards the hard-wall limit from above. As
is clearly seen from the log–log plots in Figure 4, the
nodal position difference ∆wn`,i follows a simple power-
law asymptotic behavior

∆wn`,i(r0, N) = AN−B , (45)

where the exponent B typically has values in the range
0.8 – 0.9. The exponent is virtually independent of quan-
tum numbers n and ` (all asymptotic lines in Figure 4
are parallel) and shows a weak linear dependence on r0

B(r0) ≈ 0.87− 0.008r0. (46)

The deviations from the hard-wall results are much larger
for smaller r0; note the different scales in the plots of
Figure 4.

The convergence of the energies to the hard-wall limit
are shown in Figure 5. Just as for the nodal convergence,
we observe generally non-monotonic behavior. Asymp-
totically, the soft-wall energy ESW

n` approaches EHW
n` from

below and follows an inverse power-law

∆En`(r0, N) = A−1NB , (47)

where A and B are the same as in Eqs. (45) and (46)
(for the same value of r0). The magnitude of ∆En` in-
creases as 1s < 2p < 2s < 3d < 3p < 3s, reflecting the
increasing radial extents of the corresponding wave func-
tions. For larger values of r0, the non-monotonic N -
dependence stems from two competing effects. First, the
confining potential Vc influences the inner part of the
wave function, raising its energy; with increasing N , this
inner effect fades quickly and Vc acts only in the vicinity
of the wall. Second, the wave function is able to pen-
etrate the soft wall, reducing its energy (relative to the
hard-wall case); the higher the N , the less penetrable the
wall becomes.

The soft-wall critical radius rSWc converges to rHW
c

from below, as illustrated in Figure 4. The curves corre-
sponding to different states are shifted along the x axis
(stiffness) and well separated by the quantum number n.

Figure 6 shows the convergence of the expectation val-
ues 〈r−1〉SW, 〈r〉SW and 〈r2〉SW towards their correspond-
ing hard-wall limits. Whereas 〈r−1〉SW converges to the



9

hard-wall limit from below, 〈r〉SW and 〈r2〉SW converge
from above, as follows from the observation that the elec-
tron density is shifted towards the nucleus with increas-
ing N .

For all shown properties, the asymptotic convergence
towards the hard-wall limit is driven by a power function
as in Eqs. (45) and (47). In all cases, the value of the
exponent B stays fairly constant, whereas the prefactor
A varies greatly between different properties and different
states.
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hard-wall limit for r0 = 10a0 (top) and r0 = 2a0 (bottom).
The log-log inset plots showcase the power-law asymptotics.

Sen et al. have pointed out that the ith n-electron en-
ergy Ei(Ω) obtained by solving the Schrödinger equa-
tion on the region Ω subject to the constraint that the
wave function vanishes on the boundary δΩ (the Dirichlet
boundary conditions) satisfies the relation [83].

Ω1 ( Ω2 =⇒ Ei (Ω1) > Ei (Ω2) . (48)

This result applies to hard-wall confinement, where the
wave function vanishes at the wall. For all quantum num-
bers, EHW

n` (r0) therefore increases monotonically with de-
creasing r0. For soft confinement, the same result does
not follow since we do not impose Dirichlet conditions
on the wave function. However, for the soft-wall confine-
ment, En`(r0) > En`(r0 + ε) with ε > 0 holds to first
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order for each eigenstate of the hydrogen atom. Mono-
tonicity should therefore hold in general if higher-order
terms are small – that is, for large r0. This monotonic
behavior is clearly seen in Figure 7, which also illustrates
the slow convergence to the free hydrogen result for the
harmonic confinement.

Goldman and Joslin [34] discussed the dependence of
the hydrogen energy levels on the angular-momentum
quantum number ` for a fixed principal quantum number
n in terms of the kinetic energy dominating the potential
energy with decreasing r0. Their results are in agreement
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with Eq. (23), which holds for large N and therefore also
in the hard-wall limit.

Figure 7 illustrates the splitting of the 2s and 2p levels
for the hard-wall potential and three different soft-wall
potentials. We note the increasing separation of the two
levels with decreasing r0. The energy ordering for higher
principal quantum numbers is very similar – see, for ex-
ample, Goldman and Joslin [34]. We note that an analy-
sis of the nodal regions of the wave functions by Wilson
implies En,` ≥ En,`−1 [76]. Hence, when the degener-
acy of levels of the same principal quantum number n
is lifted, then the state of higher angular momentum is
lower in energy.

E. Using Gaussian Basis Sets

For hard-wall confinements, the multi-electron wave
function must vanish at the wall and special basis func-
tions must be designed to satisfy the Dirichlet boundary
conditions [29, 85]. This makes it difficult to study con-
finement effects using standard quantum-chemistry pro-
gram packages. By not imposing such conditions, soft-
wall confinement potentials are better suited for calcula-
tions with Gaussian basis functions. In fact, and most
conveniently, the local pseudopotential operator [86] can
be used by setting the Gaussian exponent to zero, which
is much simpler than the implementation of the poten-
tial ansatz of Zicovich–Wilson [87]. On the other hand,
since the wave function is pushed towards the nucleus
and decays rapidly near r0, standard Gaussian basis sets
may not be well suited for soft-wall confined systems with
large N and small r0 [48]. To make this point clear, we
study the hydrogen atom using an even-tempered Gaus-
sian basis. For chosen values of r0 and N , two parameters
α > 0 and β > 1 set up a geometric progression for the

Gaussian exponents [88]:

γk = αβk, k = 1, . . . ,M (49)

separately for each angular momentum `. Even-tempered
basis sets are asymptotically complete when α and β are
allowed to depend on M [89–91].

