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Margin-aware Adversarial Domain Adaptation with Optimal Transport

Sofien Dhouib 1 Ievgen Redko 2 Carole Lartizien 1

Abstract
In this paper, we propose a new theoretical analy-
sis of unsupervised domain adaptation (DA) that
relates notions of large margin separation, ad-
versarial learning and optimal transport. This
analysis generalizes previous work on the sub-
ject by providing a bound on the target margin
violation rate, thus reflecting a better control of
the quality of separation between classes in the
target domain than bounding the misclassification
rate. The bound also highlights the benefit of a
large margin separation on the source domain for
adaptation and introduces an optimal transport
(OT) based distance between domains that has
the virtue of being task-dependent, contrary to
other approaches. From the obtained theoretical
results, we derive a novel algorithmic solution for
domain adaptation that introduces a novel shallow
OT-based adversarial approach and outperforms
other OT-based DA baselines on several simulated
and real-world classification tasks.

1. Introduction
Learning to classify elements of a data set is one of the
most widespread tasks in machine learning. Classically, it
is done after assuming that data used for testing and those
used for training a classification model stem from the same
probability distribution (Sen et al., 2020). However, such
an assumption is usually violated in real-world applications:
product reviews classification where the difference of prod-
uct types change the words distributions (Blitzer et al., 2007)
or image classification where the variation of acquisition
methods and conditions between training and test data in-
troduce non-negligible distribution shifts (Hutchison et al.,
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2010), to name a few. While manual labeling may be con-
sidered as a tractable solution, such an approach is time
consuming, can necessitate an often costly intervention of
experts for labeling (e.g in medical imaging applications)
and totally discards the information available on a different,
yet related, labeled training set. Such a setting has moti-
vated the emergence of domain adaptation (Pan & Yang,
2010; Weiss et al., 2016), a branch of statistical learning
that takes the distribution shift into account, and in which
the test data is assumed to be partially or totally unlabeled.
In the literature, the training set and test set distributions are
respectively termed source and target domains. In this paper,
we focus on the challenging setting of unsupervised domain
adaptation (Margolis, 2011), were no labels are available
for the target data.

Since the inception of the domain adaptation field, several
theoretical contributions were proposed to analyze this prob-
lem in the statistical learning framework (Ben-David et al.,
2007b; Mansour et al., 2009; Cortes & Mohri, 2014; Ger-
main et al., 2016; Zhang et al., 2019). The general idea
behind any such analysis usually consists in bounding the
target domain error rate by a source error rate plus an es-
timable term reflecting a certain distance between domains,
called the alignment or divergence term, plus a non es-
timable term that is assumed to be small for adaptation to
be possible. To this end, the seminal work of (Ben-David
et al., 2007b) considered the bounds for 0-1 loss in binary
classification setting by introducing a divergence term that
takes into account the complexity of the hypothesis space.
Their results were further generalized for any loss function
verifying the triangle inequality in (Mansour et al., 2009)
and to a case when the hypothesis space is a RKHS in
(Cortes & Mohri, 2014; Cortes et al., 2019). A somewhat
different result was recently proposed (Zhang et al., 2019)
where the authors provided generalization bounds for DA
in the case of multi-class classification with source domain
error defined by the margin violation rate. Finally, several
DA bounds where proposed in (Redko et al., 2016; Courty
et al., 2017; Shen et al., 2017) for the specific case when
the considered alignment term is given by the Wasserstein
distance (Santambrogio, 2016).

At the algorithmic level, there have been a plethora of algo-
rithms that deal with the unsupervised domain adaptation
problem, and they can be roughly divided to shallow (Kouw
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& Loog, 2019; Zhang, 2019) and deep (Wilson & Cook,
2019) methods. Most of shallow methods try to solve the
problem in a two-step fashion by first aligning the source
and target domains to make them indistinguishable, which
then allows to apply classical supervised algorithms on the
transformed data. Such an alignment is usually performed
via instance reweighing (Sugiyama et al., 2007) or feature
space transformations (Gong et al., 2012; Fernando et al.,
2014; Sun et al., 2016). A notable recent approach to per-
form alignment is the use of optimal transport (Courty et al.,
2015; 2017), that provides a well-funded way of finding a
mapping aligning the source and target domains that mini-
mizes the cost of transforming the source distribution into
the target one. Deep domain adaptation methods have also
known an impressive surge in their number, with the basic
idea being the exploitation of their feature extraction capac-
ity to learn representations that align the two domains, while
distinguishing between the different classes of the source
domain (Tzeng et al., 2014). One of the main reasons of
this surge is the adversarial training procedure (Goodfel-
low et al., 2014) for the first time used for domain adapta-
tion in (Ganin & Lempitsky, 2014), where the main idea is
built upon the theoretical contribution in (Ben-David et al.,
2007b).

