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Abstract. Field measurements of aboveground net primary
productivity (ANPP) in temperate grasslands suggest that
both positive and negative asymmetric responses to changes
in precipitation (P ) may occur. Under normal range of pre-
cipitation variability, wet years typically result in ANPP
gains being larger than ANPP declines in dry years (posi-
tive asymmetry), whereas increases in ANPP are lower in
magnitude in extreme wet years compared to reductions dur-
ing extreme drought (negative asymmetry). Whether the cur-
rent generation of ecosystem models with a coupled carbon–
water system in grasslands are capable of simulating these
asymmetric ANPP responses is an unresolved question. In
this study, we evaluated the simulated responses of temperate
grassland primary productivity to scenarios of altered pre-
cipitation with 14 ecosystem models at three sites: Short-
grass steppe (SGS), Konza Prairie (KNZ) and Stubai Val-
ley meadow (STU), spanning a rainfall gradient from dry
to moist. We found that (1) the spatial slopes derived from
modeled primary productivity and precipitation across sites
were steeper than the temporal slopes obtained from inter-
annual variations, which was consistent with empirical data;
(2) the asymmetry of the responses of modeled primary pro-
ductivity under normal inter-annual precipitation variability
differed among models, and the mean of the model ensem-
ble suggested a negative asymmetry across the three sites,
which was contrary to empirical evidence based on filed ob-
servations; (3) the mean sensitivity of modeled productivity
to rainfall suggested greater negative response with reduced
precipitation than positive response to an increased precipita-
tion under extreme conditions at the three sites; and (4) gross
primary productivity (GPP), net primary productivity (NPP),
aboveground NPP (ANPP) and belowground NPP (BNPP)
all showed concave-down nonlinear responses to altered pre-
cipitation in all the models, but with different curvatures and
mean values. Our results indicated that most models overes-
timate the negative drought effects and/or underestimate the
positive effects of increased precipitation on primary produc-
tivity under normal climate conditions, highlighting the need
for improving eco-hydrological processes in those models in
the future.

1 Introduction

Precipitation (P ) is a key climatic determinant of ecosys-
tem productivity, especially in arid and semi-arid grasslands
(Lambers et al., 2008; Sala et al., 1988; Hsu et al., 2012; Beer
et al., 2010). Climate models project substantial changes in

amounts and frequencies of precipitation regimes worldwide,
and this is supported by observational data (Karl and Tren-
berth, 2003; Donat et al., 2016; Fischer and Knutti, 2016).
Potential for increasing occurrence and severity of droughts
and increased heavy rainfall events related to global warm-
ing will likely affect grassland growth (Knapp et al., 2008,
2017a; Gherardi and Sala, 2015; Lau et al., 2013; Reich-
stein et al., 2013). As a consequence, better understanding of
the responses of grassland productivity to altered precipita-
tion is needed to project future climate–carbon interactions,
changes in ecosystem states, and to gain better insights on
the role of grasslands in supporting crucial ecosystem ser-
vices (e.g., livestock production).

Gross primary productivity (GPP) of ecosystems is con-
trolled by environmental conditions, in particular water avail-
ability (Jung et al., 2017), and by biotic factors affecting
leaf photosynthetic rates and stomatal conductance, which
scale up to canopy-level functioning (Chapin III et al., 2011).
About half of GPP is respired while the remainder, net
primary productivity (NPP), is primarily invested in plant
biomass production, including photosynthetic and structural
pools aboveground (foliage and stem) and belowground
(roots) (Waring et al., 1998; Chapin III et al., 2011). NPP
responses to precipitation have been observed using multi-
year, multi-site observations (Hsu et al., 2012; Estiarte et al.,
2016; Knapp and Smith, 2001; Wilcox et al., 2015). Posi-
tive empirical relationships between grassland aboveground
NPP (ANPP) and precipitation (P ) have been found in spatial
gradients across sites (Sala et al., 1988) and from temporal
variability at individual sites (Huxman et al., 2004; Knapp
and Smith, 2001; Roy et al., 2001; Hsu et al., 2012). The
ANPP–P sensitivities obtained from spatial relationships are
usually higher than those obtained by temporal relationships
(Estiarte et al., 2016; Fatichi and Ivanov, 2014; Sala et al.,
2012). Possible mechanisms behind the steeper spatial rela-
tionship may be (1) a “vegetation constraint” reflecting the
adaptation of plant communities over long timescales in such
a way that grasslands make the best use of the typical water
received from rainfall for growth (Knapp et al., 2017b) and
(2) the spatial variation in structural and functional traits of
ecosystems (soil properties, nutrient pools, plant and micro-
bial community composition) that constrain local ANPP–P
sensitivities (Lauenroth and Sala, 1992; Smith et al., 2009;
Wilcox et al., 2016). For projecting the effect of climate
change on grassland productivity in the near to mid-term
(coming decades), inter-annual relationships are arguably
more informative than spatial relationships because spatial
relationships reflect long-term adaptation of ecosystems and
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because ANPP–P relationships from spatial gradients are
confounded by the covariation of gradients in other envi-
ronmental variables (e.g., temperature and radiation) and soil
properties (Estiarte et al., 2016; Knapp et al., 2017b).