We employ a non-linear conjugate gradient method [92]
to optimize α and β [93] using an energy threshold of
ε < 10−10Eh. However, with increasing N and de-
creasing r0, the threshold had to be lowered for numer-
ical stability as the energy of the confined system be-
comes large. We ran calculations with r0 = 0.5, . . . , 10a0
and N ∈ {2, 5, 10, 20}. Different pairs of (αi, βi) were
explored through random selection in predefined inter-
vals to ensure that the global minimum is obtained for
a given confinement radius resulting in a final set of
(αmin(N, r0), βmin(N, r0)) values. The results using 20
Gaussian functions are displayed in Figure 8.

With increasing stiffness N , the optimized βmin shifts
to higher values, so that the even-tempered basis spans a
broader range of Gaussian exponents γ. For small values
of r0, the optimized αmin increases with the increasing
stiffness N effectively shifting the entire basis towards
harder exponents. For higher r0, the trend is reversed
and the basis shifts towards more diffuse exponents with
increasing stiffness.

As seen in the bottom plot of Figure 8, for N = 2, the
energy error introduced by the Gaussian basis is virtu-
ally independent of r0 and is only governed by numerical
noise, so that the Gausssian basis calculations perfectly
reproduce the numerical results. This is not surprising
considering the fact that the asymptotic behavior of the
wave function is Gaussian for harmonic potentials. With
increasing stiffness N , the basis set error increases and it
grows considerably as r0 approaches 0.

Our basis-set studies imply that small values of β and
many basis functions with large exponents are required to
describe properties over the whole range of confinement
radii and stiffness parameters. For the dipole polariz-
ability of hydrogen shown in Figure 9 calculated solving
the Coupled-Perturbed Hartree–Fock equations [94], we
therefore used a much larger even-tempered 35s23p basis
set (with center of basis functions at γ18,s = 104.847 and
γ12,p = 2.643986 and fixed scaling factors βs = βp = 1.6)
for stiffness parameters N = 2, 6 and 10. We note that
variations of the γ values had very little effect on the re-
sults. The βp values could not be further reduced because
of numerical problems for small radii r0.

As seen from Figure 9, the dependence of the polariz-
ability on r0 is similar for soft and hard confinements. For
large radii, the curves approach the exact non-relativistic
value of 4.5 a.u. of the free hydrogen atom; for small radii,
all curves converge to zero polarizability. However, the
confinement radius r0 for which the dipole polarizability
starts to change significantly depends critically on the
stiffness parameter N . The harmonic potential (N = 2),
in particular, exhibits a slow convergence towards the
free hydrogenic value and shows a more gradual tran-
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sition between the r0 → 0 and r0 → ∞ limits. For
larger values of r0, the stiffer confining potentials only
act locally in the region where the wavefunction decays
naturally with little to no effect on polarizability. On the
other hand, the softer potentials (especially the harmonic
potential) have significant effect in the region below the
r0, thus lowering the polarizability even at large radii r0.
Hence, the trend of polarizabilty versus stiffness reverses
between the r0 → 0 and r0 →∞ limits. More details on
the hydrogenic results can be found in the supplementary
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material.

IV. SOFT-WALL CONFINED
MANY-ELECTRON SYSTEMS

A. Computational details

We consider three many-electron atoms in our non-
relativistic confinement studies: helium (1S), carbon (the
three lowest states 3P, 1D and 1S), and potassium (three
lowest states 2S, 2P and 2D). Methane is included as a
molecule because of its high Td symmetry.

For the hard-wall confined helium, we performed nu-
merical Hartree–Fock (HF) and multi-configuration HF
(MCHF) calculations using a modified version of the
finite-element atomic MCHF program LUCAS [81, 82]
with the same grid as for the hydrogen atom. In
the numerical complete active space self-consistent field
(CASSCF) calculations the two electrons were dis-
tributed in 6s,5p,4d,3f,2g,1h active shells (here and in the
following the numbers specify the number of shells, not
quantum numbers). When the active space is increased
further, the energies approach the values obtained by
Montgomery Jr. et al. using explicitly correlated vari-
ational perturbation theory (VPT) [43].