In this paper, we provide a novel theoretical study of the
unsupervised domain adaptation problem that provides the
following contributions to the field:

1. We bound the margin violation rate in the target domain
by its counterpart from the source domain, a novel
symmetric alignment term and a non estimable term
that shows the benefit of large margin separation on
source domain for the success of adaptation. This
result includes the work of (Ben-David et al., 2007a)
as a special case, does not require the loss function
to satisfy the triangle inequality as in (Mansour et al.,
2009) and strengthens the result of (Zhang et al., 2019)
by replacing the misclassification target error with a
stricter target margin violation rate.

2. We upper bound our alignment term by a distance
defining the minimax variation of the classic Monge-
Kantorovitch problem (Santambrogio, 2016). This
latter is further shown to be upper-bounded by the
original Wasserstein distance considered in (Redko
et al., 2016; Courty et al., 2017; Shen et al., 2017) thus
leading to tighter bounds.

3. We derive a first OT-driven adversarial DA algorithm
that outputs a classifier minimizing the estimable part
of the obtained bounds. This classifier is shown to out-
perform other OT-based DA methods on both synthetic
and real-world data sets.

The rest of the paper is organized as follows. Section 2

introduces required preliminary knowledge and notations.
Section 3 is dedicated to our theoretical contributions pre-
senting a novel bound on the margin violation error on the
target domain, its thorough analysis and relation to other
existing bounds. Then, in Section 4, we use it to derive
an algorithm that is further specialized to linear classifiers,
resulting in a convex programming formulation. Finally, in
the last section, we evaluate our algorithm on a toy data set
and on a benchmark real-world problem.

2. Preliminary Knowledge
In this section, we present the problem setup of our study
with the notations used throughout the paper. We also
provide background knowledge on learning bounds in DA
to allow a further comparison to them in the rest of the
manuscript.

2.1. Problem setup and notations

We consider a binary classification setting, in which source
and target data are respectively drawn from S and T , the
joint distributions over the product space of instances and
labels X ×Y , where X ∈ Rd and Y = {−1, 1}. We denote
their corresponding marginal distributions as DS and DT
and use bold upper-case letters for matrices (e.g., D) and
bold lower-case letters for vectors (e.g. x). Although both
domains are assumed to be labeled, only the labels of the
source instances are observable during the learning stage.
This setting is often referred to as unsupervised domain
adaptation.

To proceed, let H and H′ denote two compact classes of
hypotheses acting on X and taking values in [−1, 1]. For
further developments, we define several quantities to assess
classifiers’ performances on different domains. Let lρ,β be
the loss function defined by

lρ,β(t) :=

{
1− (t−ρ)

β , if ρ ≤ t ≤ β + ρ

[t < ρ], otherwise

where 1 > ρ, β > 0, and [·] denotes the Iverson bracket
for indicator functions. From its definition, we note that
lρ,0(t) = [t < ρ] and that it verifies the following inequality
for all ρ, β > 0 and t ∈ R

lρ,0(t)=[t < ρ] < lρ,β(t) < lρ+β,0(t)=[t < ρ+ β] (1)

illustrated in Figure 1.

For any domain P with marginal feature distribution DP
and any hypotheses h, f , we define their disagreement asso-
ciated to the loss lρ,β as

ερ,βP (h, f) := E
x∼DP

[
lρ,β(f(x)h(x))

]
.
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Figure 1. Loss function lρ,β with its characteristic points and an
illustration of the property from Equation (1).

This quantity can be further generalized to non deterministic
hypotheses that define the labeling of domain P , in which
case the expectation is taken over P:

ερ,βP (h) := P
x,y∼P

[
lρ,β(yh(x))

]
.

This definition stands for the classification risk on P: for
β = 0, it is the ρ−margin violation rate measuring the
probability of the event {yh(x) < ρ}, while for ρ = β = 0,
it is the 0-1 or misclassification rate.

2.2. Background on DA theory

All previous analyses of the DA problem aimed at bounding
the target domain error by its source counterpart, an es-
timable divergence term and a non estimable term represent-
ing the a priori adaptability of the problem. Consequently,
the major differences between the different available results
lie in the considered definition of the error, the divergence
measure they introduce and the form of the non estimable
term.

To this end, the first rigorous theoretical analysis of domain
adaptation, presented in (Ben-David et al., 2007b) (and later
in (Ben-David et al., 2010)), introduces the alignment term
given by the H∆H−divergence and the ideal joint error
λ, respectively defined for a binary hypotheses class H as
follows:

dH∆H := 2 sup
h,h′∈H

∣∣∣ε0,0S (h, h′)− ε0,0T (h, h′)
∣∣∣, (2)

λ := inf
f∈H

ε0,0S (f) + ε0,0T (f)

Note that the H∆H-divergence between the two domains
does not require strict equality between distributions over all
measurable sets, but only over supports of hypotheses of the
H∆H space defined as the space of symmetric differences
between hypotheses inH: if h, h′ ∈ H take their values in
{0, 1}, it is simply equal to hypothesis {|h− h′|}, i.e., the
hypothesis that takes value 1 if and only if h and h′ disagree.

