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Abstract
The Optimal transport (OT) problem and its asso-
ciated Wasserstein distance have recently become
a topic of great interest in the machine learning
community. However, its underlying optimization
problem is known to have two major restrictions:
(i) it strongly depends on the choice of the cost
function and (ii) its sample complexity scales ex-
ponentially with the dimension. In this paper, we
propose a general formulation of a minimax OT
problem that can tackle these limitations by jointly
optimizing the cost matrix and the transport plan,
allowing us to define a robust distance between
distributions. We propose to use a cutting-set
method to solve this general problem and show
its links and advantages compared to other exist-
ing minimax OT approaches. Additionally, we
use this method to define a notion of stability al-
lowing us to select the ground metric robust to
bounded perturbations. Finally, we provide an
experimental study highlighting the efficiency of
our approach.

1. Introduction
In many scientific areas, we are often confronted with a
necessity of comparing different objects to assess their relat-
edness. In machine learning, for instance, these objects may
be individual data points in similarity based classification
(e.g., k-nearest neighbors (Cover & Hart, 2006), non-linear
support vector machines (Boser et al., 1992)) or probabil-
ity distributions in generative modelling (Goodfellow et al.,
2014) and hypothesis testing. For this latter case, the opti-
mal transportation (OT) metric (also called the Wasserstein
distance) has recently emerged as a powerful tool used to
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compare complex objects based on the OT problem (Monge,
1781) that roughly quantifies the minimal amount of effort
required to transform one distribution into another. Several
key features of this metric lead to its widespread use in many
different applications and setups (Gramfort et al., 2015; Kus-
ner et al., 2015; Bonneel et al., 2016; Courty et al., 2017;
Laclau et al., 2017). First, it takes into account the geometry
of the underlying data distributions by the means of pair-
wise costs calculated for the points that they are supported
on. Second, it allows to compare distributions with dis-
joint supports thus avoiding the vanishing gradient problem
(Arjovsky et al., 2017) when used as a loss function.

In this paper, we study a general formulation of the OT
problem with a minimax objective function where one seeks
an OT plan with respect to (w.r.t.) the worst possible ground
metric (also called cost function) belonging to an arbitrary
and possibly infinite convex set. Such a minimax formu-
lation is of a particular interest as it has been shown pre-
viously (i) to reduce the sample complexity and increase
the robustness to noise of the original OT problem for high-
dimensional data (Paty & Cuturi, 2019), (ii) to allow to con-
sider submodular cost functions (Alvarez-Melis et al., 2019)
and (iii) to use it as a loss in generative models (Genevay
et al., 2018). We advance the study of the minimax OT
further by providing the following contributions. First, for
an infinite set of cost functions defined by a Mahalanobis
distance, we reformulate the minimax OT problem as a
minimization of the arbitrary dual norm of the matrix of
second-order displacements and show how one can use it
to smoothly interpolate between the original OT problem
and the minimax formulation of (Paty & Cuturi, 2019) in-
cluded as a special case. Second, we provide a generic
solver for minimax OT for both regularized and unregular-
ized minimax OT problems and for both finite and infinite
families of cost functions contrary to previous work (Paty
& Cuturi, 2019; Alvarez-Melis et al., 2019) that considered
the differentiable and strictly convex regularized OT prob-
lem only. Finally, we introduce the notion of cost matrix
stability and solve its underlying optimization problem. It
consists in finding a cost function from a list of possible
candidates that leads to a stable transportation cost in its
unit ball neighborhood.

The rest of this paper is organized as follows. In Section
2, we provide the necessary introductory definitions related
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to the OT problem and the notations used throughout the
paper. We then present in Section 3 the main contributions
of this paper including a general minimax formulation for
the OT problem with an arbitrary convex compact set of cost
matrices and discuss an optimization procedure that can be
used to solve it as well as its theoretical guarantees. We
further proceed by considering the important special cases
of the previously introduced problem and showing their
relationship to other works on subject. Finally, in Section 4,
we present an experimental evaluation of our approach for
several considered use-cases.