In temporal ANPP–P relationships, an important observa-
tion is the asymmetric responses of productivity in grasslands
to altered precipitation (Knapp et al., 2017b; Wilcox et al.,
2017). Compared to negative anomalies of ANPP from years
with decreased precipitation, positive anomalies of ANPP
during years with increased precipitation were usually found
to have a larger absolute magnitude, suggesting a convex pos-
itive response (positive asymmetry) (Bai et al., 2008; Knapp
and Smith, 2001; Yang et al., 2008). Yet, when grasslands
are subject to extreme precipitation anomalies that fall be-
yond the range of normal inter-annual variability, an extreme
dry year is associated with a larger absolute ANPP loss than
the gain found during an extreme wet year. This suggests a
convex negative response (negative asymmetry) when con-
sidering a larger range of rainfall anomalies than the current
inter-annual regime (Knapp et al., 2017b). This is also sup-
ported by current dynamical global vegetation models, which
suggest a stronger response to extreme dry conditions com-
pared to extreme wet conditions (Zscheischler et al., 2014).
The sign of the asymmetric response of grassland produc-
tivity to altered rainfall thus depends on the magnitude of
rainfall anomalies, the size distribution of rainfall events and
ecosystem mean state (Gherardi and Sala, 2015; Hoover and
Rogers, 2016; Parolari et al., 2015; Peng et al., 2013).

Relationships between precipitation and grassland pro-
ductivity have previously been studied with site observa-
tions (Hsu et al., 2012; Knapp et al., 2017b; Luo et al.,
2017; Wilcox et al., 2017; Estiarte et al., 2016), but they re-
main to be quantified and characterized in ecosystem mod-
els used for diagnostic and future projections of the cou-
pled carbon–water system in grasslands, in particular grid-
based models used as the land surface component of Earth
system models. In this study, we aim to evaluate the re-
sponses of simulated productivity to altered precipitation
from 14 ecosystem models at three sites representing dry
(304± 118 mm yr−1), mesic (827± 175 mm yr−1) and moist
(1429± 198 mm yr−1) rainfall regimes. The specific objec-
tives of this study are to (1) test if the productivity–P sen-
sitivities of spatial relationships are greater than the tem-
poral ones in the models such as those found in the ob-
servations; (2) test if models reproduce the observed asym-
metric responses under inter-annual precipitation conditions;
(3) assess the simulated productivity–P sensitivities related
to different precipitation regimes including normal and ex-
treme conditions, and to test in particular if sensitivities
for extreme drought conditions are stronger than those for
high-rainfall conditions; (4) analyze the simulated curvilin-
ear productivity–P relationships for a large range of altered
precipitation amounts across the three sites.

2 Materials and methods

2.1 Experimental sites

We conducted model simulations using three sites: the Short-
grass steppe (SGS) site at the Central Plains Experimental
Range, the Konza Prairie Biological Station (KNZ) site and
the Stubai Valley meadow (STU) site. These sites represent
three grassland types spanning a productivity gradient from
dry to moist climatic conditions. The dry SGS site is located
in northern Colorado, USA (Knapp et al., 2015; Wilcox et
al., 2015). The KNZ site is a native C4-dominated mesic
tallgrass prairie in the Flint Hills of northeastern Kansas,
USA (Heisler-White et al., 2009; Hoover et al., 2014). The
moist site of STU is a subalpine meadow located in the Aus-
trian Central Alps near the village of Neustift (Bahn et al.,
2006, 2008; Schmitt et al., 2010). Experimental measure-
ments of annual ANPP were carried out spanning differ-
ent time ranges. Estimated mean ANPP for SGS, KNZ and
STU sites are 91± 36, 387± 82 and 525± 210 g DM (dry
mass) m−2 yr−1. Details of the ecological and environmental
factors are summarized in Table 1.

These three grasslands were selected because they lie
along a mean annual precipitation (MAP) gradient and have
detailed meteorological data to force the models. While two
are “natural” grasslands (KNZ and SGS) and one (STU) is
not, global land surface models do not typically differenti-
ate regarding the origin of ecosystem types and heavily man-
aged grasslands and pastures represent a significant fraction
of mesic grasslands globally. Semi-natural subalpine grass-
lands in the Alps were created several centuries ago, are very
lightly managed and should be in equilibrium concerning soil
physical conditions. It should be noted though that the grass-
land at STU is cut once a year and lightly fertilized every 2–
4 years and in consequence differs in plant composition and
soil fungi : bacteria ratio, which leads to different drought re-
sponses compared to abandoned grassland (Ingrisch et al.,
2017; Karlowsky et al., 2018). Further, it is worth noting
that the mesic grassland in the USA would also be forested
if human-initiated prescribed fires were to be removed from
the system (Briggs et al., 2005). Thus, these grassland sites
lie along a continuum of dry natural grassland, mesic natu-
ral grassland maintained by human management and anthro-
pogenic moist grassland maintained by human management.

2.2 Ecosystem model simulations

In order to test the hypothesis of an asymmetric re-
sponse of productivity to variable rainfall (Knapp et al.,
2017b), simulations were conducted with 14 ecosystem
models – CABLE, CLM45-ORNL, DLEM, DOS-TEM, JS-
BACH, JULES, LPJ-GUESS, LPJmL-V3.5, ORCHIDEE-2,
ORCHIDEE-11, T&C, TECO, TRIPLEX-GHG and VISIT
– all using the same protocol defined by the precipitation
subgroup of the model–experiment interaction study (Ta-
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Table 1. Key plant, soil and climate characteristics of the three grassland sites. MAT, mean annual temperature; and MAP, mean annual
precipitation. MAT and MAP are based on the periods for the three sites with ANPP measurements.