The authors show that this quantity is estimable from finite
samples and that the sample complexity of such estimation
depends on the VC-dimension of the considered hypothesis
spaceH. As for λ, it cannot be estimated as it involves the
target domain’s labels, to which one has no access in the
setting of unsupervised domain adaptation.
Remark 1. If h, h′ ∈ H take their values in {−1, 1}, their
disagreement at a point x is equal to −h(x).h′(x), as this
latter equals 1 if and only if h(x) and h′(x) have opposite
labels.

Remark 2. A similar bound for 0-1 loss with the Wasser-
stein distance and the same λ term was proved in (Shen
et al., 2017).

This result was further generalized in (Mansour et al., 2009)
where the authors considered an arbitrary symmetric loss
function l verifying the triangle inequality. This assumption
makes their result more general than the one in (Ben-David
et al., 2010) proved only for 0-1 loss. After considering
the expected l−disagreement between two hypotheses on a
marginal distribution DP defined as

LDP (h, h′) := E
x∼DP

[l(h(x), h(x′)] ,

the authors define their discrepancy distance as

discl(DS ,DT ) = sup
h,h′∈H

|LDS (h, h′)− LDT (h, h′)|.

Such a generalization to arbitrary loss function was later
also provided for the bounds with the Wasserstein distance
between joint (Courty et al., 2017) and marginal domains
distributions (Redko et al., 2016). While being more general
than the bound of (Ben-David et al., 2010)1, these bounds,
however, do not cover the margin violation loss as this latter
does not verify the triangle inequality.

Finally, in a more recent work the authors of (Zhang et al.,
2019) generalized the bounds mentioned above to the multi-
class setting and introduced a classification margin β > 0
into their results (Koltchinskii & Panchenko, 2004). Below,
we present their alignment term and their ideal joint hypoth-
esis term, restricted to the case of binary classification with
labels encoded in {−1, 1}:

d
(β)
h,H := sup

h′∈H

(
ε0,βT (sgn (h) , h′)−ε0,βS (sgn (h) , h′)

)
,

(3)

λ(β) := inf
f∈H

ε0,βS (f) + ε0,βT (f).

The alignment term in (3) involves a supremum over one
hypothesis instead of two, making it lower than H∆H-
divergence defined in Equation (2) for β = 0. It also offers

1As mentioned in (Mansour et al., 2009), the bounds based on
the discrepancy distance are in general incomparable to those of
(Ben-David et al., 2007b).
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new insights on domain adaptation problem by introducing
the margin violation rate and scoring functions that give the
confidence level of belonging to a class of interest rather
than functions with binary output. However, as they bound
the 0-1 loss on the target domain, i.e., ε0,0T (h, f), their bound
does not indicate the behaviour of the margin violation rate
on this latter. As for λ(β), it remains conceptually similar
to the λ term of the other bounds with the only difference
consisting in the definition of the error terms.

We now proceed to the presentation of our main theoretical
contributions.

3. Bounding the Target Margin Violation Risk
This section is dedicated to our theoretical contributions. We
begin by bounding the margin violation rate on the target
domain for a classifier h picked from a given hypothesis
classH. This bound introduces a new divergence term for
which we provide a convex proxy afterwards. All of the
proofs can be found in the supplementary material.

3.1. Bound with non convex divergence between
distributions

The theorem below aims at providing a first theoretical result
for DA that includes only interconnected terms depending
on the margin of the considered hypothesis. Such interde-
pendence allows to better highlight the possible trade-offs
between the different terms in the bound and to gain new in-
sights into the conditions leading to a successful adaptation.

Theorem 1. Assume that for any h′ ∈ H′, we have
P

x∼DS
[h′(x) = 0] = P

x∼DT
[h′(x) = 0] = 0. Let ρ, β, α >

0 be such that ρ + β < α < 1. Then, for any h ∈ H, the
following bound holds:

ερ,0T (h) ≤ ε
ρ+β
α ,0

S (h) + dρ,βh,H′(DS ,DT ) + λα

where

dρ,βh,H′(DS ,DT ) := sup
h′∈H′

∣∣∣ερ,βS (h, h′)− ερ,βT (h, h′)
∣∣∣

and

λα := inf
f∈H′

ε0,0T (f) + ε0,0S (f) + P
x∼DS

[|f | < α] .

