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ABSTRACT

Earth system models (ESMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were

diagnosed as having large discrepancies in their land carbon turnover times, which partly explains the dif-

ferences in the future projections of terrestrial carbon storage from the models. Carvalhais et al. focused on

evaluation of model-based ecosystem carbon turnover times teco in relation with climate factors. In this study,

teco from models was analyzed separately for biomass and soil carbon pools, and its spatial dependency upon

temperature and precipitation was evaluated using observational datasets. The results showed that 8 of 14

models slightly underestimated global biomass carbon turnover times tveg (modeled median of 8 yr vs ob-

served 11 yr), and 11 models grossly underestimated the soil carbon turnover time tsoil (modeled median of

16 yr vs observed 26 yr). The underestimation of global carbon turnover times in ESMs was mainly due to

values for tveg and tsoil being too low in the high northern latitudes and arid and semiarid regions. In addition,

the models did not capture the observed spatial climate sensitivity of carbon turnover time in these regions.

Modeled tveg and tsoil values were generally weakly correlated with climate variables, implying that differ-

ences between carbon cycle models primarily originated from structural differences rather than from dif-

ferences in atmospheric climate models (i.e., related to temperature and precipitation). This study indicates

that most models do not reproduce the underlying processes driving regional tveg and tsoil, highlighting the

need for improving the model parameterization and adding key processes such as biotic disturbances and

permafrost–carbon climate responses.

1. Introduction

Natural terrestrial ecosystems, excluding those sub-

ject to land use change, have sequestered about 30%

of cumulative anthropogenic carbon emissions since

2005 (Le Quéré et al. 2015). The global terrestrial car-

bon sink is sensitive to climate variability and climate

trends (Forkel et al. 2016; Peylin et al. 2005; Piao et al.

2013; Xuhui Wang et al. 2014). A positive feedback

between the terrestrial carbon reservoir and climate

change is projected by Earth systemmodels (ESMs), but

the magnitude of this feedback differs among models

(Friedlingstein et al. 2014, 2006). How to reduce this un-

certainty has received increasing attention recently (Cox

et al. 2013).

The carbon turnover time, defined as the ratio of mass

and outgoing flux from a carbon pool, is one of the key

parameters determining terrestrial carbon balance (He

et al. 2016; Koven et al. 2015; Todd-Brown et al. 2013).

The structure of land carbon cycle models can be
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summarized by a cascade of pools, each with a different

turnover, for different grid points. For example, for live

biomass, carbon turnover time in forest is longer than in

grasslands; and for dead organic carbon, turnover time

in Arctic tundra is much longer than in tropical forests

(Bloom et al. 2016). It has been suggested that uncertain

carbon turnover time as an emerging property of models

dominates the uncertainty in terrestrial vegetation re-

sponses to future climate change and rising atmospheric

CO2 concentration (Friend et al. 2014). Furthermore,

the soil carbon turnover times in ESMswere shown to be

significantly underestimated compared to radiocarbon

measurements, leading to overestimation of soil carbon

sequestration by a factor of nearly 2 (40% 6 27%) (He

et al. 2016).

Terrestrial carbon turnover time is closely linked with

climate factors such as temperature and precipitation

(Carvalhais et al. 2014; Chen et al. 2013; Knorr et al.

2005). For example, Carvalhais et al. (2014) found a

negative correlation between temperature and ecosys-

tem carbon turnover time teco across most of the regions

in the world, with the exception of tropical forests and

warm arid regions. In the warm arid regions, pre-

cipitation showed stronger correlations with teco than

with temperature. In tropical regions, both temperature

and precipitation showed a weak spatial correlation with

teco (Carvalhais et al. 2014). It should be noted that since

vegetation and soil carbon turnover have different

physiological processes and climate responses (Bradford

et al. 2016; De Kauwe et al. 2014), vegetation and soil

carbon turnover timemay have different spatial patterns

of correlation with climate, which was not fully in-

vestigated by Carvalhais et al. (2014). Furthermore, it is

difficult to draw a clear picture of the terrestrial carbon

cycle model performance on the magnitude of the sen-

sitivity of carbon turnover time to climate variation from

the current literature.

In addition to the uncertainties in the climate sensi-

tivity of carbon turnover time, the bias of ESM climate

fields also influences the modeled carbon turnover

times. The simulations from phase 5 of the Coupled

Model Intercomparison Project (CMIP5) showed large

differences between climate models (Flato et al. 2013).

For example, the CMIP5 global land annual tempera-

ture T during the period of 1986–2005 differed by ap-

proximately 38C among models, and global land annual

precipitation P by approximately 250mm (Anav et al.

2013). This invites the question whether large differ-

ences of turnover times between CMIP5 ESMs mainly

result from differences between climate models or from

structural differences between carbon cycle models.