For carbon and potassium, similar grids were used as
for helium but with a radial grid consisting of 100 el-
ements (401 grid points). For the carbon atom, the
1s orbital was inactive in our numerical CASSCF cal-
culations with four electrons in 2s,2p,1d shells [denoted
(1s//2s2p1d)]. In the numerical CASSCF calculations on
potassium, the 12 electrons in the 1s–3s and 2p atomic or-
bitals were inactive and the remaining seven active elec-
trons were distributed in 1s,2p,2d active shells [denoted
(3s1p//1s2p2s)].
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For the soft-wall confinement of helium, stiffness pa-
rameters N = 2, 6 and 10 were chosen. For the HF and
CISD (FCI) calculations, special Gaussian type orbital
(GTO) basis sets with many tight functions are required.
For helium, even the uncontracted aug-cc-pV6Z correla-
tion consistent basis set [95] is insufficient, the correlation
energy plotted against r0 showing unphysical wiggles.
We therefore used a large uncontracted even-tempered
basis set spanned by 33s23p17d13f11g9h functions with
stiffness parameter N = 10. As for hydrogen, the energy
is lowered with decreasing scaling factor β between the
exponents. Because of linear dependencies, the smallest
factor that could be used was 1.5. For each angular mo-
mentum, we chose α0 small enough to be applicable for
the stiffness parameters chosen (see supplementary mate-
rial). Dipole polarizabilities were calculated numerically
using the Finite-Field Perturbation Theory [96].

For the GTO calculations on potassium, we used an
even-tempered basis with 41s27p19d functions. State-
averaged CASSCF calculations with one electron in
1s,1p,1d active orbitals and all degenerate components
of the lowest 2S, 2P, and 2D states were included in the
state averaging. This is equivalent to HF calculations for
each state.

For CH4, the GTO basis-set requirements are some-
what less critical than for the atoms. We used the
uncontracted aug-cc-pV6Z s and p sets [95] for C and
H, augmented by the uncontracted aug-cc-pwCV5Z sets
[97] for the higher angular-momentum functions. For
the electron-correlation treatment, we used the coupled-
cluster singles-doubles-perturbative-triples (CCSD(T))
method. Unless otherwise noted, all electrons were cor-
related.

All GTO calculations were carried out using the MOL-
PRO program package [98].

B. The confined helium atom

The free helium isoelectronic series has been a test
bench for electron-correlation treatments since the pio-
neering work of Hylleraas [69, 70]. Upon application of
the coordinate scaling r → r/Z mentioned in Section
III B to the Hamiltonian of each member of the series
and dividing by Z2, the Hamiltonian becomes

Ĥ(1, 2) = ĥZ=1(1) + ĥZ=1(2) +
1

Z

1

r12
(50)

where ĥZ=1 is the Hamiltonian of the hydrogen atom.
The factor λ = 1/Z appears as a natural perturbation
parameter such that the energy of a two-electron atom
of charge Z may be expressed as

E(Z) = Z2
∑
i=0

E(i)λi = −Z2 +
5

8
Z + E(2) +O(Z−1)

where E(i) is the ith-order energy of the transformed
Hamiltonian. The radius of convergence λc = 1/Zc of the
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FIG. 10. CISD correlation energy of the confined helium
isoelectronic series plotted as a function of 1/Z at r0(Z) =

(2.0/Z1+ 2
N )a0 for different values of the stiffness parame-

ter N . In order to avoid basis set artifacts, the exponents
of the 27s22p14d12f9g7h basis set for helium were scaled as
αi(Z) = (Z/2)2αi(2).

expansion corresponds to the critical nuclear charge Zc ∼
0.91103 below which the atom is unstable [99]. The HF
energy may be developed in an analogous manner [100].
An important observation is that the 1/Z expansions for
the exact and HF energies are identical to first order,
since the zeroth-order wave functions are the same [101].
Furthermore, since the second-order contribution to the
energy in Eq. (50) is independent of Z, the correlation
energy is independent of Z to lowest order and given by
the limiting value

lim
Z→∞

Ecorr(Z) = E(2) − E(2)
HF. (51)

For the free atoms, the limiting value is Ecorr(Z →∞) =
−0.046663254Eh [102].

These results may be extended to helium-like atoms
under soft confinement provided that the confinement
radius r0 is scaled according to Eq. (31). This is demon-
strated in Figure 10, where the CISD correlation energy
of the helium isoelectronic series under soft confinement
is plotted as a function of 1/Z, using a Z-dependent

confinement radius r0(Z) = 2a0/Z
1+ 2

N . The curves
are very nearly linear, as confirmed by linear regression,

with slopes E
(3)
corr = {0.0072706, 0.0070114, 0.0069044}Eh

for N = {2, 6, 10}. The corresponding intercepts are
{−0.045967,−0.046841,−0.047207}Eh and equal to the

limiting correlation energies E
(2)
corr. These energies may

alternatively be calculated from an MP2-like expression
[100, 103] starting from the one-electron confined solu-
tions, as we have confirmed by calculation.

We now examine the dependence of the (correlation)
energy on the confinement parameters in more detail. In
the top part of the Figure 11, we have plotted the CI
ground-state electronic energy of helium against r0 for
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FIG. 11. Total ground-state CI energies (top) and the corre-
sponding correlation energies (bottom) of the hard- and soft-
wall confined helium atom with different stiffness parameters
N . The hard-wall results are from numerical MCHF calcula-
tions with a 6s,5p,4d,3f,2g,1h active space.

different values of the stiffness parameter N . These ener-
gies are compared with the values obtained at the MCHF
level using the hard-wall confinement potential. With
increasing stiffness parameter, the CI energies slowly ap-
proach the energy of the hard-wall confined helium atom.
The CI energies are compared with energies calculated
by Montgomery Jr. et al. using variational perturbation
theory (VPT) [43] in the Supplementary Material.