Proof idea. The proof uses the fact that for any s, t, u, v ≥
0, st ≤ uv ⇒ s ≤ u or t ≤ v in order to bound prob-
abilities of margin violation. The rest follows from the
techniques used to establish the bound in (Ben-David et al.,
2010) and on inequality (1).

While being similar in shape to the previous DA bounds
(Ben-David et al., 2007b; Mansour et al., 2009; Zhang et al.,

2019), the obtained result has several fundamental distinc-
tions. First, our bound concerns the margin violation rate
on the target domain, rather than the misclassification rate
used in Equation (3) (Zhang et al., 2019) and thus, it of-
fers a better estimation of the quality of separation between
the classes in the target domain. Second, its estimable part
given by the alignment term dρ,βh,H′(DS ,DT ) does not intro-
duce the decision function associated to a hypothesis (its
sign in case of binary classification with labels encoded
as −1 and 1) as in Equation (3) (Zhang et al., 2019), and
thus avoids discontinuities in this term making it more suit-
able for optimization algorithms. One can further show that
it is an integral probability metric (Müller, 1997) as for a
fixed h ∈ H, the set {x 7→ lρ,β(h(x)h((x));h′ ∈ H′}
is a class of bounded measurable functions implying that
dρ,βh,H′(DS ,DT ) is a pseudometric on the space of probabil-
ity distributions over X . Finally, the non estimable term λα
is non symmetric with respect to the the source and target
domains’ roles as, in addition to having low errors in both
domains, it requires only a large absolute margin on the
source domain, reflected by P

x∼DS
[|f(x)| < α] where fα is

the function achieving the minimum of λα. This latter thus
reflects an intuitively understandable behaviour: if one has
a large margin of separation on S, i.e., there exists α large
enough with P

x∼DS
[|fα(x)| < α] small enough, the space

of classifiers that are good for the source becomes bigger.
Consequently, it becomes more likely to find among them
a classifier that is not only good on the source, but on the
target domain too. This claim is also supported by the fact
that for fixed ρ, β ≥ 0, the source error term is the viola-
tion rate of margin β+ρ

α : as α increases, that rate decreases,
implying that less concentration on the performance in the
target domain is needed. Of course, no gain can be obtained
from augmenting α if it considerably increases λα.

Additionally, compared to non estimable terms from pre-
vious works, λα is at least equal to its counterpart λ from
(Ben-David et al., 2010), and is not directly comparable
to λ(ρ) from (Zhang et al., 2019). However, it verifies the
following inequality:

λα ≤ min
f∈H′

εα,0S (f) + εα,0T (f)

This is not very different from λ(ρ), as this latter minimizes
the joint expectation of the l0,ρ loss, while the right hand
side in the previous bound minimizes the joint rate of vio-
lating margin α. Finally β, for the moment, appears as the
cost of the Lipschitz character of the loss function used in
defining the discrepancy term. Its role will become clear
when we bound our alignment term by a convex one, using
the Lipschitz property.

In the following corollary, we formerly link our bound to
that of (Ben-David et al., 2007b).
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Corollary 1. If H = H′ is a class of binary hypotheses
taking values in {−1, 1}, the bound from Theorem 1 is
equivalent to the one in (Ben-David et al., 2010).

This corollary shows that our bound generalizes that of (Ben-
David et al., 2010) to more informative scoring functions,
and to the margin violation rate criterion, without requir-
ing the loss function to verify the triangle inequality as in
(Mansour et al., 2009).

3.2. A convex domain divergence based on optimal
transport

Although the previous bound offers several novel insights
on the behaviour of the target error with respect to different
components of the bound, its estimable part is non convex
as a function of hypothesis h ∈ H. In order to convexify
its two components, i.e., the error on the source domain
and the divergence term, it is sufficient to use a convex
loss proxy for the first, while for the second we propose
to leverage optimal transport (OT) theory (Santambrogio,
2016). To this end, let us introduce two projection operators
π1 : (x1,x2) 7→ x1 and π2 : (x1,x2) 7→ x2 defined over
X ×X . The set Π of transport plans betweenDS andDT is
the set of probability distributions D over X ×X that verify
the following two properties:

π1#D = DS , π2#D = DT ,

where # denotes the pushforward measure. With the pre-
vious notations, the convex bound for dρ,βh,H′(DS ,DT ) is
given in the following proposition.

Proposition 1 (Convex bound for alignment term). For any
ρ, β > 0, we have

dρ,βh,H′(DS ,DT ) ≤ 1

β
inf
D∈Π

∆H′(h,D)

where

∆H′(h,D) := sup
h′∈H′

E
xs,xt∼D

[|hh′(xs)− hh′(xt)|] .

Proof idea. From the 1
β−lipschitzness of lρ,β , we use the

dual form of the Wasserstein distance between distributions
hh′#DS and hh′#DT , then its primal form (with an infi-
mum), and finally the inf-sup inequality.