In this study, we evaluated the spatial patterns of

carbon turnover time and its response to climate

variation derived from 14 CMIP5 ESMs against

observation-based results. Unlike previous studies such

as Carvalhais et al. (2014), here we evaluate biomass and

soil carbon turnover time separately. Annual net pri-

mary production instead of gross primary production

was used to calculate carbon turnover time.

2. Dataset and methods

a. Vegetation carbon storage

The spatial distribution of total biomass carbon was

derived from recently published global maps of above-

ground biomass carbon (ABC) over the period of 1993–

2010 (Liu et al. 2015) and biome-specific conversion

factors between total biomass carbon (TBC) and ABC

(Flato et al. 2013; Liu et al. 2015; Robinson 2007). The

global ABC product of Liu et al. (2015) was derived based

on global vegetation optical depth (VOD) retrievals from

harmonized series of passive microwave satellite sen-

sors (Liu et al. 2011). Similar to Liu et al. (2015), in

order to retrieve the TBC we simply multiplied ABC

values by vegetation-specific ratios of TBC/ABC, pro-

vided by Table 1 in Liu et al. (2015). The information on

the spatial distribution of vegetation type was determined

using the Moderate Resolution Imaging Spectroradi-

ometer (MODIS) International Geosphere–Biosphere

Program (IGBP) land-cover map (Friedl et al. 2010).

Our estimation of the global TBC stock was 570 PgC,

comparable to the 560 PgC from Gibbs et al. (2006).

b. Soil organic carbon storage

Previous studies usually used the best traditional soil

carbon map provided by the Harmonized World Soil

Database (HWSD) (FAO/IIASA/ISRIC/ISSCAS/JRC

2012) and the Northern Circumpolar Soil Carbon Da-

tabase (NCSCD) (Hugelius et al. 2013; Tarnocai et al.

2009) for estimating soil carbon turnover time (Todd-

Brown et al. 2013). In this study, we chose the latest

global soil carbon dataset provided by the World In-

ventory of Soil Emission Potentials (WISE) project

(Batjes 2016) based on approximately 21 000 available

profiles and soil geographical data. The WISE soil car-

bon dataset has more accurate spatial patterns of soil

organic carbon (SOC) especially for the northern cir-

cumpolar regions, and reported SOC density for seven

depth intervals (0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, 0.8–1.0,

1.0–1.5, and 1.5–2.0m). Because the CMIP5 models did

not include vertically resolved soil profiles, and did not

consider carbon cycle processes for burying carbon be-

low the active layer, we used the top 1m of soil carbon

storage to compute soil carbon turnover time as in Todd-

Brown et al. (2013). To compare with modeled results,
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we also used the global litter carbon stock from Bloom

et al. (2016) output by a diagnostic ecosystem carbon

balance model, Data Assimilation Linked Ecosystem

Carbon Model version 2 (DALEC2) (Bloom and

Williams 2015). In this study, soil organic carbon storage

was calculated from the sum of soil carbon from Batjes

(2016) and litter carbon from Bloom et al. (2016).

c. NPP and climate data

The global distribution of net primary production

(NPP)with 1-km spatial resolution from 2000 to 2010 was

provided by the Numerical Terradynamic Simulation

Group (NTSG) at the University of Montana (https://

www.ntsg.umt.edu/; Zhao and Running 2010). This NPP

product was not an observation but a model with a light-

use efficiency formulation driven by satellite-based

estimates of the fraction of photosynthetically active

radiation, shortwave downward solar radiation, vapor

pressure deficit (VPD), and low daily minimum tempera-

ture for gross primary production (GPP), and a model for

maintenance and growth components respirations to de-

rive NPP from GPP. Detailed information on the tech-

niques used for modeling NPP can be found in related

publications (Zhao and Running 2010; Zhao et al. 2005).

The temperature and precipitation data were from the

Climatic Research Unit (CRU) time series version 3.24

datasets (Harris et al. 2014) with a spatial resolution of

0.58. These gridded datasets were obtained from more

than 4000 meteorological stations and interpolated

based on spatial autocorrelation functions (Mitchell and

Jones 2005; New et al. 2000).

d. CMIP5 ESM simulations

Weused historical simulations (‘‘historical’’ experiment,

1850–2005) from the CMIP5 ESMs forced by observed

atmospheric composition changes and time-variable land

cover (Taylor et al. 2012). Output of biomass carbon, soil

organic carbon, litter carbon, NPP, air temperature, and

precipitation (cVeg, cSoil, cLitter, npp, tas, and pr in the

CMIP5 variable list) from 14 ESMs (see Table S1 in the

supplemental information) were used. These monthly

output variables were downloaded from the PCMDI

server (Cinquini et al. 2014; http://cmip-pcmdi.llnl.gov/

cmip5). For models with multiple simulations, all mem-

bers of the ensemble were averaged following Todd-

Brown et al. (2013, 2014). All ESM data were regridded to

18 3 18 spatial resolution using a first-order conservative

remapping scheme (Jones 1999) in Climate Data Opera-

tors (https://code.zmaw.de/projects/cdo).