2. Preliminary Knowledge
Optimal transport Optimal transport (OT) can be seen as
the search for a transportation plan that moves (transports)
a probability measure µ1 onto another measure µ2 with a
minimum cost measured by some function c : (x,y) ∈
X × Y 7→ c(x,y) ∈ R+, where X and Y are some com-
plete metric spaces that, in most applications, are taken to
be Euclidean spaces. More formally, the Kantorovitch (Kan-
torovich, 1942) formulation of OT seeks for an optimal
coupling γ having marginals µ1 and µ2, which minimizes
the following quantity:

Wc(µ1, µ2) = inf
γ∈Π(µ1,µ2)

E
(x,y)∼γ

[c(x,y)] , (1)

where c(x,y) is the cost of moving x to y (drawn from
distributions µ1 and µ2, respectively). When c is the squared
Euclidean distance, we write W2. In the discrete version of
the problem, i.e. when µ1 and µ2 are defined as empirical
measures supported on vectors {xi}mi=1, {yj}nj=1 in Rd
with probability vectors r ∈ ∆m and c ∈ ∆n, the previous
problem can be expressed as follows:

P∗ ∈ argmin
P∈Π(r,c)

〈P,C〉F , (2)

where 〈·, ·〉F is the Frobenius dot product, C ∈ Rm×n+ is a
cost matrix representing the pairwise costs of transporting
xi to yj and P is a matrix of size m× n belonging to the
transportation polytope Π(r, c) (also called Birkhoff poly-
tope form = n) defined as Π(r, c) = {P ∈ Rm×n+ ;P1n =
c;PT1m = r}. Note that (2) is a linear programming (LP)
problem with equality constraints, but its dimensions scale
quadratically with the size of the sample. Alternatively, one
can consider a regularized version of the problem (Cuturi,
2013), which has the extra benefit of being faster to solve.

Minimax OT Two other studies considered the minimax
formulation of the OT problem in a setting similar to ours. In
the first one, (Paty & Cuturi, 2019) showed that one can see
the OT problem, with c taken to be the squared Euclidean
distance, as a trace minimization problem of the second-
order displacement matrix defined for any γ ∈ Π(µ1, µ2)

defined as:

W 2
2 (µ1, µ2) = min

γ∈Π(µ1,µ2)
Tr(Vγ),

Vγ :=

∫
X×Y

(x− y)(x− y)T dγ(x,y).

The authors of (Paty & Cuturi, 2019) further used this ex-
pression of the 2-Wasserstein distance to introduce the Sub-
space Robust Wasserstein (SRW) distance as follows:

S2
k(µ1, µ2) := min

γ∈Π
Trk(Vγ) = min

γ∈Π

k∑
i=1

λi(Vγ), (3)

where λi are the k ≤ d largest eigenvalues of Vγ . Note that
considering only the maximization over the k ≤ d largest
eigenvalues allows to learn a cost matrix of a reduced rank
thus tackling the curse of dimensionality issue of calculating
the Wasserstein distance for high-dimensional data.

A somehow different way of using the minimax formulation
of OT was proposed in (Alvarez-Melis et al., 2018) for
c taken to be a submodular function F : 2V → R with
V denoting a certain set of available items. In this case,
taking the Lovász extension f of F leads to the following
optimization problem:

StrOT(µ1, µ2) := min
P∈Π

max
C∈BF

〈P,C〉 ,

where BF is the base polytope of F defined as BF = {y ∈
R|V ||y(V ) = F (V ); y(S) ≤ F (S),∀S ⊆ V }. A game-
theoretic interpretation of this formulation is to consider
two players, where Player 1 aims at aligning the two dis-
tributions by picking a coupling matrix P, while Player 2
resists to it by choosing the cost matrix C from the set of
admissible costs BF . When F is a modular function, the
size of BF is 1 thus recovering the original OT problem.