SGS KNZ STU

Latitude 40◦49′ N 39◦05′ N 47◦07′ N
Longitude 104◦46′W 96◦35′W 11◦19′ E
MAT (◦C) 8.6± 0.7 13.0± 0.9 6.2± 0.8
MAP (mm yr−1) 304± 118 827± 175 1429± 198
ANPP (g DM m−2 yr−1) 91± 36 387± 82 525± 210
Measurement period 1986–2009 1982–2012 2009–2013
Grassland type Shortgrass steppe Mesic tallgrass prairie Subalpine meadow
C3 species (%) 30 15 100
C4 species (%) 70 85 0
Soil type Aridic Argiustoll Typic Argiustoll Dystric Cambisol
Sand (%) 14 8 42
Silt (%) 58 60 31
Clay (%) 27 32 27

ble 2). At all three grassland sites, observed and altered
multi-annual hourly rainfall forcing time series were com-
bined with observations of other climate variables. These
variables were air temperature, incoming solar radiation, air
humidity, wind speed and surface pressure. Model simula-
tions were carried out using soil texture properties measured
at each site as reported in Table 1. Simulated productivity
during the observational period is influenced at least in some
models (for instance those having C–N interactions) by his-
torical climate change and CO2 changes since the preindus-
trial period. Thus, instead of assuming that productivity was
in equilibrium with current climate, historical reconstruc-
tions of meteorological variables from gridded CRUNCEP
data at half-hourly time step (Wei et al., 2014) were com-
bined and bias corrected with site observations to provide
bias corrected historical forcing time series from 1901 to
2013 (CRUNCEP-BC). In addition to the observed current
climate defining the ambient simulation, nine altered rainfall
forcing datasets were constructed by decreasing or increas-
ing the amount of precipitation in each precipitation event by
−80, −70, −60, −50, −20, +20, +50, +100 and +200 %
during the time span of productivity observations at each
site, leaving all other meteorological variables unchanged
and equal to the observed values. Modelers performed all
simulations described below based on the same protocol (see
below) and the model output was compared with measured
ecosystem productivities (GPP; NPP; ANPP; and BNPP, be-
lowground NPP), whenever available.

Simulation S0 spin-up: models simulated an initial steady
state spin-up run for water and biomass pools under prein-
dustrial conditions using the 1901–1910 CRUNCEP-BC cli-
mate forcing in a loop and applying fixed atmospheric CO2
concentration at the 1850 level.

Simulation S1 historical simulation from 1850 until the
first year of measurement (1986 for SGS, 1982 for KNZ
and 2009 for STU): starting from the spin-up state, models

were prescribed with increasing atmospheric CO2 concen-
trations and dynamic historical climate from CRUNCEP-BC.
Because there is no CRUNCEP-BC data for 1850–1900, the
CRUNCEP-BC climate data from 1901 to 1910 was repeated
in a loop instead.

Simulation SC1 ambient simulation for the measurement
periods (1986–2009 for SGS, 1982–2012 for KNZ and
2009–2013 for STU): starting from the initial state in the start
year of the period and run with observed CO2 concentrations
and meteorological data corresponding to site observations
at the hourly or half-hourly scale.

Simulations SP1–SP9 altered precipitation simulations for
the measurement periods (1986–2009 for SGS, 1982–2012
for KNZ and 2009–2013 for STU): starting from the initial
state in the start year of the period and run using the nine
altered rainfall forcing datasets with observed CO2 concen-
tration.

2.3 Metrics of the response of productivity to
precipitation changes

In the analysis, we begin with testing our first specific ob-
jective, i.e., if the productivity–P sensitivities of spatial re-
lationships are greater than the temporal ones in the mod-
els as found in the observations. We calculated the temporal
slopes and spatial slopes between productivities and precip-
itation from multi-year ambient simulations (SC1). Tempo-
ral slopes are site based and relate inter-annual variability in
precipitation to inter-annual variability in the productivities
using linear regression analysis. Spatial slopes relate mean
annual precipitation to mean annual productivity across the
three sites.

We then calculated two indices to analyze the asymmetric
responses of primary productivity to precipitation simulated
by ecosystem models and derived by observations whenever
data were available. The two indices are (1) the asymmetry
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Table 2. Summary of ecosystem models used in this study, including model name, nitrogen (N) cycle and relevant references. Also see
Tables S1–S14 in the Supplement for details of the simulated processes for grasslands in the ecosystem models, including the N cycle,
phosphorus (P) cycle, carbon (C) allocation scheme, carbohydrate reserves, leaf photosynthesis and stomatal conductance including treatment
of water stress, scaling of photosynthesis from leaf to canopy, phenology, mortality, soil hydrology, surface energy budget, root profile and
dynamics, and grassland species.

Model Expanded name N cycle References

CABLE CSIRO Atmosphere Biosphere Land Exchange
model

No Kowalczyk et al. (2006), Wang et al. (2011)

CLM45-ORNL Version 4.5 of the Community Land Model Yes Oleson et al. (2013)
DLEM Dynamic Land Ecosystem Model Yes Tian et al. (2011, 2015)
DOS-TEM Dynamic organic soil structure in the Terrestrial

Ecosystem Model
Yes Yi et al. (2010), McGuire et al. (1992)

JSBACH Jena Scheme for Biosphere–Atmosphere Coupling
in Hamburg

No Kaminski et al. (2013), Reick et al. (2013)

JULES Joint UK Land Environment Simulator No Best et al. (2011), Clark et al. (2011)
LPJ-GUESS Lund–Potsdam–Jena General Ecosystem Simulator Yes Smith et al. (2001), B. Smith et al. (2014)
LPJmL-V3.5 Lund–Potsdam–Jena managed Land No Bondeau et al. (2007)
ORCHIDEE-2 Organizing Carbon and Hydrology in Dynamic

Ecosystems (2 soil layers)
No Krinner et al. (2005)

ORCHIDEE-11 Organizing Carbon and Hydrology in Dynamic
Ecosystems (11 soil layers)

No Krinner et al. (2005)

T&C Tethys–Chloris No Fatichi et al. (2012, 2016)
TECO Process-based Terrestrial Ecosystem model No Weng and Luo (2008)
TRIPLEX-GHG An integrated process model of forest growth, car-

bon and greenhouse gases
Yes Peng et al. (2002), Zhu et al. (2014)

VISIT Vegetation Integrative Simulator for Trace gases
model

No Inatomi et al. (2010), Ito (2010)

of productivity–P for current inter-annual variability, based
on SC1 where observations for ANPP are also available;
and (2) the sensitivity of productivity to P for simulations
where mean precipitation was altered, based on SP results.
With these metrics, we test our second and third specific ob-
jectives, i.e., whether models could reproduce the observed
asymmetric responses of productivity in grasslands to altered
precipitation under normal and extreme conditions.

