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The coloration mechanism of tungsten trioxide (WO3) 
upon insertion of alkali ions is still under debate after 
several decades of research. This Letter provides new 
insights into the reversible insertion and coloration 
mechanisms of Na+ ions in WO3 thin films sputter-
deposited on ITO/glass substrates. A unique model based 
on a constrained spline approach was developed and 
applied to draw out ε1+iε2 from spectroscopic 
ellipsometry data from 0.6 to 4.8 eV whatever the state of 
the electrochromic active layer, i.e. as-deposited, colored 
or bleached. It is shown that electrochemically 
intercalated sodium-tungsten trioxide, NaxWO3 (x=0.1, 
0.2, 0.35), exhibits an absorption band centered at ca. 
1.14 eV in 2 governing the coloration mechanism. © 
2018 Optical Society of America 

OCIS codes: (160.0160)   Materials; (310.6860)  Thin films, optical 
properties; (120.2130)   Ellipsometry and polarimetry; (330.1690)   Color.  
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Electrochromic (EC) devices, whose optical properties change 
under the effect of an electrical excitation, see an increasing 
interest because they allow a control of the optical properties in 
the visible and near infrared ranges for applications from coatings 
for building and airplanes smart windows to printable color-
changing paper to anti-dazzling rear-view mirrors. Promoted by 
cathodic polarization, the insertion of small cations from an 
electrolyte and simultaneous injection of electrons from the back 
contact in tungsten oxide (WO3) are used in the fabrication of EC 
displays since the 1980s [1–3]. Schematically the corresponding 
electrochemical process can be expressed as follows: 

                                                       (1) 
where M+ is usually a proton or alkali ion (Li+, Na+) and 0≤x≤1. All-
ceramic devices based on proton or lithium conduction have 
received considerable interest [4–8]. Whereas the reversible 
insertion of Na+ into WO3 has been scarcely studied, the recent 
development of highly conductive Na+ ion conductors in thin film 
form as well as the possibility to use WO3 in sodium-ion batteries 
[9] is calling for a greater attention to this system. A maximum 
Na/W ratio around 0.35 can be obtained using electrochemical 
intercalation and fulfills the requirements for such an application, 
i.e. a film with sufficient electronic conductivity, good chemical 
stability, and optical properties allowing large coloration contrast 
[10–12]. 
         A pending issue about this system and, more generally, 
MxWO3, is the exact origin of the blue coloration mechanism, which 
is of large interest, e.g. for prediction of their life-cycle 
performance. As reviewed by Granqvist [13], two limiting cases 
can be considered to illustrate the coloration mechanism: for 
crystalline films, electron delocalization overpowers [14] whereas 
for more disordered films, localized electrons dominate and 
polaronic or closely related models [1,15–22] are used. The latter 
imply transitions between Wm+ and Wn+ sites with m and n being 
the IV, V or VI oxidation states. Additionally, for nanoparticles 
(NPs), localized surface plasmon resonance (LSPR) of free 
electrons was advanced [23–25], sometimes combined with 
polaron absorption [23,26].  
         In this Letter we report on the coloration mechanism of 
NaxWO3 thin films by means of the analysis of their dielectric 
functions investigated by spectroscopic ellipsometry (SE). SE is a 
technique of predilection to study optical properties of materials, 
based on the change in polarization state between incident and 
reflected light on a sample [27].  
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         Sub-stoichiometric tungsten trioxide layers synthesized within 
this study possess mixed conducting properties and an amorphous 
structure allowing the intercalation of sodium cations. The 
intercalation level x was calculated by electrochemical 
investigations via coulometric integration and applying Faraday’s 
law while taking into account the geometric characteristics of the 
samples and based on the following assumptions: (i) only Na+ ions 
were reversibly intercalated (confirmed by SIMS analysis), (ii) an 
experimental mean WO3  density of 4.72 g/cm3 was used 
(corresponding to ~30% porosity, of columnar-like type [28]) in 
agreement with other work [29].  
         The direct current deposition was performed in a 40-liter 
chamber using a 2 inch-diameter, 3 mm-thick tungsten target 
(99.95 % purity) mounted on a magnetron system and whose 
surface faces the substrate holder surface. The magnetron is placed 
off-axis with respect to the axis of the substrate-holder and the 
latter was put in rotation in order to minimize thickness and 
composition inhomogeneities. More details about the geometry of 
the chamber can be found in Ref. [30]. Sputtering was performed 
in an Ar/O2 reactive gas mixture. The gas flow rates, target current, 
target axis-to-substrate and target-to-substrate holder distances, 
and working pressure were 85 standard cubic centimeters per 
minute (sccm) Ar, 1.6 sccm O2, 0.2 A, 100 mm, 75 mm, and 4.5 Pa, 
respectively. A preliminary study showed such a pressure enables 
to produce an open columnar morphology of the as-deposited 
WO3 film maximizing the coloration contrast [11]. The working 
pressure was adjusted by setting the turbomolecular pump speed 
around 18500 rpm. The self-established voltage discharge was 
close to 415 V, corresponding to a power of 83 W dissipated by the 
target. Substrates consist of ca. 2.5 x 2.5 cm² samples of ITO-coated 
glass. The selected O2 flow rate allows a good transparency of the 
as-deposited state (labeled as “WO3”). Sodium intercalation and 
deintercalation were performed in a 0.1 M Na2SO4 electrolyte 
buffered with a ~2.7 pH unit solution (0.1 M C8H5KO4/0.1 M HCl). 
Chronoamperometric methods using a three electrode cell 
configuration (WO3 acting as working electrode, Ag/AgCl sat. KCl 
reference electrode, and Pt counter electrode) yielded colored 
(“Na0.35WO3”, corresponding to 92 mC/cm2 of charge) or bleached 
(“Na0WO3”) state, respectively for 180 s at ‒0.6 V or +0.2 V. 
Intermediate levels were also obtained (“Na0.1WO3” and 
“Na0.2WO3”) corresponding to ca. 13 and ca. 43 mC/cm2 of charge, 
respectively. Measurements were preceded by three activation 
cycles in the same electrolyte. 
         NIR to NUV (0.60-4.81eV with a 0.01 eV resolution) 
ellipsometric experiments were performed in reflection mode 
(UVISEL, Horiba Jobin Yvon) on stacks consisting of glass/ITO 
layer/EC active layer.                                
parameters were measured in the spectral range of interest for 
incidence angles between 60° and 75° for three samples for each 
mentioned EC state [see Fig. 1, symbols]. All back faces of the glass 
substrates were roughened in order to eliminate incoherent 
reflection. The inversion of ellipsometric data was performed 
using a four– phase representative model of the sample: glass/ITO 
layer/ EC active layer/roughness layer/air. In this model the 
thickness of the roughness layer, the thickness of the active layer, 
and the dielectric function of the active layer were unknown, while 
the roughness layer was modeled by a mixture of 50% air and 
50% active material according to Bruggeman effective medium 
approximation (BEMA) [31]. The unknown parameters were 
determined by minimizing the mean-square difference between 