Other related work Three other papers presented an OT-
based minimax formulation distantly related to ours. In
(Genevay et al., 2018), the authors studied a generative
model that uses Sinkhorn divergence as a fitting criterion
and proposed to learn a cost function in this framework.
Their problem is intrinsically different from ours as we do
not consider the density fitting problem where one optimises
the parameters of the fitted distribution. On the other hand,
in (Li et al., 2019), the authors reduced the regularized OT
formulation with relaxed marginal constraints into a mini-
max problem. Their formulation, however, is also different
from ours as it does not seek to learn a cost matrix. Finally,
the line of work on the Wasserstein distributionally robust
optimization (Kuhn et al., 2019) is also very dissimilar to
our paper as this latter considers finding the best estimator
of a density from a Wasserstein ball of a certain radius.

We now proceed to the presentation of our contributions.
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3. Robust Optimal Transport with a Convex
Set of Cost Matrices

Below, we formulate the general robust OT problem and
highlight its properties in several cases of interest. We fur-
ther propose and theoretically analyze a general algorithm
that can be used to solve it.

3.1. Problem formulation

Let C be an arbitrary set of cost functions defined overX×Y .
This set may represent, for instance, a convex combination
of cost function candidates provided by several experts, or it
can be described by an infinite set of parameters. We impose
no particular constraints on the cost functions belonging to C
as long as the corresponding Kantorovich problems admit a
solution. We now consider the following minimax problem:

RKP(Π, C) = min
γ∈Π

max
c∈C

E
x,y∼γ

[c(x,y)] , (4)

where we look for a coupling γ∗ that is robust to the choice
of a cost function c ∈ C, by considering the worst achiev-
able transportation cost. We denote the value at the solution
of this problem by RKP(Π, C) where RKP stands for ro-
bust Kantorovich problem. We abuse the notation and use
RKP(P, C) for any set P ⊂ Π (even non convex) to de-
note RKP(conv(P), C), i.e., solving for γ ∈ Conv (P). We
also extend the notation Wc, presented before by defining
WC(µ1, µ2) := RKP(Π, C).

3.2. Choice of C

Below, we consider two possible choices for the convex
set C. First, we study the infinite family of Mahalanobis
distance cost matrices widely used in the metric learning
literature (Bellet et al., 2015). Second, we consider a convex
hull of a finite family of cost functions as in the example
given above.

3.2.1. INFINITE FAMILY OF MAHALANOBIS DISTANCES

For any u = (u1, ..., ud) ∈ Rd and any M ∈ Rd×d, we
define their respective p-norm and Schatten p-norm as

‖u‖pp =
∑

1≤i≤d

|ui|p, ‖M‖pp =
∑

1≤i≤d

σpi (M),

where p ∈ [1,+∞] and {σi (M)} are M’s singular val-
ues. In particular, if M ∈ Sd+(R), where Sd+(R) denotes
the set of symmetric positive semi-definite matrices (PSD),
then ‖M‖p = Tr(Mp)

1
p . We also recall that the dual of a

p−norm (resp. Schatten p−norm) is the q−norm (resp. the
Schatten q−norm) with q equal to p

p−1 if p > 1, to ∞ if
p = 1 and to 1 if p =∞.

We now define C as a family of Mahalanobis cost functions,

indexed by bounded matrices M:

C={cM :(x,y) 7→ (x−y)TM(x−y); ‖M‖p≤1}. (5)

We can now state the following proposition.1

Proposition 1. Let C be defined as in (5) for M ∈ Sd+(R).
Then, C is a convex compact set of cost functions and for
any p ∈ [1,+∞], q = p

p−1 the following holds:

1. RKP(Π, C) = min
γ∈Π
‖Vγ‖q . In particular, we have:

RKP(Π, C) =

{
W 2

2 (µ1, µ2), if q = 1,
S2

1 (µ1, µ2), if q =∞.