For the correlation energy Ecorr = ECISD−EHF, stud-
ied for the hard-wall confinement by Gimarc in 1967
[104] and by Ludena and Gregory in 1979 [105], we ob-
serve an interesting behavior as shown in the lower panel
of Figure 11. With increasing confinement radius r0,
the correlation energy Ecorr(r0) approaches the energy
of the free helium atom – that is, Ecorr(r0 → ∞) =
−0.042044384Eh for the exact value [106, 107]. (The
computed MCHF and CISD/GTO correlation energies
are −0.041796Eh, and −0.041919Eh, respectively: the
CISD value differs from the exact value because of basis-
set incompleteness, whereas the MCHF value differs be-
cause of the restricted orbital space.) Convergence to the
free-helium correlation energy is much faster for larger
stiffness parameters N since such potentials do not in-

fluence the Coulomb potential significantly at distances
r < r0.

Recalling that the high-density limit of correlation
energy is finite, Ecorr(Z → ∞) = −0.046663254Eh

[102], we can expect to find a similar behavior when
r0 → 0. Indeed, Wilson et al. [108] showed computation-
ally that the correlation energy in the hard-wall high-
density limit approaches that of ballium (two electrons
confined in a sphere with potential V (r12) = r−112 ) – that
is, Eballium

corr (r0 → 0) = −0.055176Eh [55], which can be
compared with the correlation energy of −0.0545931Eh

obtained at the MCHF level for the hard-wall confined
helium as r0 → 0 using a 6s,5p,4d,3f,2g,1h active space.
The good agreement between the correlation energy of
ballium and helium when r0 → 0 suggests that the cor-
relation energy is independent of the nuclear charge in
the limit of r0 → 0. The discrepancy of −0.0005829Eh

between the correlation energy of ballium in the high-
density limit and the MCHF correlation energy in the
limit r0 → 0 is larger than the difference of −0.000371Eh

between the correlation energies calculated at the MCHF
and VPT levels for r0 = 1.0a0 [43], suggesting that the
` convergence of the correlation energy is slightly slower
for strongly confined atoms than for free atoms.

Analogously to the hard-wall case, the high-density
limit of harmonically confined (N = 2) helium should
approach that of 2-electron harmonium (Hookium) atom,
i.e. two electrons confined by the harmonic potential, to
which the Coulomb potential serves only as a perturba-
tion. The limiting correlation energy value in this case
is EHookium

corr (r0 → 0) = −0.049703Eh [109, 110]. Har-
monium systems with 2-6 electrons for both r0 → 0 and
r0 → ∞ limits were previously extensively studied by
Cioslowski and coworkers [110–116].

The soft-wall calculations show that the magnitude of
the correlation energy in the r0 → 0 limit increases with
the increasing value of the stiffness parameter N , that is,

|Ecorr(N, r0 → 0)| < |Ecorr(N + 1, r0 → 0)|. (52)

The same order of Ecorr(N, r0) is apparent in the short
range of the confinement radius r0, see Figure 11. This
is consistent with the reported progression from harmo-
nium to ballium [55, 102]. The long-range behavior of the
correlation energy including the maximum at about 2a0
has been explained by Wilson et al. for hard-wall poten-
tials to originate from different r0 dependence of radial
and angular correlation contributions [108].

The hard-wall numerical MCHF calculations show that
the kinetic energy, the one-electron potential energy, and
the two-electron repulsion energy for small r0 are given
by 〈T 〉(r0) = 9.8832r−20 , 〈V1〉(r0) = −9.7481r−10 , and
〈V2〉(r0) = 1.7859r−10 , respectively. These scalings can
be inferred from Eq.(7) and translate into the well-known
V −2/3 and V −1/3 scaling of kinetic and potential energy,
respectively, with respect to volume (see for instance
[117, sec. 15-4]).

Figure 12 shows the CI kinetic and potential energy
contributions for helium as a function of the confinement
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radius r0 for N = 10.
The 〈r2〉 expectation value and dipole polarizability at

the CI level of theory are shown in Figure 13, where they
are compared with the hard-wall values. They behave in
a manner similar to that of the hydrogen atom. For a
recent hard-wall treatment of the polarizability of rare-
gas atoms, see Ref. [118].

Experimental pressure–volume data for solid fcc/hcp
helium are available from the work of Loubeyre et al.
[119] and Mao et al. [120]. While the volume is given
by V = (4π/3)r30 for the hard-wall potential, it is not
well-defined for a soft-wall potential since the wave func-
tion then extends to infinity. However, noting that the
pressure for hard-wall confinement may be rewritten as

Pc = −∂E
∂V

= − 1

4πr20

∂E

∂r0
=
E + 〈T 〉 − 〈VN 〉

4πr30
(53)

where the last step follows from the virial theorem
Eq. (11) [29], we shall take this expression as our defi-
nition of pressure in the case of soft-wall confinement.