Finally, we analyze the nonlinearity of modeled response
of productivity to precipitation, which is described by the
parameters of the curvilinear productivity–P relationships
across the full range of altered precipitation scenarios, based
on fits to model output for the ambient (SC1) and altered
(SP) simulations. Detailed methods for the two indices used
to analyze the asymmetric responses of primary productivity
to altered precipitation and the curvilinear productivity–P re-
lationships are introduced in the following.

2.3.1 Asymmetry index from inter-annual productivity
and precipitation

In order to characterize the asymmetry of productivity to pre-
cipitation, we define the asymmetry index (AI) from inter-
annual productivity and precipitation data as follows:

AI= Rp−Rd, (1)

where Rp is the relative productivity pulse in wet years and
Rd is the relative productivity decline in dry years defined by

Rp = (med(fp90)− f )/f , (2)

Rd = (f −med(fp10))/f , (3)

where f is the inter-annual productivity, being a function
of environmental factors from models or observation; f is
mean annual productivity in the period of measurements (Ta-
ble 1); med(fp90) is the median value of productivities in
wet years with annual precipitation higher than the 90th per-
centile level; and med(fp10) is median value of productivities
in all the dry years when annual precipitation is lower than
the 10th percentile level.

In general, Rp> 0 indicates that the median value of pro-
ductivities in wet years is higher than the mean annual pro-
ductivity in the period of measurements; andRd> 0 indicates
that the median value of productivities in dry years is smaller
than the mean annual productivity in the period of measure-
ments. Therefore, AI> 0, i.e., a positive asymmetry, means
that there is a greater increase of productivity in wet years
than decline in dry years; and AI< 0, i.e., a negative asym-
metry, means that there is a greater decline of productivity in
dry years than increase in wet years.

www.biogeosciences.net/15/3421/2018/ Biogeosciences, 15, 3421–3437, 2018
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Furthermore, uncertainty ranges of Rp, Rd and AI were
estimated as follows:

Rp ∈
[
Rplow ,Rpup

]
=

[
(med

(
fp90

)
−mad(fp90))− f

f
,

(med
(
fp90

)
+mad(fp90))− f

f

]
, (4)

Rd ∈
[
Rdlow ,Rdup

]
=

[
f − (med

(
fp10

)
+mad(fp10))

f
,

f − (med
(
fp10

)
−mad(fp10))

f

]
, (5)

AI ∈
[
AIlow,AIup

]
= [Rplow −Rdup ,Rpup −Rdlow ], (6)

where Rplow and Rpup are the lower and upper bounds of Rp
using one median absolute deviation, i.e., mad

(
fp90

)
; Rdlow

and Rdup are the lower and upper bounds of Rd using one
median absolute deviation, i.e., mad

(
fp10

)
; and AIlow and

AIup are the lower and upper bounds of AI corresponding to
estimated Rp and Rd ranges.

2.3.2 Sensitivity of productivity to altered versus
inter-annual precipitation variability

For altered precipitation, in particular for the extreme SP
simulations where mean precipitation was altered and an-
nual precipitation of a few years was outside the range of
observed precipitation variation, we tested the hypothesis of
whether the asymmetry response becomes negative – that is
the impacts of extreme dry conditions on productivity are
much greater than the positive effects of extreme wet scenar-
ios (Knapp et al., 2017b). Thus, we tested the mean change
in productivity imposed by the change in precipitation, and
we defined the sensitivity of productivity to altered rainfall
conditions (S) as

S = (fPa − fPc)/(
∣∣Pa−Pc

∣∣), (7)

where fPa and fPc are the mean productivities of altered and
ambient simulations; Pa and Pc are the mean annual precipi-
tation amounts in altered and ambient simulations. It should
be noted that the sensitivity of productivity to altered rain-
fall conditions could present the asymmetry response from
normal to extreme conditions.

2.3.3 Curvilinear productivity–P relationships across
the entire range of altered P

In general, plant productivity increases with increasing pre-
cipitation and saturates when photosynthesis becomes less
limited by water scarcity. We fitted the response of simulated
productivity to altered precipitation using the Eq. (8):

y = a
(

1− e−bx
)
, (8)

where the independent variable x is the mean annual pre-
cipitation (mm) and the dependent variable y one of the

productivities (GPP, NPP, ANPP and BNPP). Parameter a
(g C m−2 yr−1) is the maximum value of productivity at high
precipitation and parameter b (mm−1) is the curvature of
modeled productivity to altered precipitation.

3 Results

3.1 Temporal versus spatial slopes of productivity–P

From the ambient simulations, ensemble model results indi-
cate that the slopes of the spatial relationships were steeper
than the temporal slopes for GPP, NPP and ANPP for the
subset of models that simulated this flux, while these dif-
ferences in slopes were less obvious for BNPP (Fig. 1). We
compared model results with site observations for ANPP–
P temporal slopes of the ambient simulation across the
three sites (Fig. 1c). Observed and modeled temporal slopes
decreased from the dry (SGS) to moist (STU) site, from
0.10 g C m−2 mm−1 (0.05 to 0.14 for the 10th and 90th
percentiles) to 0.05 g C m−2 mm−1 (−0.14 to 0.55 for the
10th and 90th percentiles) in the observations, and from
0.14 g C m−2 mm−1 (0.02 to 0.36 for the 10th and 90th per-
centiles) to 0.03 g C m−2 mm−1 (−0.04 to 0.29 for the 10th
and 90th percentiles) for the model ensemble mean. Al-
though there were some discrepancies in the range of spa-
tial and temporal slopes across models (Fig. S1 in the Sup-
plement), the multi-model ensemble mean captured the key
observation of spatial slopes steeper than temporal slopes for
ANPP (Fig. 1).