e. Analyses

Carbon turnover time is usually defined as the ratio

between the mass of a carbon pool and its output flux

(Koven et al. 2015). In general, the output flux for bio-

mass corresponds to litter fall (including tree mortality)

and fires, while heterotrophic respiration corresponds to

the output flux of soil carbon and litter. Because of the

lack of observed information on the global distribution

of output flux relatedmaterials (vegetation litter fall and

heterotrophic respiration), here we used the input flux of

annual NPP to calculate biomass and soil carbon turn-

over time [see Eqs. (1) and (2)]:

t
veg

5
C

veg

NPP
and (1)

t
soil

5
C

soil

NPP
, (2)

where tveg and tsoil refer to the biomass and soil turnover

times; Cveg and Csoil refer to the biomass and soil carbon

storage (cSoil 1 cLitter, from CMIP5). Under the as-

sumption that the difference between carbon input and

output in near steady state is small compared to the mag-

nitude of each gross flux, the net primary production and

loss from vegetation and heterotrophic respiration from

soil are close to each other. The time frame of the variables

used in estimating the carbon turnover timeswas from2000

to 2005, the common period between satellite-based NPP

fluxes and historical simulation results fromCMIP5. At the

global andbiome scales, tveg and tsoil were derived from the

total carbon storage (Cveg and Csoil) and NPP fluxes.

In Carvalhais et al. (2014), the association between

climate variables (temperature and precipitation) and

teco was determined by analyzing correlation coefficients

to identify the dominant climate factors in local ecosys-

tems. In contrast, we are interested here in both the sign

and magnitude of the spatial sensitivities of carbon

turnover times. Thus, we estimated the local spatial sen-

sitivity (linear regression slope) of tveg and tsoil to mean

annual temperature (MAT) and mean annual pre-

cipitation (MAP) in 58 3 58moving windows around each

18 grid cell, using the following multiple regression:

y5 g x
T
1 d x

P
1 c1 « , (3)

where y is tveg or tsoil; xT and xP represent MAT and

MAP, respectively; g and d define the apparent sensi-

tivities of carbon turnover to spatial gradients in tem-

perature and precipitation, respectively (Piao et al.

2013); c is a constant; and « is the residual error term.

Here ‘‘apparent’’ indicates the empirical partial de-

rivative of carbon turnover time to each climate vari-

able, but in reality these factors covary. We tested the

statistical significance of g and d at the 0.05 level.

If model-based spatial sensitivity values of carbon

turnover times were beyond the 5th–95th uncertainty

1 AUGUST 2018 WU ET AL . 5949

Unauthenticated | Downloaded 06/11/21 07:32 AM UTC

https://www.ntsg.umt.edu/
https://www.ntsg.umt.edu/
http://cmip-pcmdi.llnl.gov/cmip5
http://cmip-pcmdi.llnl.gov/cmip5
https://code.zmaw.de/projects/cdo


range of the observation-based spatial sensitivity, we

supposed that themodel failed to capture the observation

at corresponding regional grids. Furthermore, we have

checked the robustness of spatial sensitivity of carbon

turnover time to climate in a 78 3 78moving window, and

again in a 98 3 98 moving window.

3. Results

a. Carbon turnover time at the global and biome scale

Compared to observation-based tveg (;11yr), 8 of the

14 CMIP5 ESMs [BCC_CSM1.1(m), CanESM2, IPSL-

CM5A-LR, IPSL-CM5B-LR, MIROC-ESM-CHEM, MPI-

ESM-LR, MPI-ESM-MR, and MRI-ESM1] underestimate

tveg, and 5 ESMs [CCSM4, CESM1(BGC), CESM1

(CAM5), CESM1(WACCM), and NorESM1-ME] have a

value comparable to observed (Figs. 1a,c). Among the 14

models, the shortest global tveg is simulated by MPI-ESM-

MR (4yr), and BNU-ESM predicted the longest tveg (19yr),

with a factor of 4.8 across the models. As shown in Figs. 1a

and 1c, the large differences of tveg across ESMs are corre-

lated with precipitation (r5 0.6, p 5 0.0) but not with tem-

perature differences (r5 0.1, p5 0.8), implying that the bias

of modeled precipitation rather than temperature may ex-

plain some of the differences in tveg at the global scale.

Global tsoil based on the WISE soil dataset is 26yr

(Fig. 1). The 14 CMIP5 ESMs estimated tsoil ranging from

11yr [CESM1(WACCM)] to 40yr (MIROC-ESM-CHEM),

with a median value of 16yr, thus grossly underestimating

tsoil (even though 3 models—MIROC-ESM-CHEM, MPI-

ESM-LR, and MPI-ESM-MR—overestimate tsoil). The

model-estimated global tsoil is weakly positively correlated

with temperature (r5 0.0, p5 0.9) andnegatively correlated

with precipitation (r 5 20.1, p 5 0.7) across the models

(Figs. 1b,d), indicating that the differences of tsoil between

models primarily originate from structural differences in

terrestrial carbon cycle models rather than from errors in

climate models.