If we consider a single atom under pressure, the P (V )
curves for the hard- or the soft-wall confinements will be
markedly different from the real bulk system containing
infinitely many atoms or molecules. In the latter case,
the wave function of a single atom is allowed to spread
out in the bulk material. Still, it is interesting to compare
soft-wall results with the two limiting cases, the bulk and
the hard-wall confined system. For this, we chose helium
as an example. Hydrogen is more complicated because of
strong covalent bonding at low pressures [121], but it has
been considered by Ley-Koo and Rubinstein [9] and by
LeSar and Herschbach [122]. The calculated P (V ) curves
are shown in Figure 14, compared with the experimental
data for solid fcc/hcp helium by Loubeyre et al. [119]
and Mao et al. [120].

The P (V ) curves of the confined single atoms in Figure
14 are qualitatively similar to the corresponding solid-
state curves, but are shifted to markedly higher pressures.
In the long-range the soft van der Waals interaction dom-
inates and solid He can be compressed with moderate
pressures. At shorter He–He distances where overlap and
repulsive forces dominate, further compression requires
much higher pressure. Concerning the confined atom,
the harmonic potential perturbs the Coulomb potential
already at small distances, leading to high pressures in
the long range. Increasing stiffness towards the hard-
wall confinement leads to smaller pressures in the long
range but larger pressures in the short range. To simu-
late helium compression with confinement potentials will
require higher stiffness parameters and a large number of
helium atoms inside the confinement sphere.

C. The confined carbon atom

The energies for the three lowest-lying states of
the confined carbon atom are shown in Figure 15.
The ground-state configuration of the free carbon is
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FIG. 15. Energies for the three lowest-lying states of carbon
for a stiffness parameter N = 10 using a Gaussian basis. The
inset shows the natural occupation numbers of the 2s and 2p
shells for the 3P state of carbon as a function of the hard-
wall confinement radius. The corresponding energies of the
hard-wall confined carbon calculated at the CASSCF level are
given in the Supplemental Material.

1s22s22p2. Numerical CASSCF calculations on the three
lowest states of C in a hard-wall potential show that
confinement leads to changes in the occupation of the
2s and 2p shells; see Figure 15 inset. Since the 2s or-
bital with one radial node is larger than the 2p shell,
for very small confinement radii the 1s22p4 configura-
tion is significantly lower in energy than the 1s22s22p2

configuration. It should be noted that the order of the
3P, 1D, and 1S states is the same for all r0, because the
three valence states have the same electron configura-
tion for all confinement radii. Even though there are
no state crossings, the configurations contributing to the
wave functions change strongly. State crossings occur
for potassium, because the electron configurations of the
low-lying valence states differ, as discussed below.

D. The confined potassium atom

The ground state of the free potassium atom is 2S,
the 2P and 2D states being the first and the second ex-
cited states, respectively. As shown in the Figure 16, at
a soft-wall (N = 10) confinement radius of about 7a0 the
2P and 2D states cross, the 2D state becoming the first
excited stated. The excitation energy to the 2D state in-
creases slightly upon compression until a radius of about
6a0, after which it decreases rapidly. At about 4.6a0, the
2D state becomes the ground state, while the 2S state
rises steeply in energy, because the more compact node-
less 3d shell is less affected by compression than the more
diffuse 4s orbital. Patil and Varshni found a similar cross-
ing between 2S and 2P levels of Li within a hard-wall con-
finement using an effective Hamiltonian [71]. At small r0
values, the kinetic energy dominates and states with rich
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radial nodal structure are energetically penalized.
Further CASSCF calculations with larger active

spaces, which included the 3p and 3d orbitals and
more states, showed that at a confinement radius of
about 2.6a0 the 2P state crosses further 2P, 2D, and 2F
states, which mainly arise from 3p63d14s0, 3p53d14s1,
and 3p53d04s2 configurations. At even smaller confine-
ment radii, these states also cross the 2S state. In this
region, many states become nearly degenerate, and we
were unable to unravel this complicated situation in de-
tail. These calculations show that the electronic struc-
ture can significantly change when many-body atoms are
exposed to high pressures. A similar situation is observed
in strong magnetic fields, i.e., at field strengths of about
one atomic unit B0 = 235 kT.

E. The confined methane molecule

For CH4, the C–H optimized bond distance decreases
monotonically with decreasing confinement radius r0, as
shown in Figure 17. We only optimized the distances
at the HF level, since the correlation effect is small rel-
ative to the effect of the confinement potential. The
corresponding electronic energies (with all electrons cor-
related) as a function of the confinement radius r0 are
shown in Figure 18 (top).

The total correlation Ecorr and the core–core plus core–
valence correlation ECC+CV

corr energies for CH4 (computed
as the difference between the CCSD(T) energies with all
electrons calculated and those with C(1s) uncorrelated)
are shown in Figure 18 (bottom). As for helium, Ecorr

goes through a maximum with decreasing r0, after which
the absolute value steeply increases, most likely towards
the high-density limit of the n-electron ballium system.
As the molecule is compressed, also ECC+CV

corr increases in
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FIG. 17. Hartree–Fock optimized C-H bond distance in CH4

as a function of the confinement radius r0 for N = 2, 6, 10.

magnitude.