To see the convexity of the introduced alignment term, we
note that dρ,βh,H′ can be bounded by ∆H′(h,D) for any trans-
port plan D. Furthermore,

{h 7→ E
xs,xt∼D

[|hh′(xs)− hh′(xt)|] , h′ ∈ H′}

{D 7→ E
xs,xt∼D

[|hh′(xs)− hh′(xt)|] , h′ ∈ H′}

defined for a fixed D ∈ Π and a fixed h ∈ H, respec-
tively are two families of convex functions in h and in
D. Thus, taking the supremum over h′ ∈ H′ is as well
convex in h (resp. in D). We note that the function
h 7→ infD∈Π ∆H′(h,D) is not necessarily convex, but
when we derive our algorithm, we show that only convexity
of ∆H′(·, ·) is needed.

The bound in Proposition 1 also has the form of a robust
version of the Wasserstein distance between 1D distributions
hh′#DS and hh′#DT and admits the following adversarial
interpretation: for a fixed joint distribution D ∈ Π, taking
the supremum over h′ ∈ H′ is trying to separate the two
domains, while taking D that achieves the infimum resists
to this separation.

Combined with Theorem 1, Proposition 1 allows to imme-
diately deduce a domain adaptation bound involving the
introduced OT-based divergence.

Proposition 2 (Optimal transport bound on the target risk).
With the assumptions and notations of Theorem 1 and Propo-
sition 1, we have for any h ∈ H:

ερ,0T (h) ≤ ε
ρ+β
α ,0

S (h) +
1

β
inf
D∈Π

∆H′(h,D) + λα. (4)

Compared to other DA bounds involving the Wasserstein
distance (Redko et al., 2016; Courty et al., 2017; Shen et al.,
2017), our divergence term takes into account the consid-
ered hypothesis classes, making it a pseudo-metric that is
less strict than the Wasserstein distance between marginal
distributions of the domains. To support this claim, we
bound our optimal transport based alignment term by the
Wasserstein distance between the two domains.

Proposition 3 (Bounding by the p-Wasserstein distance).
Let p ≥ 1, and assume that all of the hypotheses from H
and H′ verify the L−Lipschitz continuity with respect to
‖·‖p norm for some L > 0. Then, the following holds

sup
h∈H

inf
D∈Π

∆H′(h,D) ≤ 2LWp(DS ,DT )

where

Wp(DS ,DT ) := inf
D∈Π

E
xs,xt∼D

[
‖xs − xt‖p

]
is the p-Wasserstein distance.

Proof idea. The proof relies on the triangle inequality ver-
ified by the absolute value, the L−lipschitzness and the
boundedness of the classifiers, as well as the monotonicity
of the inf and the sup operators.

This inequality comes essentially from the fact that the
space of L−Lipchitz functions is bigger than the considered
hypothesis spaces H and H′, and the supremum over h ∈
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H is due to the independence of the Wasserstein distance
between distributions of classifier h. It formally shows that
the attachment of our alignment term to the task at hand, via
h ∈ H and the supremum over h′ ∈ H, makes it far less
strict than the Wasserstein distance between data marginal
distributions between the domains.

4. Domain Adaptation Algorithm
With our considered setting and notations, the goal of our
domain adaptation task is to find h ∈ H such that ερ,0T (h),
the margin violation rate on the target domain, is as small as
possible. As we assume that no access to the labels of T is
given, we look for a hypothesis that minimizes the estimable
part of our bound of Proposition 2.

4.1. Minimizing the estimable part of the bound

To derive the objective function for the estimable part of the
bound, we have to consider two terms. First is the margin vi-
olation error on the source domain ερ

′

S (h) (where ρ′ = ρ+β
α )

whose minimization is known to be a NP-hard problem
(Arora et al., 1997). Hence, we replace it by its commonly
used proxy, the hinge risk E

x,y∼S
[(ρ′ − y.h(x))+]. The sec-

ond term is the domain alignment term, which is the infi-
mum overD ∈ Π of convex functions of h, as we mentioned
earlier. The resulting optimization problem is then given as
follows:

min
h∈H
D∈Π

E
x,y∼S

[(ρ′ − y.h(x))+] +
1

β
∆H′(h,D). (5)

We would like to stress out that the cost function in this case
contains a supremum over the potentially infinite hypothesis
spaceH′, hence, it might be difficult to solve problem (5),
even though convexity is verified. However, we show in the
next section that a particular choice ofH andH′ allows one
to deal efficiently with this term.

Below, we specify the proposed method to a particular case
of linear classifiers thus introducing a shallow adversarial
DA approach.