For different biomes (see Fig. S1 in the supplemental

material), we observed that most models largely under-

estimated tveg and tsoil in tundra (modeled median of 7yr

vs observed 12yr for tveg and 40 vs 118yr for tsoil; Fig. 2a)

and in desert and shrubland (modeled median of 4yr vs

observed 14yr for tveg and 18 vs 54yr for tsoil; Fig. 2e). In

other biomes,model-based carbon turnover times showed

large variation, but the median of the models provides

similar values to observations for tropical forest (12 vs

14yr for tveg and 9 vs 11yr for tsoil; Fig. 2c) and temperate

forest (10 vs 9yr for tveg and 17 vs 18yr for tsoil; Fig. 2d).

b. Spatial distribution of tveg and tsoil

The carbon turnover times derived from observa-

tional data show spatial gradients (Figs. 3a and 4a).

Longer tveg (.20 yr) prevail in boreal forests and arid

FIG. 1. The magnitude of global MAT and MAP with tveg and tsoil estimated by 14 CMIP5

ESMs and observational data, (a) MAT and tveg; (b) MAT and tsoil; (c) MAP and tveg; and

(d) MAP and tsoil. Note that r is the Pearson correlation coefficient between MAT or MAP

and tveg or tsoil for all models; p is the corresponding significance.
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and semiarid regions (western United States, western

China, the sub-Saharan region, and central Australia),

while temperate cropland-dominated regions (e.g.,

central North America, eastern Europe, and eastern

China) have short tveg (,4 yr). The tveg of tropical for-

ests is longer than 12 yr. Similar spatial patterns of tveg
are reproduced by most ESMs (except BNU-ESM and

MRI-ESM1; Fig. S2 in the supplemental material), al-

though there are large differences in the spatial gradi-

ents of tveg (Fig. 3). In fact, tveg is underestimated over

more than half the land area (Dtveg,23 yr, whereDtveg
is the difference between observation-based and

model-based tveg) for 13 out of 14 models (excluding

BNU-ESM). The two models with the largest areas of

underestimated tveg are MPI-ESM-LR and MPI-ESM-

MR. BNU-ESM has the largest area of mismatch with

the observations. It is noticeable that most models un-

derestimate biomass turnover times in arid and semiarid

regions as well as in northeastern Siberia, but over-

estimate tveg in eastern North America, southern

Europe, and eastern China (Fig. 3). Across tropical

forested regions, 5 of 14 models [CCSM4, CESM1(BGC),

CESM1(CAM5), CESM1(WACCM), andNorESM1-ME]

largely overestimate tveg (Dtveg . 5 yr). Model-based

tveg is weakly correlated with temperature (5.3% land

area, p , 0.05; Fig. S4) and with precipitation (4.3%

land area, p , 0.05; Fig. S4) across local climate gra-

dients, confirming that differences of tveg mainly

generate from the coupled land models rather than

climate models.

In contrast with tveg (Fig. 3a), tropical forested area

show lowest tsoil (,20 yr). As shown in Fig. 4a, the

largest tsoil are mainly in the temperate arid and semi-

arid regions as well as high-latitude tundra regions,

where tsoil . 80 yr. Note that tsoil in most ESMs gener-

ally show similar spatial patterns, with the shortest tsoil
in tropical forest regions and longest tsoil in the Arctic

tundra region (Fig. S3 in the supplemental material).

Compared with tsoil derived from observation, 9 out of

14 models [BCC_CSM1.1(m), BNU-ESM, CCSM4,

CESM1(BGC), CESM1(CAM5), CESM1(WACCM),

IPSL-CM5A-LR, IPSL-CM5B-LR, andNorESM1-ME]

systematically underestimate tsoil (Dtsoil ,25 yr, where

Dtsoil is the difference between observation-based and

model-based tsoil), with CCSM4 showing the largest

underestimated area. On the contrary, MIROC-ESM-

CHEM (Fig. 4k), MPI-ESM-LR (Fig. 4l), and MPI-

ESM-MR (Fig. 4m) overestimate tsoil (Dtsoil . 5 yr) in

about half of the land area. All models largely un-

derestimate tsoil (Dtsoil , 250 yr) in arid and semiarid

regions across southwestern North America, western

China, the sub-Saharan region, and Australia (Figs. 4b–

o). In northern high-latitude regions with permafrost,

shorter tsoil than observed (Dtsoil ,210 yr) is predicted

by most models except MIROC-ESM-CHEM, which

significantly overestimates tsoil (Dtsoil . 50 yr) (Fig. 4k).