In Figure 19, we show plots for the one-electron density
of the free CH4 molecule compared with that of the con-
fined molecule with r0 = 2.4a0 and N = 10. We clearly
see how the density becomes more spherical and compact
under compression.

Finally, we considered the CH+
4 cation, using the same

structures as for neutral CH4. A comparison between the
total energies of CH+

4 and CH4 shows that the two curves
cross at a small confinement radius of about r0 = 2.2a0
(for N = 6, 10). To make this more apparent, we show
the difference of the total energies of both molecules in
Figure 20. The electron cannot escape from the confine-
ment and remains bound despite the fact that CH+

4 is
lower in energy. Nevertheless, we may regard this as the
onset of a plasma-like behavior under such extreme con-
ditions. This behavior is (perhaps) related to the fact
that atomic or molecular solids can become conducting
at extreme pressures. Similar effects have been found
in confined atoms and were interpreted as ionization in
confinement [123].

It should be noted, however, that the CH+
4 cation is

Jahn–Teller distorted and has C2v symmetry. This dis-
tortion lowers the energy of the cation, moving the cross-
ing distance of the CH+

4 and CH4 energies to larger r0
values. Without the confinement potential, the H1–C–
H2 and H3–C–H4 bond angles for CH+

4 are computed
(CCSD(T)/V5Z with frozen core, HF values in paren-
theses) to be 125.65◦ (124.9◦) and 55.0◦ (54.8◦), and the
respective CH bond distances are 1.081 Å (1.072 Å) and
1.185 Å (1.176 Å), respectively. With the confinement po-
tential, the structure remains qualitatively the same, but
for r0 = 2.2a0, N = 10 the HF bond angles change to
117.9◦ and 60.3◦ and the distances are reduced to 0.768
Å and 0.794 Å, respectively (computed with the large
basis set). It is interesting to note that H3–C–H4 then
forms an almost equilateral triangle. Using the HF op-
timized structures for both species with r0 = 2.2a0 and
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FIG. 18. Total CCSD(T) energy (top), total electron corre-
lation energy Ecorr (bottom) and core-core plus core-valence
correlation energy ECC+CV

corr (bottom inset) for the soft-wall
confined CH4 molecule plotted against the confinement ra-
dius r0 for N = 2, 6, 10. The symmetry was kept in Td.

FIG. 19. One-electron density of free (left) and confined
(right) CH4 (N = 10, r0 = 2.4 a0). Isodensity surfaces of
0.1 are shown on the same scale.

N = 10, the CH+
4 ROHF-UCCSD(T) energy is 2.12 eV

lower than the CH4 one, while it is 0.98 eV higher if both
are computed using the neutral CH4 structure. Thus, at
this confinement radius, the geometry relaxation lowers
the CH+

4 energy by more than 3 eV.
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FIG. 20. Difference in CCSD(T) energies of soft-wall con-
fined CH+

4 and CH4 with changing confinement radius r0 for
N = 2, 6, 10. Solid lines represent vertical ionization ener-
gies (CH4 geometry), dashed line shows adiabatic ionization
energy (relaxed CH+

4 geometry).

V. CONCLUSIONS

We have undertaken detailed studies on the properties
of the H, He, C and K atoms as well as the CH4 and
CH+

4 molecules confined within the spherical soft-wall
potential

VN (r) =

(
r

r0

)N
(54)

of confinement radius r0 and stiffness parameter N ; the
hard-wall potential of radius r0 is recovered as N tends to
infinity. For hydrogen, we have carefully analyzed the use
of Gaussian basis sets. While a harmonic potential is well
suited for Gaussian functions, the expansion in Gaus-
sian functions becomes increasingly more difficult with
increasing stiffness parameter N . Having relatively well-
behaved basis sets for stiffness parameter N ≤ 10 avoid-
ing near linear dependencies, we were able to present
accurate shifts in the total energy and in the correlation
energy relative to the free atom or molecule. We estab-
lished a virial theorem for the soft confinements.

From our analysis, it is evident that the soft-wall po-
tential is well-behaved for N and can easily be used
within standard quantum-chemical program packages for
many-electron atoms and molecules. Unlike the hard-
wall potential in Eq. (2), where an additional boundary
condition is needed to force the wave function to become
zero at the wall, the soft-wall potential results in stan-
dard one-electron integrals – already contained, for ex-
ample, within matrix elements over the local pseudopo-
tential operator [86]. The soft-wall confinement potential
can easily be made finite by choosing the ansatz,

VN (r) =

(
r

r0

)N
e−γr

2

, (55)
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The soft-wall potential introduced in this work can
be used, for example, in the simulation of materials
under pressure. On the other hand, its extension to the
relativistic domain is a challenge [46, 124, 125]. These
topics are the subject to our future studies.