3.2 Asymmetry of the inter-annual primary
productivity response to precipitation

The asymmetry of each model was diagnosed using the
asymmetry index (Eq. 1), which showed large variation
across models (Figs. 2, S2). Considering all the models as
independent ensemble members, the mean AI of GPP and
NPP showed significantly negative values at p< 0.1 level
for SGS (ensemble value of −0.110.12

−0.31 and −0.200.11
−0.48 re-

spectively with 10th and 90th percentiles). Hence, for SGS
simulated declines of GPP and NPP in dry years were larger
than the increases in wet years. For STU, the mean AI val-
ues were only slightly negative (ensemble value for GPP
−0.030.02

−0.07 and for NPP −0.040.01
−0.09 with 10th and 90th per-

centiles), while AI was very close to zero at KNZ. By con-
trast, observation-based AI values, estimated from long-term
inter-annual ANPP measurements, suggest a decrease from
positive (0.320.49

0.14 for SGS and 0.200.37
0.04 for KNZ) to negative

(−0.21 for STU). At the dry (SGS) and mesic (KNZ) sites
(Fig. S2), most of the model simulations overestimated the
extent of negative drought effects in dry years (Rd) and/or
underestimated the positive impacts on ANPP in wet years
(Rp). For example, CABLE and ORCHIDEE-2 overesti-
mated the drought effects in dry years at both of the two sites,
and CLM45-ORNL and VISIT underestimated the positive
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Figure 1. Relationships between GPP (a), NPP (b), ANPP (c), and BNPP (d) and precipitation (P ) derived from multi-year ambient simula-
tions (SC1) in two ways. Temporal slopes are site based and relate inter-annual variability in P to inter-annual variability in the productivities
using linear regression analysis. Spatial slopes relate mean annual P to mean annual productivity across three sites. In each panel, SGS, KNZ
and STU are from dry to moist, given from left to right. The red lines are the ensemble mean of modeled temporal slopes, and the red shading
represents the model uncertainty range using the interquartile spread of the temporal slopes between individual simulations (10th and 90th
percentiles). The blue line is the ensemble mean of modeled productivities, and the blue error bar represents the model uncertainty range
using the interquartile spread of the productivities between individual simulations (10th and 90th percentiles). In (c), the grey lines are the
observed temporal slopes, and the black line shows the observed spatial slope. The grey shading represents the observed uncertainty range
using the bootstrap sampling method (10th and 90th percentiles), and the black error bar represents the observed uncertainty range using the
interquartile spread of the inter-annual productivities (10th and 90th percentiles). Note that we simply converted observed ANPP from dry
mass (g DM m−2 yr−1) to carbon mass (g C m−2 yr−1) with a factor of 0.5.

impacts in wet years at both of the two sites (Fig. S2). At the
moist site (STU), models agreed with observations regarding
the negative sign of AI (negative asymmetry) but AI magni-
tude is not well captured.

3.3 Sensitivities of primary productivity to altered
precipitation

The model-derived sensitivities given by Eq. (7) generally
presented greater negative impacts of reduced precipitation
than positive effects of increased precipitation under both
normal (inter-annual) and extreme conditions (Fig. 3). The
results also indicated that models represented a constant
asymmetry pattern (negative asymmetry under normal and
extreme conditions) across the full range of altered precipita-
tion rather than a double asymmetry pattern (positive asym-
metry under normal condition and negative asymmetry un-
der extreme condition) established by Knapp et al. (2017b),

which confirmed that models did not capture the positive
asymmetric responses of productivities to altered precipita-
tion under normal conditions for the dry (SGS) and mesic
(KNZ) sites.

Primary productivity at the dry site (SGS) was more
sensitive to precipitation changes compared to the
moist site (STU). Along with increases in precipita-
tion, the largest sensitivity values were found for SGS
(ensemble mean of 1.352.49

0.42 g C m−2 mm−1 for GPP
with 10th and 90th percentiles, 0.681.47

0.24 g C m−2 mm−1

for NPP, 0.240.61
0.08 g C m−2 mm−1 for ANPP and

0.160.18
0.14 g C m−2 mm−1 for BNPP) and then KNZ

(0.321.23
−0.09 g C m−2 mm−1 for GPP, 0.200.72

−0.05 g C m−2 mm−1

for NPP, 0.130.21
0.01 g C m−2 mm−1 ANPP and

0.060.28
0.01 g C m−2 mm−1 for BNPP with 10th and 90th

percentiles) when precipitation was altered by +20 %. The
values of S decreased with further increased precipitation,
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Figure 2. Asymmetry responses of inter-annual GPP (a), NPP (b), ANPP (c) and BNPP (d) to precipitation in ambient simulations at the three
sites SGS, KNZ and STU. The asymmetry index was calculated as the difference between the relative productivity pulses (Rp) and declines
(Rd) in wet years and dry years (see Eqs. 1–3). Black pentagrams in (c) represent asymmetry indices from observations. The corresponding
black error bars represent the observed uncertainty ranges using Eqs. (4)–(6). A black asterisk at the bottom of a panel indicates a significant
asymmetry response of the model ensemble at a 0.1 significance level by a non-parametric statistical hypothesis test (Wilcoxon signed-rank
test).

indicating that additional water does not increase produc-
tivity in the same proportion exceeding a certain threshold.
In contrast to SGS, the values of sensitivity for both GPP
and NPP at STU are close to zero in response to added pre-
cipitation conditions, implying that the precipitation above
ambient was not a limiting factor for grassland production in
the models at this site.