4.2. Application to linear classification

We consider our algorithm’s formulation in the linear clas-
sification case, where H is the space of `2 bounded linear
classifiers, andH′ is the space of `1 bounded classifiers.

Proposition 4. LetH be the space of linear classifier with
bounded `2 norm, andH be the space of linear classifiers
with bounded `1 norm. Let l denote the hinge loss, Dst :=
xsx

T
s − xtx

T
t and (|Dstw|)i := |(Dstw)i| for 1 ≤ i ≤ d,

where w ∈ Rd. Then, Problem (5) can be equivalently

expressed as the following convex program:

min
w∈Rn
D∈Π

E
x,y∼S

[
l(y.wTx)

]
+δ

∥∥∥∥ E
xs,xt∼D

[|Dstw|]
∥∥∥∥
∞

+ζ‖w‖22

(6)
where δ, ζ > 0 are two hyper-parameters related to the
bounds onH andH′.

Proof idea. The supremum over H′ is a supremum of a
convex function on the `1 unit ball, hence over its vertices
which appears via the∞−norm. The regularization is to
take into account the boundedness of classifiers fromH.

The previous proposition introduces two hyper-parameters
linked to regularization of the classifier and to the alignment
term. The further the domains are from each other, the
more concentration we need on the alignment term, which
is achieved by increasing δ. Also, we note that this is a
strongly convex optimization problem, due to the strong
convexity of the regularization ‖w‖2 which is an important
feature for numerical optimization with gradient descent,
thus justifying our choice of the spaceH.

4.3. Learning in similarity induced spaces

In the previous section, we chose H′ as the space of lin-
ear classifiers with bounded `1 norm in order to tackle the
difficulty of computing the supremum over h′ ∈ H′, trans-
forming it into a maximum over the vertices of the unit `1

ball. However, the main idea behind this choice is not only
to simplify the computation of the supremum, but also to
have a theoretical justification for our algorithm when the
data lies in a space induced by an (ε, γ, τ)−good similar-
ity function, introduced in the seminal paper (Balcan et al.,
2008). Indeed, this latter theoretically guarantees the exis-
tence of a low-error linear classifier with bounded `1 norm
in the similarity space defined by transformation

Ψ(x) = (K(x, x̃1), .....,K(x, x̃L)) (7)

where {x̃1, ...., x̃L} is a finite set of landmarks usually de-
fined as a subset of the original data set.

Hence, if we consider all of the points from both the source
and target domains to be landmarks, then the existence of
a good similarity function able of separating the classes
implies the existence of an `1−bounded classifier that per-
forms well on both domains, i.e., an ideal joint hypothesis
with a low error in the similarity induced space. Thus, in the
next experimental section, we solve Problem (6) after ap-
plying the mapping Ψ, but with a regularization term ‖w‖22.
Note that this latter that does not depend on the similarity
matrix (K)ij := K(xi,xj) for xi,xj ∈ X , unlike in the
case of kernelized approaches where it is equal to wTKw,
with K being the kernel matrix. We note further that in
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(Balcan et al., 2008), the authors recommend bounding `1
norm of w as a constraint. However, this is equivalent to
bounding its `2 norm due to norm equivalence in finite di-
mension, which in turn is equivalent to adding a quadratic
regularization. This latter is more suitable for optimization
as we indicate later.

4.4. Optimization procedure of the discrete problem

In the empirical case, one has access to finite data sets
Sm = {((x1, y1), ...., (xm, ym)} ∼ Sm, and Tn =
{(x′1, y′1), ...., (x′n, y

′
n)} ∼ T n, where the labels of Tn

are not used for learning classifier w. We define Π̂, the
empirical counterpart of Π, as the set:

Π̂ = {Γ ∈ Rm×n+ ; Γ1n =
1

m
1m; ΓT1m =

1

n
1n}

where 1p = (1, 1, ..., 1) ∈ Rp. Denoting Dij = xix
T
i −

x′jx
′
j
T ∈ Rd×d, the empirical cost function of Problem (6)

becomes:

1

m

∑
1≤i≤m

l(ys,i.w
Txs,i)+δ

∥∥∥ ∑
1≤i≤m
1≤j≤n

γij |Dijw|
∥∥∥
∞

+ζ‖w‖22

(8)
which is a function of w ∈ Rd and Γ ∈ Π̂ having elements
γij .

Similar to (Courty et al., 2017), the objective function of
our minimization problem is convex in two sets of vari-
ables: the classifier w and a transport matrix Γ. Following
their procedure, we use block coordinate descent (Grippo &
Sciandrone, 2000) which alternates between the two steps:

1. For a fixed transport matrix Γ, minimize over w. To
this end, we use the L-BFGS quasi-Newton method.

2. For a fixed linear classifier w, the minimization over
Γ only involves the term multiplied by δ in (8),
and due to the positivity of all coordinates of vector∑
ij γij |Dijw|, this minimization is equivalent to:

min
q∈∆d

max
Γ∈Π̂

−∑
ij

γijq
T |Dijw|


where ∆d is the probability simplex in dimension
d. In this case, we use the min-max algorithm from
(Blankenship & Falk, 1976, Algorithm 2.2) to find the
optimal transport matrix Γ.