FIG. 2. The magnitude of tveg vs tsoil of six biomes estimated by 14 CMIP5 ESMs and observational data, for (a) tundra, (b) boreal forest,

(c) tropical rain forest, (d) temperate forest, (e) desert and shrubland, and (f) grassland and savanna.
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For spatial correlations between model-based tsoil and

climate, there is only a small area showing significant

values at the p , 0.05 level for tsoil and temperature

(6.2% land area; Fig. S4) and for tsoil and precipitation

(5.3% land area; Fig. S4).

As shown in Fig. 5a, model-based tsoil show higher

spatial correlation with observation than tveg (correla-

tion coefficients with tsoil generally larger than 0.4 ex-

cept for BNU-ESM, and correlation coefficients smaller

than 0.3 for all models for tveg), implying that ESMs

have better performance in the simulation of spatial

patterns of tsoil than tveg. Overall, among the 14 models,

MIROC-ESM-CHEM shows the highest spatial corre-

lation of tsoil with the observation (r 5 0.7), while

NorESM1-ME has the highest spatial correlation of tveg
with the observation (r 5 0.3). In terms of root-mean-

square error (RMSE) between the observation and

simulations across the globe (Fig. 5b), we found that

NorESM1-ME and MPI-ESM-LR show the lowest

RMSE for tveg (8 yr) and tsoil (38 yr), respectively. The

highest RMSE appears in BNU-ESM for both tveg
(36 yr) and tsoil (77 yr).

FIG. 3. (a) Global spatial patterns of tveg derived from observation data (obs) and (b)–(o) observation differences with model-based tveg.

Areas with no biomass (mean annual NDVI below 0.1) are masked with gray shading.
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c. Spatial sensitivities of carbon turnover times to
climate

To further study the spatial sensitivities of tveg and tsoil
to climate (temperature and precipitation), we performed

multiple linear regression analysis as explained in the

method section. As shown in Fig. 6a, the observation-

based sensitivities of tveg to temperature (denoted as g
tveg
T )

varied across different regions, with 95% confidence in-

terval values in the range from 24 to approximately

5yr 8C21. Significant negative g
tveg
T (,21yr 8C21) are

generally observed across boreal forests and tundra of

northern Siberia, indicating faster biomass carbon turn-

over with increasing temperature. In contrast, tropical

forests (except SouthAsia) and drylands inAustralia show

significant positive g
tveg
T (.1yr 8C21). The sign of g

tveg
T

estimated by most ESMs is opposite to observations in the

Amazon forest and in the tundra region of northern Si-

beria. Althoughmost ESMs (except BNU-ESM) correctly

capture the sign of g
tveg
T in other regions, the magnitude of

model-based g
tveg
T is also lower than that of observation

(Figs. 6a,c and Fig. S5 in the supplemental material).

Observation-based precipitation sensitivities of tveg
(denoted as d

tveg
P ) also show large spatial heterogeneity

FIG. 4. As in Fig. 3, but for tsoil.
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(Fig. 6b). Across boreal and Arctic regions, observation-

based sensitivities to precipitation are positive d
tveg
P [.5yr

(100mm)21]. This longer tveg with increasing precipi-

tation is correctly represented by several ESMs including

BCC_CSM1.1(m), CanESM2, CCSM4, CESM1(BGC),

CESM1(CAM5), CESM1(WACCM), and MIROC-ESM-

CHEM (Fig. S6). In contrast, relative large negative

values d
tveg
P [,25 yr (100mm)21] are found in arid and

semiarid regions (central Asia, the sub-Saharan region,

and northern Australia) where 13 of 14 models [except

BCC_CSM1.1(m), which overestimates d
tveg
P in Australia]

show opposite sensitivities of tveg to precipitation com-

pared to observation-based values (Figs. 6b,d and Fig. S6

in the supplemental material).

Figure 7 shows the spatial sensitivities of observation-

based tsoil to temperature (denoted as gtsoil
T ) and pre-

cipitation (denoted as dtsoilP ). Similar to the spatial

patterns of observed g
tveg
T (Fig. 6a), tsoil generally de-

creases with increasing temperature across spatial cli-

mate gradients (with values ,25 yr 8C21) in boreal and

Arctic regions, but the sensitivities to temperature are

positive in tropical forests (except South Asia) and

drylands, such as in Australia (.5 yr 8C21) (Fig. 7a). As

shown in Fig. 7c and Fig. S7 in the supplemental mate-

rial, most ESMs perform better in simulating gtsoil
T over

boreal and arctic regions than over tropical regions. For

example, 12 of 14 models (except BNU-ESM and MRI-

ESM1) also show negative values of gtsoil
T across boreal

and Arctic regions, while only one model (IPSL-CM5B-

LR) captured parts of the observation-based dramatic

positive gtsoil
T in tropical regions.

In terms of dtsoilP , a relatively weak sensitivity is ob-

served in tropical regions (Fig. 7b), consistent with most

ESMs (Fig. 7d and Fig. S8 in the supplemental material).