The values of sensitivity decreased with reduced precip-
itation at KNZ and SGS, indicating larger negative impacts
on primary productivity when conditions become drier. For
the moist site of STU, primary productivities showed less
sensitivity to moderately dry conditions, and sensitivity only
increased with more extreme rainfall alterations out of 3σ
(∼ 40 % precipitation change). Additionally, the values of S
for ANPP were smaller than those of BNPP at KNZ and SGS,
while there were no differences between ANPP and BNPP at
STU (Fig. 3). Thus, model results suggest that the dry site
(SGS) can be particularly vulnerable to altered rainfall com-
pared to the moist site (STU), which was more robust in re-
sponse to altered rainfall.

3.4 Curvilinear responses of productivity to altered
precipitation

At SGS and KNZ, simulated GPP and NPP increased with
increasing precipitation. In contrast, at the moist STU, most
models showed saturation in productivity for precipitation
above ambient values (Fig. 4). Along with increasing pre-
cipitation, GPP and NPP showed nonlinear concave-down
response curves in all models, with different curvatures b
and maximum productivity a (Fig. S3). The ensemble mean
values of the curvature parameter b fitted from Eq. (8) to
each modeled GPP across the full range of altered precipi-
tation are 5.19.2

2.7× 10−3 mm−1 at STU, 3.38.0
0.9× 10−3 mm−1

at KNZ and 1.42.3
0.0× 10−3 mm−1 at SGS with 10th and 90th

percentiles (Fig. S3).
The responses of GPP and NPP to altered precipitation

were proportional to each other for each model, and as a re-
sult changes in carbon use efficiency (CUE) were very small
compared to the background CUE differences diagnosed in
the ambient simulation (Fig. 4c, f, i). However, JSBACH and
LPJmL-V3.5 produced a sharp decline of CUE below ambi-
ent precipitation at SGS and KNZ.

Only seven models simulated ANPP and BNPP sep-
arately (Fig. 5). The responses of ANPP and BNPP to
altered precipitation were similar to those of GPP and NPP.
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Figure 3. Sensitivity of GPP (a), NPP (b), ANPP (c) and BNPP (d) for altered precipitation simulations at the three sites SGS, KNZ and
STU. Curves show the ensemble mean of models, and the shading represents the model uncertainty range using the interquartile spread of
the sensitivities between individual simulations (10th and 90th percentiles). Curves above the zero line represent responses under increasing
precipitation conditions relative to the control, and curves below the zero line show responses under decreasing precipitation conditions
relative to the control. Vertical dashed lines represent precipitation variations of 1 standard deviation (1σ ), 2 standard deviations (2σ ) and
3 standard deviations (3σ ), which were derived from long-term annual precipitation at the three sites respectively.

When fitting Eq. (8) to ANPP–P (Fig. S4), the curvatures
b ranged from 3.0× 10−3 mm−1 (ORCHIDEE-11) to
9.2× 10−3 mm−1 (TECO) at STU, from 0.7× 10−3 mm−1

(TRIPLEX-GHG) to 6.1× 10−3 mm−1 (VISIT) at KNZ,
and from 0.9× 10−3 mm−1 (T&C) to 2.3× 10−3 mm−1

(CLM45-ORNL) at SGS; the modeled maximum values
a for ANPP ranged between 173 g C m−2 yr−1 (VISIT)
and 827 g C m−2 yr−1 (TECO) at STU, 49 g C m−2 yr−1

(CLM45-ORNL) and 557 g C m−2 yr−1 (ORCHIDEE-
2) at KNZ, and 94 g C m−2 yr−1 (CLM45-ORNL) and
523 g C m−2 yr−1 (ORCHIDEE-2) at SGS.

The ANPP : NPP ratio, i.e., aboveground carbon alloca-
tion, showed a nonlinear increase (concave-down) with in-
creasing precipitation in ORCHIDEE-2 and ORCHIDEE-11,
a nonlinear decrease (concave-up) in T&C due to transloca-
tion of C reserves from roots and only minor changes in other
models (Fig. 5c, f, i).

4 Discussion

4.1 Comparison of modeled and observed responses of
productivity to altered precipitation

Spatial slopes steeper than temporal slopes of ANPP to pre-
cipitation are usually explained by two hypotheses: (1) veg-
etation constraint effects on ANPP responses to precipita-
tion play a more important role in the temporal as compared
to the spatial domain (Knapp et al., 2017b; Estiarte et al.,
2016); (2) biogeochemistry (mainly resource limitations) and
confounding factors (e.g., temperature and radiation), rather
than species attributes, constrain community-level ANPP in
response to precipitation (Huxman et al., 2004). Thus, the
former theory stresses more long-term intrinsic ecosystem
properties, while the latter underlines the effects of external
environmental factors. The current models tested here cap-
tured the relative magnitude of the difference between tem-
poral and spatial slopes (Fig. 1c), which suggested that the
models adequately considered the key processes underlying
carbon–water interactions across different grassland sites.
Only few grassland experiments have assessed BNPP (Luo
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Figure 4. Responses of simulated annual GPP (a, d, g), NPP (b, e, h) and CUE (NPP/GPP; c, f, i) to altered and ambient precipitation (P )
levels at the three sites STU, KNZ and SGS. The fitted equation is Eq. (8) for GPP and NPP (see Fig. S3 for fitted a and b). The grey dashed
line represents ambient precipitation. It should be noted that the x-axis scales are different between the sites.

et al., 2017), leaving the question open of whether the minor
differences between temporal and spatial slopes for BNPP
responses to precipitation as simulated by the models corre-
spond to experimental observations (Fig. 1d).