2. For any γ∈Π, ‖M∗‖p=1 and

M∗ = argmax
M∈Sd

+, ‖M‖p≤1

〈Vγ ,M〉 =

(
Vγ

‖Vγ‖q

) q
p

.

Proof idea. We use the fact that C is the image of a con-
vex compact set of Rd×d by a linear mapping to prove its
convexity and compactness. Point 1 is a consequence of
the equality case of Hölder’s inequality, the positive semi-
definiteness of matrix Vγ and the fact that the Schatten
p-norm is the classic p-norm for the vector of a matrix’s
singular values, which tends to the ∞−norm as q → ∞.
The second point is a direct consequence of the equality
case of Hölder’s inequality for Schatten p-norms (Magnus,
1987) using the fact that Vγ is PSD.

This theorem highlights several novel insights. First, it pro-
vides a different point of view for a general minimax OT
problem with the infinite family of Mahalanobis distances.
In particular, it shows that the original OT problem can
be seen as a minimax problem when one takes the least
restrictive infinity norm for the bound on the matrix param-
eterizing the Mahalanobis distance, while SRW with k = 1
corresponds to the case of the || · ||1 norm2. This observa-
tion is illustrated in Figure 1 where we smoothly interpolate
between the two boundary cases by solving (4) with inter-
mediate values of q. We note that such an interpolation may
have interesting implications in practice when one seeks for
an explicit control between the original and the minimax OT
problems. Second, the optimal expression for M∗ shows
that it is proportional to Vγ and if this latter captures the
displacement in lower dimensions, then M∗ is expected to
do so too. This follows from M∗ being a linear combina-
tion of (xi − yj)(xi − yj)

T , where {i, j} are indices for
which γij > 0, making its image included in the span of

1All detailed proofs are provided in the supplementary material.
2Other values of k for SRW are also covered when using a

truncated Schatten p-norm.
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Figure 1. Interpolation between OT and SRWk=1 on a binary toy classification problem with each class consisting of 5 points sampled
from Gaussians centered on the edge of a 10-dimensional hypercube with σ = 1 with 10 additional random noise features. The transport
is computed between the 2 classes using the setting of Proposition 1 with q ∈ {1, 1.1, 2, 5,∞}. (top row) Mahalanobis matrices M∗ and
their rank; (bottom row) Couplings P∗ and the associated value of the Wasserstein distance. Note that for this visualization we use a
Frank Wolfe algorithm presented in the Supplementary material.

{(xi − yj); γij > 0}, i.e., the span of displacement direc-
tions. This intuition is confirmed in our experiments where
we show that even without the rank constraint, solving (4)
results in a matrix of a reduced rank.

Finally, below we use this result to show that in the case of
the Frobenius norm, the PSD property of the learned matrix
M is obtained for free without imposing any additional
constraint on the set C.
Corollary 1 (Euclidean norm case). Let C be defined with
p = 2 in (5) and let M∗ = argmax‖M‖2≤1 〈Vγ ,M〉. Then

M∗ =
Vγ

‖Vγ‖2
, thus M∗ is PSD and ‖M∗‖2 = 1.

This corollary shows that the case p = 2 (Frobenius norm)
can be very convenient in practice as PSD constraints in-
crease considerably the computational burden of any opti-
mization problem, yet they are necessary for the obtained
cost function to be a true metric.

To conclude the theoretical analysis of the considered case
for the minimax problem, we establish a general bound on
RKP(Π, C) in terms of the original 2-Wasserstein distance.
Corollary 2. With the assumptions from Proposition 1, the
following inequality holds for any p ∈ [1,+∞]:

1

d
1
p

W 2
2 (µ1, µ2) ≤WC(µ1, µ2) ≤W 2

2 (µ1, µ2).