We use smooth proxies of the positive part (·)+, the absolute
value |·| and the infinite norm ‖·‖∞ (for more details, we
refer the interested reader to the supplementary material).

5. Empirical Evaluation
In this section, we evaluate our method on two domain
adaptation problems: a toy set with controllable adaptation
difficulty and a real-world sentiment analysis problem. For
all experiments, we use the version of our algorithm spe-
cialized to linear classifiers as described in problem (6). We
further use a similarity function K to be specified for each
data set considered as in Equation (7) to calculate the fea-
tures from the raw data. Finally, we denote our method by
MADAOT following the abbreviation of our paper’s title.
The code for the different experiments is available on this
link2.

5.1. Hyper-parameter tuning

Hyper-parameter tuning is a longstanding problem in un-
supervised domain adaptation that was mainly addressed
by the introduction of the reversed validation procedure
proposed in (Zhong et al., 2010; Bruzzone & Marconcini,
2010). Although this latter may seem as the most suitable
cross-validation procedure for the unlabeled scenario, it
was shown to fail at selecting the best hyper-parameters
for several methods (Wilson & Cook, 2019, Section 8.2),
(Bousmalis et al., 2016). One possible reason for this fail-
ure is its dependence on accurate estimation of the ratio
between the marginal distributions that was proved to re-
quire a very large number of samples to be approximated
correctly (Ben-David & Urner, 2012).

Hence, we choose to present our algorithm’s performance
for two cases. In the first one, we do not use target labels
during training phase, but we use them as a validation set to
select the best hyper-parameters (defined in Proposition 4)
via a 5-fold cross-validation procedure for 10 values of δ
ranging from 10−2 to 102, and 10 values for ζ from {10−6

to 10−2, both on a logarithm scale. This is a rather stan-
dard procedure in unsupervised domain adaptation used in
several other papers on the subject (Courty et al., 2015;
Bousmalis et al., 2016). We use this procedure for the first
dataset. As for the real-world data set, we run all experi-
ments by setting δ = 1 and ζ = 10−5.

5.2. Inter-twinning moons data set

We carry on our experiments on the moons data set used in
(Courty et al., 2015). For this data set, the source domain’s
data sample is represented by two inter-twinning moons
centered at the origin (0, 0), and composed of 300 instances.
The source domain’s data are then rotated around their center
by a certain angle to get the target domain data. Obviously,
the greater is the angle, the further from each other the two
domains are and the harder is the adaptation. Similar to
(Courty et al., 2015), we cope with the non-linearity of this

2https://github.com/sofiendhouib/MADAOT.

 https://github.com/sofiendhouib/MADAOT
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Table 1. Average accuracy (percentage) over 10 realizations for the moons toy set.
Angle (°) 10 20 30 40 50 70 90

SVM (Courty et al., 2015) 100 89.6 76 68.8 60 26.6 17.2
OT-GL (Courty et al., 2015) 100 100 100 98.7 80.4 62.2 49.2
JDOT (Courty et al., 2017) 98.9 95.5 90.6 86.5 81.5 70.5 60

MADAOT 99.5 99.3 99.6 99.6 98.9 77 64.1

Table 2. Accuracy on the Amazon Reviews data set.
Task B→ D B→ E B→ K D→ B D→ E D→ K E→ B E→ D E→ K K→ B K→ D K→ E

SVM (CV) 79.5 69.2 71.4 78.5 71.7 76.6 71 73.8 85.3 72.3 73.4 84.4
DANN 80.6 74.7 76.7 74.7 73.8 76.5 71.8 72.6 85 71.8 73 84.7
OT-GL 75.7 75.4 77.9 75.9 70 78 71.2 69.6 81.4 73.1 74.1 81.7

JDOTSVM 75 77.1 77.9 70.9 78.3 78 65.9 71.7 79.4 66.8 66.1 77.5
JDOTNN 79.5 78.1 79.4 76.3 78.8 82.1 74.9 73.7 87.2 72.8 76.5 84.5