In temperate arid and semiarid regions, a negative dtsoilP

is observedwith the highest sensitivity lower than210 yr

(100mm)21. Although most of ESMs also predict neg-

ative dtsoilP in these regions, they underestimate the

magnitude of the negative sensitivity (Figs. 7d and S8).

A heterogeneous distribution of dtsoilP is observed in

boreal and Arctic regions (Fig. 7b), and there is a poor

agreement between observation and ESMs.

Furthermore, we have conducted spatial sensitivity of

carbon turnover time to climate in a 78 3 78 moving

window (Figs. S9 and S10 in the supplemental material)

and in a 98 3 98 moving window (Figs. S11 and S12). In

results, most of the spatial patterns are similar based on

the threemovingwindowmethods, which emphasizes the

robustness of the spatial sensitivities of carbon turnover

time to climate. Here, we chose the results based on the

58 3 58 moving window, similar to Carvalhais et al.

(2014), because larger moving windows, containing more

nonuniform biome types and environmental factors,

would induce greater uncertainties, especially for the

transitional zones of different vegetation types.

4. Discussion

a. Observed global carbon turnover time

Compared to the previous study (tveg 5 4 yr based on

GPP) of Carvalhais et al. (2014), a much longer global

tveg (11 yr) is obtained in this study. This difference is

FIG. 5. Matrices of (a) r and (b) RMSE for carbon turnover times

between each CMIP5 ESM and observation and between CMIP5

ESMs at the grid cells. Lower-triangular matrix represents r or

RMSE for tveg, and upper-triangular matrix represents r or RMSE

for tsoil.
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mainly due to the different definition of tveg as we used

NPP instead of GPP. NPP is arguably more relevant for

the fate of carbon being removed from the atmosphere

on time scales longer than a year and stored into ter-

restrial pools. In contrast to tveg, our estimation of the

global value of tsoil (26 yr) is much smaller than derived

by Carvalhais et al. (2014) (46 yr). This is because

Carvalhais et al. (2014) estimated tsoil using total soil

stocks for full depth, while we used soil stocks for 1-m

depth. As mentioned in section 2, the main purpose of

this study is to evaluate ESMs estimated carbon turn-

over time, and the CMIP5 ESMs did not consider pro-

cesses to burying carbon below the active layer (Tian

et al. 2015; Todd-Brown et al. 2013). Our estimates are

in consistent with the global tveg of 10 yr in Jiang et al.

(2015) and with the global tsoil of 24 yr in Todd-Brown

et al. (2013).

b. Comparison of observed and ESMs estimated
carbon turnover time

Compared with observations, ESMs generally un-

derestimate tveg, particularly in the high northern lati-

tudes and arid and semiarid regions (Fig. 3), where

models also do not capture the observation-based spa-

tial climate sensitivity of tveg (Fig. 6). The spatial g
tveg
T

estimated from observations indicate a decrease of tveg
in response to higher temperature in the northern high

latitudes, while models produce a sensitivity of opposite

sign, particularly in northern Siberia. It has been sug-

gested that drought driven by increases in temperature

enhance fire risks and insect attacks (Raffa et al. 2008;

Williams et al. 2010, 2013), which increase mortality rate

and accelerate biomass carbon turnover (Allen et al.

2010; Van Mantgem and Stephenson 2007). However,

climate-induced mortality and biotic disturbances are

largely ignored in current ecosystem models (Anderegg

et al. 2015; Thurner et al. 2016, 2017). In addition to

drought-induced increase in tree mortality, most

ESMs do not consider carbon–nitrogen interactions,

which may also indirectly explain the opposite tem-

perature sensitivity of tveg between observation and

ESMs in boreal regions (Friedlingstein et al. 2014;

Piao et al. 2013). Northern ecosystems are generally

limited by low temperature and nitrogen (Janssens

et al. 2010; Melillo et al. 2002; Nemani et al. 2003).

Higher temperature enhance nitrogen mineralization,

and thus increase in soil nitrogen availability for

vegetation carbon assimilation and biomass growth

(Melillo et al. 2002). The enhanced nitrogen avail-

ability also leads to more NPP allocated in parts of

aboveground biomass (e.g., foliar and wood) (Greaver

et al. 2016; Janssens et al. 2010), which may eventually

result in faster plant metabolism (Niu et al. 2010), also

accompanied by vulnerability to attack (e.g., wind,

FIG. 6. Spatial sensitivity of g
tveg
T and d

tveg
P in a 58 3 58 moving window using a multiple linear regression approach, sensitivity of

observation-based (a) g
tveg
T and (b) d

tveg
P and median sensitivity of model-based (c) g

tveg
T and (d) d

tveg
P . For example, positive g

tveg
T suggests

that warmer temperature is associated with longer tveg, and the value represents the change of tveg with a temperature gradient of 18C. In
(a) and (b), stippling indicates locations where observation-based sensitivity is significant (p , 0.05); in (c) and (d), stippling indicates

where fewer than one-quarter of the models are within the 5th–95th uncertainty range of the observed sensitivity. Areas with no biomass

(mean annual NDVI below 0.1) are masked with gray shading.
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insects, and pathogens) (Franklin et al. 1987; Stephenson

et al. 2011). All these causes may increase the forest

mortality rates, suggesting a negative apparent climatic

g
tveg
T . In contrast to boreal regions, growing season tem-

perature is close to a high temperature threshold of veg-

etation growth in tropical forests (Corlett 2011; Piao et al.