Note that compared to a similar bound given in (Paty &
Cuturi, 2019, Proposition 2) for the SRW distance, our
result does not involve the k term in the left-hand side as we
do not impose any explicit constraint on the rank of M.

3.2.2. FINITE SET OF COST FUNCTIONS

Let {c1, ..., cK} denote a family of candidate cost functions,
and let C = Conv ({c1, ..., cK}) meaning that C is a convex
compact space as it is the convex combination of a finite
set. As mentioned in Section 2, the optimization of the
OT problem with a submodular function F taken as a cost
function can be equivalently seen as a minimax OT problem
of the following form:

min
P∈Π

max
C∈BF

〈P,C〉 ,

where BF is the base polytope of F . We note that the
number of vertices of BF is finite and thus one can show
that the StrOT distance is a particular case of our problem
(4) when C is a finite set of cost functions, i.e.

RKP(Π,Conv (BF )) = StrOT(µ1, µ2).

This result establishes the link between our general formu-
lation and that considered in (Alvarez-Melis et al., 2018).

3.3. Proposed optimization strategy

We now propose a general solution for optimising (4) in
the discrete case where X and Y are identified respectively
with finite sets {xi}mi=1 and {yj}nj=1, while C is identified
with an arbitrary convex set of cost matrices with entries
Cij = c(xi,yj). Since X and Y are finite, hence bounded,
all results from Section 3.2 hold in the discrete case.

To proceed, we first note that in our case we cannot ap-
ply the optimization techniques used in (Paty & Cuturi,
2019; Alvarez-Melis et al., 2019) as they both consider
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the differentiable regularized OT problem in their mini-
max formulations contrary to our non-differentiable unreg-
ularized one. To deal with the latter, we propose to adapt
the cutting set method presented in (Mutapcic & Boyd,
2009) for robust optimization to Problem (4) that allows
us to cover both unregularized and regularized minimax
OT problems. In a nutshell, this method consists in al-
ternating between solving a worst-case problem and the
corresponding sampled robust minimization problem w.r.t.
a set of constraints that grows linearly with iterations and
requires for optimized functions to be convex only. In appli-
cation to (4), the high level idea of the proposed algorithm
thus would be to solve the maximization problem over C
w.r.t. a set P ⊂ Π and add one transportation matrix to
P at each iteration. The implementation of this idea, how-
ever, is not straightforward and requires two obstacles to
be addressed. First, the original algorithm presented by
the authors allows to solve a minimax problem of the form
minC∈C maxP∈Π = −maxC∈C minP∈Π and thus requires
from us to prove minP∈Π maxC∈C = maxC∈C minP∈Π in
order to apply it. Second, and similar to the projected su-
pergradient algorithm proposed for SRW, the authors of
(Mutapcic & Boyd, 2009) disregard the optimal solution
for the variable over which the minimization is performed,
i.e., P∗ in our case, and provide a solution for C∗ only. To
address these issues, we now present the following result.

Proposition 2. Let P be a finite subset of Π. Then, the
following holds:

1. RKP(P, C) := RKP(Conv (P) , C) has a saddle
point (P∗,C∗) verifying:

〈P∗,C∗〉F =

min
P∈Conv(P)

max
C∈C
〈P,C〉 = max

C∈C
min
P∈P
〈P,C〉 . (6)

2. RKP(P, C) is equivalent to

C∗ ∈ argmaxC∈C,µ≥0 µ,

s.t. 〈P,C〉 ≥ µ, ∀P ∈ P. (7)

3. P∗ =
∑|P|
l=1 qlPl, where Q = {ql}|P|l=1,

∑
i qi = 1,

are dual variables of (7).

Proof idea. Point 1 is an application of Sion’s minimax
theorem (Sion, 1958). Point 2 is a reformulation of the right
hand side of Equation (6). The last point, P∗’s expression,
is a consequence of the Lagrange duality.