The asymmetry index obtained from available long-term
ANPP and precipitation observations reported positive val-
ues at SGS and KNZ (Fig. 2c), which suggested greater de-
clines of ANPP in dry years than increases in wet years
(Knapp and Smith, 2001). Knapp et al. (2017b) proposed
the following underlying mechanisms. (1) In dry years, the
carryover effects of soil moisture from previous years al-
leviate strong declines of ANPP (Sala et al., 2012), which
is usually treated as a time-lag effect (Petrie et al., 2018;
Wu et al., 2015). Additionally, rain use efficiency also in-
creases with water scarcity, meaning that less water is lost
through runoff (Gutschick and BassiriRad, 2003; Huxman et
al., 2004). (2) In wet years, other resources such as nutri-
ent availability may increase with increasing precipitation,

contributing to a supplementary increase of ANPP (Knapp et
al., 2017b; Seastedt and Knapp, 1993). In contrast, the nega-
tive asymmetry index derived from observations at the moist
STU suggests that this process is not dominant for this site,
while temperature and/or light limitations that are associated
with rainy periods may become important during wet years
and neutralize the effect of increased precipitation on ANPP
(Fig. S4) (Nemani et al., 2003; Wu et al., 2015; Wohlfahrt et
al., 2008).

In our results, most models did not capture the sign of
observed asymmetry indices across the three sites (Fig. 2c),
which suggests that some of the underlying processes (com-
bined carbon–nutrient interactions, time-lag effects, dynamic
root growth allowing variation in accessible soil water) are
not accurately represented in the models. For example, grass-
land root depth affects ecosystem resilience to environmen-
tal stress such as drought, and arid and semi-arid grasses that
have extensive lateral roots or possibly deep roots show rel-
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Figure 5. Responses of simulated annual ANPP (a, d, g), BNPP (b, e, h), and the ratio of ANPP and NPP (c, f, i) to altered and ambient
precipitation (P ) levels at the three sites STU, KNZ and SGS. The fitted equation is Eq. (8) for ANPP and BNPP (see Fig. S4 for fitted a and
b). The grey dashed line represents ambient precipitation. It should be noted that the x-axis scales are different between the sites.

atively strong resistance (Fan et al., 2017). However, most
models currently consider only two types of grasslands – C3
and C4 (Table S14), with fixed root fractions in each pre-
scribed soil layers (Table S13). This is potentially unrealistic
for semi-arid grass roots and can lead to underestimating the
amount of soil water available to plants and their resistance
to drought. The latter is a key candidate especially for ex-
plaining the negative asymmetry index at the dry SGS.

The sensitivity of productivity to increased and decreased
precipitation for simulations where mean precipitation was
normally altered generally suggested negative asymmetric
responses at dry (SGS) and mesic (KNZ) sites (Fig. 3c).
This contrasts with a meta-analysis of grassland precipita-
tion manipulation experiments (Wilcox et al., 2017) and with
the ANPP–P conceptual model (Knapp et al., 2017b), which
suggest a positive asymmetry response in the range of nor-
mal rainfall variation. This emphasizes the finding that most
models overestimate drought effects and/or underestimate

wet year impacts on primary productivity of dry and mesic
sites for current precipitation variability. Under extreme con-
ditions with modified precipitation, models were in line with
the hypothesis and the data showing that ANPP saturates in
very wet conditions but declines strongly in very dry con-
ditions (Knapp et al., 2017b). For BNPP sensitivities to al-
tered precipitation, meta-analysis of previous experiments
indicated symmetric responses to increasing and decreasing
rainfall (Luo et al., 2017; Wilcox et al., 2017), which may
be regulated by allocation controls on the ratio of ANPP and
BNPP to total NPP in response to altered precipitation. How-
ever, in the participating models, BNPP shows a negative
asymmetric response to altered rainfall (Fig. 3d), which may
reflect a shortcoming of carbon–water interactions in the be-
lowground ecosystems.
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4.2 Curvilinear responses of productivities to altered
precipitation by models

In general, precipitation in ecosystem models is distributed
through three pathways (N. G. Smith et al., 2014): (1) inter-
cepted by vegetation and subsequently evaporated or falling
on the ground; (2) infiltrated into the upper soil layers with
subsequent evaporation, root water uptake and plant transpi-
ration, or percolated down to deeper layers to form ground
water; (3) runoff from the soil surface if the intensity of pre-
cipitation exceeds infiltration rates. In reality as well as in
models, soil moisture rather than precipitation is the vari-
able regulating vegetation growth, and biological responses
to changes in precipitation are manifested as functions of
soil moisture in different soil layers (Sitch et al., 2003;
N. G. Smith et al., 2014; Vicca et al., 2012). We calculated
the surface soil water content (SSWC, 0–20 cm depth con-
verted from reported soil layers) and total soil water content
(TSWC) under ambient and altered precipitation as simu-
lated by the 14 models, and we found different patterns with
parabolic, asymptotic and threshold-like nonlinear curves,
which is similar to the response curves of primary productiv-
ity at the three sites (Figs. S5, S6). For the moist STU, SSWC
and TWSC did not show obvious changes in response to in-
creased precipitation since soil moisture at this site is often
relatively near field capacity, while the SSWC and TSWC
quickly decreased with decreasing in precipitation (Figs. S5,
S6). In contrast, SSWC and TSWC at SGS showed signifi-
cant increases in response to altered increased precipitation
and slow decreases for decreased precipitation, because the
soil was already very dry under average ambient conditions.
Thus, changes of SWC in response to precipitation contribute
to driving the different response patterns of simulated pri-
mary productivity across the grassland sites.