See Supplemental Material at [URL will be inserted by
publisher] for tables of properties for the confined systems
studied.
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Appendix A: Proof of 〈rN〉n,l < 〈rN〉n,l−1

Here, we present a proof by induction of the inequality
〈rN 〉n,l < 〈rN 〉n,l−1 , using the Kramers–Pasternack re-
currence relation in Eq. (19). We use the induction step
N − 1 → N and consider the two cases 0 < N < 2l + 1
and N ≥ 2l + 1.

1. Case 1: 0 < N < 2l + 1

We start by dividing Eq. (19) with 〈rN−1〉n,l:

(N + 1)
Z2

n2
R

(N)
n,l = (2N + 1)Z

− 1

4
N(2l + 1 +N)(2l + 1−N)

1

R
(N−1)
n,l

(A1)

with

R
(N)
n,l =

〈rN 〉n,l
〈rN−1〉n,l

(A2)

and proceed with induction for the ratios R
(N)
n,l < R

(N)
n,l−1.

For N = 1 from Eq. (20), it is clear that R
(1)
n,l < R

(1)
n,l−1.

We assume that R
(N−1)
n,l < R

(N−1)
n,l−1 holds. For N < 2l+ 1

the coefficient 1
4N(2l+1+N)(2l+1−N) is always positive

and from Eq. (A1) we get

(N + 1)
Z2

n2
R

(N)
n,l < (2N + 1)Z

− 1

4
N(2l + 1 +N)(2l + 1−N)

1

R
(N−1)
n,l−1

. (A3)

Further, we note that

(2l + 1 +N)(2l + 1−N)

= (2(l − 1) + 1 +N)(2(l − 1) + 1−N) + 8l (A4)

and we have

(N + 1)
Z2

n2
R

(N)
n,l < (2N + 1)Z

− 1

4
N(2(l − 1) + 1 +N)(2(l − 1) + 1−N)

1

R
(N−1)
n,l−1

− 2Nl

R
(N−1)
n,l−1

. (A5)

Using Eq. (A1) we get

(N + 1)
Z2

n2
R

(N)
n,l < (N + 1)

Z2

n2
R

(N)
n,l−1 −

2Nl

R
(N−1)
n,l−1

. (A6)

The inequality still holds if we drop the right-hand term,
yielding

R
(N)
n,l < R

(N)
n,l−1 (A7)

that concludes this part of the induction. Finally, we
must make the connection with 〈rN 〉n,l < 〈rN 〉n,l−1.
From Eq. (A7), we follow

N∏
N ′=1

R
(N ′)
n,l <

N∏
N ′=1

R
(N ′)
n,l−1 (A8)

Using Eq. (A2) implies that

〈rN 〉n,l
〈r0〉n,l

<
〈rN 〉n,l−1
〈r0〉n,l−1

(A9)

(A10)

which gives 〈rN 〉n,l < 〈rN 〉n,l−1.

2. Case 2: N ≥ 2l + 1

Again, we prove by induction, only this time directly
for 〈rN 〉n,l < 〈rN 〉n,l−1. For the initial step we know al-
ready from Case 1 that the inequality holds for N = 2l−1
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and N = 2l. We assume that 〈rN−2〉n,l < 〈rN−2〉n,l−1
and 〈rN−1〉n,l < 〈rN−1〉n,l−1. As for N ≥ 2l + 1, the
rightmost term in Eq. (20) is non-negative and replacing
〈rN−1〉n,l and 〈rN−2〉n,l yields

(N + 1)
Z2

n2
〈rN 〉n,l < (2N + 1)Z〈rN−1〉n,l−1

−1

4
N(2l + 1 +N)(2l + 1−N)〈rN−2〉n,l−1. (A11)

Using Eq. (A4), we get

(N + 1)
Z2

n2
〈rN 〉n,l < (2N + 1)Z〈rN−1〉n,l−1

− 1

4
N(2(l − 1) + 1 +N)(2(l − 1) + 1−N)〈rN−2〉n,l−1

− 2lN〈rN−2〉n,l−1 (A12)

and using Eq. (19) gives

(N + 1)
Z2

n2
〈rN 〉n,l < (N + 1)

Z2

n2
〈rN 〉n,l−1

− 2lN〈rN−2〉n,l−1. (A13)

As in the last paragraph, the last term is always negative
so we have

〈rN 〉n,l < 〈rN 〉n,l−1. (A14)

This concludes our proof.

Appendix B: Proof of 〈rN+1〉n`〈r−1〉n` > 〈rN〉n`

Here, we prove the inequality

〈rN+1〉n`〈r−1〉n` > 〈rN 〉n` ∀n, ` < n,N ∈ N0. (B1)

From Z-scaling it follows that

〈rN 〉n`;Z = Z−N 〈rN 〉n`;Z=1. (B2)

Hence, it suffices to prove

〈rN+1〉n`;Z=1〈r−1〉n`;Z=1 > 〈rN 〉n`;Z=1. (B3)

For the following, we set Z = 1. We apply Hölder’s
inequality∣∣∣∣∫
A

f(x) g(x) dx

∣∣∣∣ ≤ (∫
A

|f(x)|p dx
)1/p(∫

A

|g(x)|q dx
)1/q

(B4)

with p−1 + q−1 = 1 for the domain A ⊂ Rd. Next, we
introduce

p =
N + 2

N + 1
⇒ q = N + 2 and N =

N + 1

p
− 1

q
(B5)

and we get (the integrands are all positive functions)