Several remarks are in order here. First, we note that solv-
ing Problem (7) directly is intractable in practice for a suffi-
ciently large n as its number of constraints (size of P) grows
extremely fast with the number of points (e.g., equal to n!

for m = n). This motivates the use of the cutting plane
algorithm that gradually increases the size of the set P with
iterations and allows to solve intermediate problems with a
reduced number of constraints efficiently. Second, the theo-
rem is valid for any finite subset P of Π so that 1) solving
RKP(Π, C) can be done by setting P to the set of vertices of
Π and 2) solving the regularized minimax formulation with
added convex regularizer on P is covered by considering
RKP(Π̃, C), where Π̃ is a convex compact subset of Π.

Algorithm 1 Cutting set method for RKP(Π, C) with con-
straint elimination

1: Input: maxIt, C, P0⊂Π, thd1, thd2
2: t, l← 0
3: err, µ−1 ←∞
4: while t <maxIt and err > thd1 and µt−1−µt

µt−1
> thd12

do
5: Solve (7) to obtain (µt,Ct),Q
6: for l in {0, ..., |Pt| − 1} do
7: if ql ≤ thd2 then
8: Pt ← Pt \ {Pl}
9: Q← Q \ {ql}

10: Find Pt ∈ argminP∈Π 〈P,Ct〉
11: l← max(l, 〈Pt,Ct〉)
12: err ← (µt − l)/l
13: Pt+1 = Pt ∪ {Pt}
14: t← t+ 1

return
∑|Pt|−1
l=0 qlPl, Ct

Our final algorithm inspired by (Mutapcic & Boyd, 2009,
Section 5.1) then boils down to alternately performing the
following two steps for t ∈ {0, . . . ,maxIt}:

Step 1. Find Ct solving (7) over (Pt, C), where Pt is a
finite subset of Π; let µt be the value at the solution.

Step 2. For a fixed matrix Ct obtained at Step 1, find Pt ∈
argminP∈Π 〈P,Ct〉.

Step 2 of each iteration can make use of any efficient algo-
rithm for solving the classic unregularized optimal trans-
port. Empirically, we observed that even the approximate
solutions obtained by solving the entropy regularized for-
mulation of the optimal transport problem ensure the con-
vergence. We further use the constraint dropping strategy
(Mutapcic & Boyd, 2009, Sec. 5.3.2) and provide a complete
pseudo-code for our algorithm in Algorithm 1, where thd1
and thd2 respectively control the stopping criterion and the
constraint elimination. The proposed algorithm is generic
and can also be used to solve the problems underlying the
SRW and StrOT distances seen previously. Moreover, it
acts as a meta-algorithm by implicitly choosing (or learn-
ing depending on the construction of the set C) the “right”
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cost function. This differs from other existing methods on
learning the cost matrix in the OT framework (Cuturi &
Avis, 2014; Zhao & Zhou, 2018) that usually learn this latter
using the a priori similarity between the histograms.

Finally, Algorithm 1 is guaranteed to converge in a finite
number of iterations with the latter being upper-bounded
thanks to the following proposition.

Proposition 3. Let T be the number of iterations required
by Algorithm 1 to reach error err(T ) ≤ thd1. Then,

T ≤
(

diam∞ (C) + RKP(P0, C)
2.thd1

+ 1

)dim(C)+1

where diam∞ (C) := supC1,C2∈C,i,j
∣∣C1

ij −C2
ij

∣∣ and
dim(C) is the dimension of the affine hull of C. Also, ∀t ≥ 0,
we have that 0 ≤ RKP(Pt, C)− RKP(Π, C) ≤ err(t).

Proof idea. We adapt the proof technique presented in (Mu-
tapcic & Boyd, 2009, Section 5.2) to our case, after re-
writing the right hand side of Equation (6) as as

min
C∈C

max
P∈Pt

(−〈P,C〉F )

to make our problem coincide with the authors’ formulation.