2013). Accordingly, regions with higher temperature gen-

erally have lower vegetation productivity (Doughty and

Goulden 2008; Tribuzy 2005). It has been also suggested

that tree mortality rates are positively correlated with

forest NPP throughmanymechanisms including trade-offs

between growth and defense and between reproduction

and persistence (Stephenson et al. 2011). These ecological

processes may induce positive g
tveg
T in tropical forests.

Similar to tveg, ESMs generally underestimate the tsoil.

As shown in Fig. 4, 13 out of 14 models predicted shorter

tsoil in the northern high latitudes with permafrost, com-

pared with observation. This may be related to the fact

that permafrost processes were not taken into account in

the CMIP5 ESMs (Burke et al. 2013; Schuur et al. 2015).

Permafrost soil contains large amounts of organic carbon,

which would be vulnerable with higher decomposition

rates under rapid global warming (Koven et al. 2011).

Combined reductions in the thawed season length and

thawed soil depth during the warm season in these cold

regions compared to warm climates could results in

higher gtsoil
T (Koven et al. 2017). However, most models

used a fixed quotient of change in respiration caused by

change in temperature by 108C (Q10) and a single layer

with soil decomposition closely related to near-surface

temperature, which fail to capture the soil freeze–thaw

processes affecting decomposition rates and underestimate

the apparent tsoil (Koven et al. 2017; Wieder et al.

2018). In contrast to high latitudes, a positive value of

gtsoil
T is generally observed in arid and semiarid regions

including southwestern China, western Asia, western

North America, and Australia. This is because lower

soil moisture associated with temperature limits soil

organic carbon decomposition (Xin Wang et al. 2014).

Indeed, a negative value of dtsoilP was observed across

most of these dry regions (Fig. 7b). The ESMs sensi-

tivity is opposite to observed for gtsoil
T in arid and

semiarid regions. It is not clear, however, if this is in-

duced by an inaccurate representation of soil moisture

by models. In addition, most patterns of relationships

between climate and tsoil are similar to that between

climate and teco in Carvalhais et al. (2014), which also

implies that tsoil plays a dominant role in the terrestrial

carbon turnover processes.

In Carvalhais et al. (2014), negative correlations were

found between forest cover and teco, suggesting that teco
does not increase with in higher forest density. Here, we

performed a similar analysis for tveg and tsoil in boreal

forest, temperate forest, and tropical rain forest. Five

FIG. 7. Spatial sensitivity of gtsoil
T and dtsoilP in a 58 3 58 moving window using a multiple linear regression approach, sensitivity of

observation-based (a) gtsoil
T and (b) dtsoilP and median sensitivity of model-based (c) gtsoil

T and (d) dtsoilP . For example, positive dtsoilP suggests

that increasing precipitation is associated with longer tsoil, and the value represents the change of tsoil with a precipitation gradient of

100mm. In (a) and (b), stippling indicates locations where observation-based sensitivity is significant (p , 0.05); in (c) and (d), stippling

indicates where fewer than one-quarter of the models are within the 5th–95th uncertainty range of the observed sensitivity. Areas with no

biomass (mean annual NDVI below 0.1) and data are masked with gray shading.
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CMIP5 models were used because they output a forest

cover variable. In the results (Fig. S13 in the supple-

mental material), we found that tveg increased with

higher forest cover in the three biomes across all the five

models; however, there were no consistent relationships

between forest cover and tsoil for most models. For

observation-based results, tveg showed an increasing

trend along with increased forest cover in temperate

forest; tveg in boreal forest suggested an increasing trend

at a threshold of 35% forest cover and then became flat

beyond the threshold; and tveg did not show obvious

changes with increasing forest cover in tropical rain

forest. Observation-based tsoil decreases with increasing

forest cover in boreal forests, while there were no sig-

nificant relationships between forest cover and tsoil in

temperate and tropical rain forest. The differences be-

tween the patterns based on observation and model

mainly emerged for the relationships between forest

cover and tveg. This may be because current land surface

models largely simplified the real terrestrial ecosystems,

while the observation-based apparent tveg reflects pro-

cesses including resource competition (Stephenson et al.

2011), fire (Stephenson et al. 2011; Thonicke et al. 2001),

insects (Anderegg et al. 2015), and other natural and

anthropogenic disturbances (Erb et al. 2016; Fahey et al.