〈rN 〉n` =

∫ ∞
0

rNP 2
n` (r) dr

=

∫ ∞
0

(
rN+1P 2

n` (r)
)1/p︸ ︷︷ ︸

f(r)

(
r−1P 2

n` (r)
)1/q︸ ︷︷ ︸

g(r)

dr

≤
(∫ ∞

0

∣∣∣(rN+1P 2
n` (r)

)1/p∣∣∣p dr)1/p

(B6)

×
(∫ ∞

0

∣∣∣(r−1P 2
n` (r)

)1/q∣∣∣q dr)1/q

=

(∫ ∞
0

rN+1P 2
n` (r) dr

)1/p(∫ ∞
0

r−1P 2
n` (r) dr

)1/q

= 〈rN+1〉1/pn` 〈r
−1〉1/qn` .

The proof is complete if 〈rN 〉n` ≥ 1, as this fulfils the

condition 〈rN 〉1/pn` ≤ 〈rN 〉n` for Z = 1. To prove that
this is indeed the case, we start from the relation [62]〈

rk−1
〉
n`

=
1

2n

(na0
2Z

)k−1
tk (n−`−1,−(2`+1)) (B7)

in terms of the Hahn polynomials

tk (n− `− 1,− (2`+ 1)) = (−1)
k Γ (− (2`+ 1))

Γ (− (2`+ 1 + k))

× 3F2

(
−k, k + 1,− (n− `− 1)

1, (2`+ 2)
; 1

)
. (B8)

The generalized hypergeometric series is given by [72,
eq.16.2.1]

rFs

(
a1, . . . , ar
b1, . . . , bs

; z

)
=

∞∑
m=0

(a1)m . . . (ar)m
(b1)m . . . (bs)m

zm

m!
(B9)

where none of the bottom parameters b1, b2, . . . bs is a
nonpositive integer and the Pochhammer’s symbols are
defined as [72, eq.5.2.4]

(a)n= a (a+1) (a+2) . . . (a+n−1) ; (a)0 = 1 (B10)

or in terms of gamma functions [72, eq.5.2.5]

(a)n =
Γ (a+ n)

Γ (a)
, a 6= 0,−1,−2, . . . (B11)

In our case, we have r = s+ 1 for the Hahn polynomials
(B8). Due to appearance of −k < 0 in (B8), the power
series will reduce to a polynomial of maximal order k.

Using the recurrence relation [72, 5.5.1]

Γ (z + 1) = zΓ (z) , (B12)

we can rewrite the Hahn polynomials as

tk (n−`−1,−(2`+1))

= (2`+2)k × 3F2

(
−k, k+1,−(n−`−1)

1, 2`+2
; 1

)
(B13)

= (2`+2)k ×
k∑

m=0

(−k)m (k+1)m (−(n−`−1))m
m! (2`+2)mm!

.
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We simplify further using the relation

(−a)n = (−1)
n

(a−n+1)n (B14)

and get

tk (n−`−1,−(2`+1)) = (2`+2)k (B15)

×
k∑

m=0

(k+1−m)m (k+1)m (n− `−m)m
m!m! (2`+2)m

We further have

(2`+2)k
(2`+2)m

=
Γ (2`+2+ k)

Γ (2`+2)

Γ (2`+2)

Γ (2`+2+m)
(B16)

=
Γ (2`+2+ k)

Γ (2`+2+m)
= (2`+2+m)k−m ; 0 ≤ m ≤ k

to give

tk (n−`−1,−(2`+1)) =

k∑
m=0

cm (n, `, k) (B17)

with positive coefficients

cm (n, `, k) =(
2m
m

)
(2`+2+m)k−m (k+1−m)m (k+1)m (n−`−m)m

=

(
2m
m

)
(2`+1+k)! (k+m)! (n−`−1)!

(2`+1+m)! (k−m)! (n−`−1−m)!
. (B18)

We note that

cm (n, `, k+1)

cm (n, `, k)
=

(2`+2+k)! (k+1+m)! (k−m)!

(2`+1+k)! (k+m)! (k+1−m)!

= (2`+2+k)
(k+1+m)

(k+1−m)
> 0 (B19)

as well as

ck (n, `, k) =

(
2k
k

)
(2k)! (n− `− 1)!

(n− `− 1− k)!
> 0. (B20)

Note also that 〈rN+1〉n` has one more term in the ex-
pansion than 〈rN 〉n` for Z = 1. From this, we conclude
that

〈rN+1〉n`;Z=1 > 〈rN 〉n`;Z=1, (B21)

which completes our proof since 〈r0〉n` = 1.
We finally mention that the more general inequality

〈rN+m〉n`〈r−m〉n` > 〈rN 〉n` ∀n, ` < n,N ∈ N0 (B22)

for m ≤ 2`+2 can be proven in the same way. The idea
here is to use Hölder’s inequality with the parameters

p =
N+2m

N+m
⇒ q =

N+2m

m
⇒ N =

N+m

p
− m

q
.

(B23)
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