This theorem offers interesting insights regarding the conver-
gence speed of the proposed algorithm. First, it introduces
the dependence of the latter on diam∞ (C), which can be
interpreted as a degree of disagreement between the cost
matrices in C so that one may need more iterations to reach
precision err when they disagree. Second, the presence of
the value of the initial nominal problem RKP(P0, C) reflects
the influence of the initialization P0. Finally, when C lies
in a subspace of a much smaller dimension than m × n
(i.e., in case of the Mahalanobis distance, C is the image
of d× d matrices by a linear mapping, while for the finite
number of matrices, dim(C) is dim(span(C1, ...,Cn)))),
the algorithm needs much less iterations as highlighted by
the presence of dim(C) in the exponent.

3.4. Variations for different choices of C

Below, we express the maximization problem (7) over Pt ×
C at step t ≥ 0 of Algorithm 1, for both choices of C
considered in Section 3.2, in a more convenient way.

Proposition 4 (Finite set C). Let C = Conv ({C1, ...,Cd}).
Then, for t ≥ 0, solving the problem given in (7) over Pt×C
is equivalent to the following linear program

min
p∈Rd

+

1Td p

s.t.Gp ≥ 1|Pt|, (8)

C0

C1

C2

C3C̃3

C̃0

C̃1

C̃2

C̄0

C̄3

C̄2

C̄1

C Initial matrix
C̃ Normalized matrix
C̄ Minimizer of (6)

Norm-2 sphere
Mahalanobis ball

Figure 2. Illustration of the notion of matrix cost stability. Every
matrix Ci is normalized so as to get a matrix C̃i which lies on the
norm-2 sphere. C̄i is the minimizer of Problem 6. The stability
(Definition 1) comes from the difference of the cost transports
induced by C̄i and C̃i.

where G ∈ R|Pt|×d with Gkl = 〈Pk,Cl〉. Moreover,

C∗ =

∑d
k=1 p

∗
kCk∑d

k=1 p
∗
k

, P∗ =

∑|Pt|
l q∗l Pl∑|Pt|
l q∗l

,

where p∗ and q∗ are optimal solutions of (8) and its dual.

For the case of the infinite family of Mahalanobis distances,
we propose a more general result that considers the follow-
ing set of non-centered Mahalanobis distances:

CC = {C + EM ∈Rm×n |EM
ij = (xi − yj)

TM(xi − yj);

M ∈ Sd+(R); ‖M‖p≤r}. (9)

for an arbitrary radius r > 0.

Proposition 5 (Non centered family of Mahalanobis dis-
tances). For a fixed C, let CC be defined as in (9). Then, for
t ≥ 0, solving (7) over Pt×CC, is equivalent to solving the
following convex program

min
P∈Conv(Pt)

r‖VP‖q +
∑
ij

(P)ij(C)ij . (10)

Moreover, if P∗ is an optimal solution of (10), then M∗ is
as in Proposition 1 with γ replaced by P∗.

In the following, we consider the case of p = 2. By Corol-
lary 1, M∗ is PSD even without imposing such a constraint.

3.5. Towards the notion of stability of cost matrices

In this section, we define a new notion of OT stability for a
cost matrix C based on a non-centered convex set CC.

Definition 1. For a cost matrix C and its associated convex
set CC introduced in (9), for some r > 0, we define the
stabilityWSC,r as follows:

WSC,r =WCC(µ1, µ2)−WC(µ1, µ2)
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=min
P∈Π

max
‖M‖≤r

〈
P,C + EM

〉
− min

P∈Π
〈P,C〉 .

Roughly speaking, Definition 1 tells us that the Wasserstein
distance between µ1 and µ2 associated with a stable cost ma-
trix C should not differ much from the Wasserstein distance
calculated based on the worst cost matrix in the neighbor-
hood of C. Note that the latter is defined as a Mahalanobis
ball allowing us to define the stability of C w.r.t. the finite
sets X and Y . To be able to compare different stabilities for
a family of cost matrices {Ci}Ki=1, we normalize each Ci

either by diving its elements by its Frobenius norm or by the
associated transport cost WCi(µ1, µ2). Figure 2 illustrates
the intuition behind the notion of cost matrix stability where
the Frobenius norm is used for the normalization.