MADAOT 82.4 75 80.4 80.9 73.5 81.5 77.2 78.1 88.1 75.6 75.9 87.1

data set by using a Gaussian kernel as similarity function
K, where the width parameter is chosen as the mean Eu-
clidean distance between the source instances, as suggested
in (Kar & Jain, 2011). As for the baselines, our algorithm is
compared to SVM classifier with Gaussian kernel trained
on the source domain (without adaptation) and two opti-
mal transport based domain adaptation algorithms OT-GL
(Courty et al., 2015) and JDOT (Courty et al., 2017). Note
that we report only the variation of the method proposed
in (Courty et al., 2015) with the group-Lasso regularization
as this latter was showed to be the most efficient for this
data set. Finally, as the results for JDOT on moons were
not presented in the original paper, we run it with the hyper-
parameter ranges suggested by the authors. The final results
averaged over 10 tests on independent data sets of 1000
instances are presented in Table 1. From it, we can make
several conclusions. First, all considered DA baselines man-
age to achieve an almost perfect score on the angles from
10° to 40°, while SVM without adaptation has a 30% drop
in accuracy for these angles. This shows that moons data set
presents a challenging adaptation task that goes beyond the
generalization capacities of a standard supervised learning
algorithm. As for the DA baselines, their performance is
rather not surprising as for these angles the adaptation prob-
lem remains fairly easy. Starting from 50° (Table 1(left))
and up to 90° (Table 1(left)), out method provides a better
performance that those obtained with both JDOT and OT-
GL with the most significant improvement obtained for the
angle of 50°. One should note that OT-GL method relies
on the information about the source labels encoded in the
group-lasso term but even this does not help to maintain its
performance for larger angles. We conclude by saying that
the theoretical features of the introduced OT-based distance

used by our algorithm are highlighted by its efficiency in
this experiment compared to strong OT baselines.

5.3. Sentiment analysis data set

Below, we consider the famous Amazon product reviews
dataset (Blitzer et al., 2007) related to the sentiment analysis
task. For this data set, we choose 4 of its subsets corre-
sponding to different product categories, namely: books,
dvd, electronics and kitchen (denoted by B, D, E, K, re-
spectively). This leads to 12 domain adaptation tasks of
varying difficulty as the proximity and the number of se-
mantic relationship between the different domains vary a lot.
As the original data is represented by over 100 000 features
given by uni- and bigrams, we follow the pre-processing of
(Chen et al., 2011) (resulting in between 20000 and 40000
features) and consider a linear kernel as a similarity function
K. For each task, we use predefined sets of 2000 instances
of source and target data samples for training, and keep
4000 instances of the target domain for testing. We compare
our method to SVM with cross-validated hyper-parameters
as a baseline, to a state-of-the-art adversarial DA approach
DANN (Ganin et al., 2016) and to JDOT (NN) with a neural
network used as a classifer, as done in (Courty et al., 2017).
As our method uses only linear classifiers, we also run two
baseline shallow algorithms for comparison, JDOT with a
linear SVM and OT-GL (Courty et al., 2015) with 1-Nearest
Neighbor classifier. The results of our experiments are re-
ported in Table 2. From this table, we see that MADAOT
outperforms other methods on 8 out of 12 tasks, and has the
second best performance on 2 others. This is rather surpris-
ing considering that both DANN and JDOT (NN) rely on
neural networks to learn the final classifier and this latter
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is expected to have a higher discriminative power than the
class of linear classifiers. Consequently, we attribute this
performance gain to the efficiency of our task-dependent
OT-based alignment term that manages to better align the
two distributions compared to the minimization of the origi-
nal 2-Wasserstein distance considered in OT-GL and JDOT.
Furthermore, the minimax formulation of our alignment
term addresses the curse of dimensionality problem related
to OT as the sample complexity of this latter is known to
scale exponentially in dimension. Several approaches were
proposed to address this problem recently in order for the
calculation of the Wasserstein distance to make sense for
high-dimensional data and our findings show that applying
it in the DA context can lead to an improved performance.

6. Conclusion and Future Perspectives
In this paper, we presented a novel theoretical analysis of
unsupervised domain adaptation problem for binary classifi-
cation that considers the margin violation loss on the target
domain as the error measure. We proved a new bound on
this latter that involves source margin violation error, a novel
convex alignment term given by a task-dependent variant
of the Wasserstein distance between the source and target
domains and a non estimable term that offers new insights
on domain adaptation problem and on the importance of
the notion of margin violation for its a priori success. Our
analysis generalizes several prior works on this subject and
includes them as special cases. Our algorithm, derived from
the established learning bounds, has proved to be efficient
on both simulated and real-world problems compared to
several state-of-the-art methods.

The future research directions of this paper are many. First,
we would like to study the direct maximization of our non
convex alignment term introduced in Theorem 1 using a
deep adversarial approach. Even though our method offers a
remarkable performance compared to several deep learning
baselines, its efficiency can be further improved by this latter
extension. Second, we plan to investigate in more detail
the theoretical properties of our data dependent optimal
transport term by establishing a concentration inequality for
this latter. This would allow to theoretically highlight the
success of our algorithm for high-dimensional data.
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