2005) in response to forest density. These underlying

mechanisms are difficult to quantify in the present day,

and require future research.

c. Uncertainties

It should be noted that there still exist large un-

certainties in the estimation of global biomass and soil

carbon turnover time. First, biomass carbon stock used

in this study from Liu et al. (2015) was indirectly based

on aboveground biomass (AGB) and a biome specific

conversion factor from AGB to total biomass. It has

been suggested that the ratios of above to belowground

biomass varied with environmental conditions (Mokany

et al. 2006). In addition, AGB derived with satellite-

based passive microwave data in Liu et al. (2015) may

saturate at a high biomass density (e.g., tropical rain

forests) although it remains sensitive to biomass vari-

ations in these regions. These may contribute potential

uncertainties of tveg. Here, we compared the tveg using

TBC from Liu et al. (2015) and the tveg derived from

the benchmark map of forest carbon stocks in tropical

regions from Saatchi et al. (2011). The results sug-

gested similar histogram patterns between the two

(Fig. S14 in the supplemental material), implying that

our estimates of tveg in the tropical rain forest are

reliable.

Second, although efforts have been made to make

global inventories of soil carbon, bias due to the

interpolation of point-scale observations remains in the

WISE dataset. Most current soil carbon storage data are

mainly from temperate and tropical ecosystems, and

more inventory data in regions such as Arctic regions

are needed. We compared our global estimate of tsoil
with that based on soil carbon (using HWSD) and NPP

from Bloom et al. (2016). The distribution of tsoil
(Fig. S15 in the supplemental material) was found to be

similar between the two estimates.

Third, satellite-based NPP data were estimated with a

radiation-based approach, through deducting the auto-

trophic respiration from the GPP (Zhao and Running

2010). Although this NPP observation-based product

has been extensively used, including for investigating

carbon turnover times (Koven et al. 2017; Thurner et al.

2016) and for benchmarking ecosystem models (Kolby

Smith et al. 2016; Todd-Brown et al. 2013), it is subject to

uncertainties. For example, satellite-basedNPP datasets

have large uncertainties in tropical regions (Cleveland

et al. 2015), such as from saturation of the fraction of

photosynthetically active radiation (FPAR) in high

vegetation density areas, cloud and aerosol contamina-

tion, scarce meteorological data in tropical regions, and

improper parameterization of the maximum light-use

efficiency (LUEmax).

Fourth, in this study, we calculated tveg and tsoil based

on the steady-state assumption (input equals output), as

in previous studies. This seems as an imperative choice

because there is no direct measurement on the global

distribution of litter fall and heterotrophic respiration.

Uncertainties from the steady-state assumption are

difficult to quantify from the observations in the present

day, such an analysis can be conducted based on mod-

eling output by estimating carbon turnover times from

the outflux tout (Carvalhais et al. 2014). Here, outflux

from biomass was calculated as in Friend et al. (2014),

and outflux from soil is heterotrophic respiration. In the

results, the comparisons between NPP and outflux

(Figs. S16 and S17 in the supplemental material) and

between carbon turnover time and tout (Figs. S18 and

S19) show a strong similarity, which emphasizes the

robustness of turnover time being defined from input or

output under the steady-state assumption.

Fifth, when we evaluate the model-based tveg and tsoil
at grid scale, potential discrepancies of vegetation type

and forest cover between ESMs and observation in-

crease uncertainties. These differences limit the accu-

racy of the evaluation of current models for representing

the spatial carbon turnover times. Because most of the

CMIP5 ESMs did not report the simulated vegetation

type and forest cover maps, we are still unable to eval-

uate the discrepancies in current time. Future model

intercomparison projects are recommended to provide
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these variables. Reducing these apparent influences will

help us better understand and improve the internal pa-

rameterization and structure related to carbon turnover

processes in current ESMs.

d. Conclusions

In summary, our results show that current ESMs un-

derestimate biomass and soil carbon turnover times.

This result implies that current ESMs may overestimate

the carbon sequestration potential of biomass and soil in

response to elevated atmospheric CO2 concentration

(He et al. 2016), which has been generally predicted to

be the main driver of the enhancement of vegetation

productivity (Zhu et al. 2016) and the terrestrial eco-

system carbon sink by ESMs (Cramer et al. 2001; Sitch

et al. 2008). To reduce the large bias in the relationships

between climate factors and biomass or soil carbon

turnover times compared to observation, ESM de-

velopers need to calibrate the key processes affecting

carbon turnover, especially in the high northern latitudes

and arid and semiarid regions, so that ESMs are more

closely comparable to the real world. Current limitations

include the lack of representation of biotic disturbances,

carbon–nutrient interactions, and permafrost–carbon cli-

mate responses. In addition, more accurate descriptions of

hydrological processes and water–carbon interactions re-

main as a high priority for the carbon cycle modeling

community.
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