generated and experimental Is and Ic data. The particular 
representation of the unknown dielectric function by a constrained 
spline approach was adopted. This method is described and 
illustrated in detail elsewhere [32,33]. The dedicated ellipsometric 
data inversion procedure neither requires precise a priori 
knowledge of the considered stacks nor requires the use of 
dispersion relations. Briefly, in this approach the spectral 
imaginary part of the dielectric function is represented by a 
collection of third order polynomials (elemental splines) over 
reduced spectral ranges linked by connection points while the real 
part is represented by the superimposition of the Kramers-Kronig 
derived contribution and an additional Sellmeier term to account 
for higher energy transitions. The connection between the 
elemental splines allows obtaining a continuous dielectric function 
over the whole considered spectrum, and is performed using 
particular constraints for the first derivatives at the connection 
points in order to obtain realistic values of slopes and avoid 
unphysical parasitic oscillations. In the fitting process the abscissa 
of the connection points are fixed while the ordinates representing 
the dielectric function values at the considered connection points 
are used as fitting parameters. In the particular present problem of 
the active layer, a decomposition of the dielectric function into 
eight parts (nine connection points) over the whole considered 
spectrum was used. The optical constants of both the glass 
substrate and the ITO layer were predetermined individually by 
ellipsometry. 
 

 

Fig. 1. Experimental (symbols) and fitted (lines) ellipsometric curves 
(Is, Ic) at variable angle of incidence for different states of the active 
layer: (a-b) WO3, (c-d) Na0.35WO3, and (e-f) Na0WO3.  

 
         Figures 1(a-f) show the typical experimental and fitted 
ellipsometric spectra of the stack layers for different states of the 
active layer, indicating the overall good match between 
experimental and fitted data. Additionally, morphological 
parameters in Table 1 reveal two points. First, the level of top 
roughness of a few nanometers is coherent with the RMS 
roughness obtained by AFM, and with reported values [34]. 
Secondly, the film thickness evolves upon reversible intercalation 



from 396 nm (WO3) to 413 nm (Na0.35WO3) and back to 398 nm 
(Na0WO3), corresponding to a volume expansion of ca. 4% of the 
host oxide due to ion intercalation [35]. The thickness was 
confirmed by cross-sectional SEM images (not shown here). As an 
extra validation of the optical model, Figure 2 presents the 
generated transmission spectra of the stack which agree 
qualitatively with the experimental ones, yielding a transmission 
contrast T of ca. 60% at 550 nm. By analyzing another stack with 
thicker EC thickness (ca. 900 nm), a T of ca. 77% is also 
accordingly predicted. 

Table 1. Fitted morphological parameters and 
experimental roughness obtained by atomic force 
microscopy measurements for materials used in this 
study. 

Layer state Roughness RMS by AFM Thickness 
WO3 6.0 nm 4.7 nm 396 nm 
Na0.35WO3 10.3 nm 6.5 nm 413 nm 
Na0WO3 6.6 nm 5.7 nm 398 nm 

 

 

Fig. 2. Generated and experimental transmission curves for a ca. 400 
nm EC stack (both bleach Na0WO3 and bluish Na0.35WO3 states).  