The responses of primary productivity to precipitation in
models might also be driven by the intrinsic structure and
parameterizations of vegetation functioning besides changes
of soil moisture (Gerten et al., 2008), which account for
the large spread in the values of b and a among models at
the three sites (Figs. 4, 5, S3, S4). For example, carbon–
nitrogen cycle coupling in ecosystem models reduced the
simulated vegetation productivity relative to a carbon-only
counterpart model (Thornton et al., 2007; Zaehle et al.,
2010). Of those models used in this study, only five of the
14 models include carbon–nitrogen–water interactions (Ta-
bles 2, S1, S2). We calculated the ensemble mean of pro-
ductivity for this group of carbon–nitrogen models (CLM45-
ORNL, DLEM, DOS-TEM, LPJ-GUESS and TRIPLEX-
GHG) and carbon-only models (CABLE, JSBACH, JULES,
LPJmL-V3.5, ORCHIDEE-2, ORCHIDEE-11, T&C, TECO
and VISIT) across altered and ambient precipitation simu-
lations at the three sites, and then fitted the productivity–P
responses with Eq. (8) (Figs. S7, S8, S9). We found that en-
semble mean of carbon–nitrogen models generally produce a
weaker GPP, NPP and ANPP response to precipitation than

ensemble mean of carbon-only models and similar responses
for BNPP. The latter may be explained by fixed root profiles
in most models (Table S13). Our findings suggest that N in-
teractions in ecosystem models reduced the productivity–P
sensitivities, but should be confirmed using the same model
prescribed with different N availability. In addition to the in-
fluence of nutrient cycling, different definitions of vegetation
compositions (C3/C4) (Table S14), root profiles (Table S13),
phenology (Table S9) and carbon allocation (Table S4) at the
three sites may also contribute to the large variations of mod-
eled productivity–P responses and demands for more accu-
rate calibration of models to the specificity of the local sites
in future model intercomparison studies.

4.3 Uncertainties, knowledge gaps and suggestions of
further work

In this work, we applied two indices to characterize the asym-
metry responses in the normal precipitation range using inter-
annual variability of present conditions and forcing models
with continuously modified precipitation amounts. Asymme-
try indices from the inter-annual gross and net primary pro-
ductivities suggest large uncertainties (Fig. 2), while the sen-
sitivity analysis to changes in mean precipitation reported
clear responses (Fig. 3). This can be explained by the differ-
ences in other climatic factors (for example, temperature, ra-
diation and vapor pressure), or timing and frequency of pre-
cipitation between dry and wet years. All these uncontrolled
factors may contribute to the large uncertainties of asymmet-
ric responses from inter-annual variations (Chou et al., 2008;
Peng et al., 2013; Robertson et al., 2009).

Although the carbon–water interactions in current mod-
els have been improved during the last decades, there still
exist large gaps for accurately diagnosing the errors in the
representation of key processes and parameterizations. Sug-
gestions that should be considered in future studies aimed
at model–data interaction include the following. (1) Models
should report SWC at the same depth of experiments and
experimental data should be made available for better com-
parisons in following studies. This can provide insights into
the bias of modeled sensitivities to precipitation and check
explicitly the sensitivity of vegetation productivity to change
in SWC. (2) More experiments are needed that assess also
BNPP in order to evaluate the corresponding processes in
models (Luo et al., 2017; Wilcox et al., 2017). (3) There still
exist large gaps between changes of precipitation occurrence
and intensity in reality and how we simulated them in the cur-
rent work, i.e., the altered rainfall forcing datasets were con-
structed by decreasing or increasing the amount of precipita-
tion in each precipitation event by a fixed percentage during
the time span of productivity observations at each site and
not by modifying precipitation structure or reproducing the
real treatment. Further studies need to consider better differ-
ent scenarios of precipitation occurrence and intensity under
climate change (Lauenroth and Bradford, 2012), which will
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likely help to better understand the responses of productivi-
ties to altered precipitation in the next decades. In addition,
modelers will need to simulate the control experiments cor-
responding to the real local precipitation manipulations ap-
plied by field scientists, e.g., considering the observed time
series of modified precipitation and vegetation composition,
root profiles, nutrient cycling, phenology and carbon alloca-
tion as close as possible to local conditions. This should be a
priority for future model–experiment interaction studies.

5 Conclusions

This is the first study where a large group of modelers sim-
ulated the response of grassland primary productivity to pre-
cipitation using long-term observations for evaluating the
asymmetry responses to altered precipitation. Our results
demonstrated that the multi-model ensemble mean captured
the key observation of spatial slopes steeper than temporal
slopes for ANPP. On the other hand, our analyses revealed
that most models do not capture the observed positive asym-
metry responses for the dry (SGS) and mesic (KNZ) sites un-
der the normal precipitation conditions, suggesting an over-
estimation of the drought effects and/or underestimation of
the watering impacts on primary productivity in the nor-
mal state. In general, current models represented a constant
asymmetry pattern (negative asymmetry under normal and
extreme conditions) across the full range of altered precipita-
tion rather than a double asymmetry pattern (positive asym-
metry under normal condition and negative asymmetry under
extreme condition) established by Knapp et al. (2017b).

This study paves the path for further analyses where col-
laboration between modelers and site investigators needs to
be strengthened such that also data other than ANPP can
be considered and to identify which specific processes in
ecosystem models are responsible for the observed discrep-
ancies. This will eventually allow us to produce more reliable
carbon-climate projections when facing different precipita-
tion patterns in the future.
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