 
          The corresponding dielectric functions are displayed in Fig. 
3(a). The optical functions were also tabulated in terms of n+ik 
(see Data Files 1-3) and are found to be in accordance with the 
reported evolution in hydrogen-tungsten bronze [36]. On the 
higher energy side, the absorption onset is related to the 
fundamental absorption gap of the material (between 3.0 and 3.4 
eV [37,38]). The low energy of 2 spectra evidences an absorption 
band located at ca. 1.14 eV whose amplitude increased upon x 
varying from 0.1 to x=0.35, that is notably different from WO3 and 
Na0WO3 spectra that are nearly superimposed and flat in this 
region. We note that the slightly non-zero absorption at ca. 1.1 eV 
is probably related to the sub-stoichiometry of the films [39]. As 
expected for amorphous films, no metallic behavior was 
evidenced. However, such a feature in a bulk material can be 
hindered in the resulting effective  in the case of LSPR. Our 
determined  are effective ones, and while, in principle, no NPs 
clusters should be considered in principle, interfaces due to the 
film’s open morphology could generate LSPR and explain this NIR-
visible feature. However, we were able to reject this hypothesis 
through the use of a BEMA using the DFT-calculated  values of 
NaxWO3 [25] and the void value.  
          The pronounced absorption at ca. 1.14 eV or, as depicted in 
Fig. 3(b), ca. 1.3 eV when termed in absorption coefficients 
difference (x)-(0), is now considered in the frame of a polaronic  

 

Fig. 3. (a) Representative real and imaginary parts of the dielectric 
function of the different states of the EC material used in this study. 
(b-c) Corresponding modeled absorption spectra (x)‒(0) and 
analysis according to the generalized site-saturation model for optical 
polaron transitio0ns (Wm+=Wn+ transitions are denoted by  “m-n”).  

          
hypothesis. Indeed, such characteristic shape agrees well with 
several works [1,22,36,40–42] in which this asymmetric feature is 
deconvoluted into one or more peak functions associated with 
small polaron transitions. Another reported option, which does not 
contravene with the former theory due to the large polaron 
coupling constant in WO3, is related to large polaron formalism as 
the similar ~0.75 eV peak observed for LixWO3 with very low 
intercalation levels [43]. Figure 3(c) also reports older (x) data 
[44] obtained for sputtered NaxWO3 thin films showing a global 
coherent tendency. Among the aforementioned approaches we 
used the superimposition of three Gaussians as performed in [1] 
on lithium-tungsten bronze (generalized site-saturation model) to 
further deconvolute the (x)-(0) spectra, as shown in Fig.3(b). By 
comparison with the reported peaks strengths in Fig.3(c) to our 
values, we find contributions centered around 1.3 eV, 2.43 eV and 
3.7 eV assignable to W5+⬄W6+, W4+⬄W6+ and W4+⬄W5+ polaron 
transitions, respectively. Transition probabilities and magnitude of 
the constants used are given in Fig.3(c). The tendency is quite 
similar to that reported for Li+ [1] or H+ [36] intercalations. 



However for H0.35WO3 [36] the probabilities are of 87, 9 and 4% for 
(5-6), (4-6) and (4-5) transitions, respectively. In our case of 
Na0.35WO3 a similar level is found for (5-6) and (4-6) transitions 
(46 and 48%) plus a ~6% relative amplitude for the (4-5) one. 
Figure 3(c) shows also a decrease in strength with x for the lowest 
amplitude (4-5) transition, consistent with other reports [1,40]. 
Note that Zhang et al. [29,45] proposed this transition is a 
signature for the sub-stoichiometry in as-deposited trioxide. We 
have tried to analyze our (0) spectra on this basis and according 
the Bryksin model [42] but the signal was too weak to be fitted 
with good confidence. So this point remains unclear.         
          In summary, the complex dielectric functions for different 
states of the studied EC material i.e. sputter-deposited tungsten 
trioxide, electrochemically intercalated Na-tungsten bronze 
NaxWO3 (x=0.1, 0.2, 0.35), and reversibly bleached oxide free of 
guest Na+ ions, have been reported for the first time, supporting 
fundamental research on the coloration process via advanced 
controlling tool. The dedicated variable-angle spectroscopic 
ellipsometry with the constrained spline approach of data 
provided the dielectric functions of the materials. The results 
indicate a profound change in optical properties of NaxWO3 (x=0, 
0.35). Of peculiar interest 2 features revealed a specific NIR peak 
at ca. 1.14 eV whatever the value of x, responsible for the colored 
state, supporting optical polaron transitions in an extended range 
i.e. at 1.3 eV, 2.43 eV and 3.6 eV when termed in absorption, 
corresponding to different amplitudes of W5+/W6+, W4+/W6+ and 
W4+/W5+ transitions, respectively. Free electron effects, especially 
plasmonic resonance, seem to be absent in these amorphous thin 
films. The resulting optical absorption data is compared with those 
reported for other tungsten bronzes MxWO3 (M=H, Li, and Na). 
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