4. Experiments
In this section, we first illustrate our algorithm’s speed of
convergence and compare it to solving the original LP prob-
lem from (7). Then, we reproduce a simulated problem from
(Paty & Cuturi, 2019) to assess the algorithm’s ability to
correctly identify the subspace of a lower dimensionality in
which the transformation between the two samples lies. In
what follows, we use the author’s implementation of SRW
but, despite our best effort for reproducibility, we could not
obtain the code for StrOT even after a written request. The
second part of our experiments is related to the notion of
stability defined in Section 3.5. We first bring to light a
correlation between the stability and the noise resistance of
a cost matrix. Then, we show that selecting the most stable
matrix allows to efficiently transport colors between two
images in a color transfer task. The code for the different
experiments is available on this link3.

4.1. Convergence and execution time

We consider the case where C is the set of convex combi-
nations of a given number of cost matrices denoted as |C|.
The convergence of Algorithm 1 is illustrated in Figure 3
(left) by plotting the evolution of the quantity err(t) :=
|µt − 〈Pt,Ct〉| along the iterations for |C| ∈ {10, 40, 90}.
From this plot, we see that the convergence becomes slower
as |C| grows, which is expected because µt is the value
at the solution of Problem (7) over Conv (Pt) × C. Sec-
ond, for |C| = 10, Algorithm 1 already achieves an error
err(t) ≤ 10−10 after t = 100 iterations. This confirms that
Pt does not have to grow until it becomes the set of vertices
of Π, as |P100| ≤ |P0|+100� n! = 100!. We also test our
algorithm with the entropic regularization of the transport
matrix with λ ∈ {1, 0.1, 0.01} as regularization parame-
ter, using Sinkhorn algorithm (Cuturi, 2013) for |C| = 40.

3https://github.com/sofiendhouib/minimax_
OT.

For this setting, we initialize it with P0 = { 1
mn1m1Tn} for

any λ > 0, as this set P0 is included in the feasible set of
entropy-regularized transport (as suggested in the discussion
of Proposition 2). Interestingly, we have noticed that the
algorithm does not converge if P0 is a subset of the vertices
of transportation polytope Π in the regularized case. The
results of this experiment are reported in Figure 3 (middle),
where we observe the convergence even with the entropy
regularization. Additionally, we note that due to the linearity
of the mapping 〈·,P〉 for all P ∈ Π, Problem (4) can be
reformulated as the following LP:

min
P∈Π,η≥0

η,

s.t. 〈P,Cl〉 ≤ η ∀1 ≤ l ≤ d.

It turns out that this is nothing more than the dual of
Problem (7). Under this formulation, solving RKP(Π, C)
becomes tractable for m = n = 100 and |C| ∈
{10, 20, ..., 90} and allows us to compare the execution time
of solving the LP problem to that of our algorithm in Figure
3 (right). As the number of candidate matrices grows, our
algorithm becomes much more efficient than solving the full
LP problem. This is rather expected since at each iteration,
it solves a linear program with much less constraints (the
problem is restricted to Conv (Pt) × C instead of Π × C)
and it leverages efficient algorithms for solving problem (2).

4.2. Comparison to SRW

In this series of experiments, we consider the fragmented hy-
percube dataset studied in (Paty & Cuturi, 2019) and earlier
in (Forrow et al., 2019) and compare RKP to both the SRW
and the Wasserstein distances. To proceed, let {el}1≤l≤d
be the canonical basis of Rd and let X = {xi}mi=1 and
Y = {yj}ni=j be two finite sets drawn i.i.d. from the
uniform distribution over the d-dimensional hypercube
U([−1, 1]d) and its pushforward distribution under the map-
ping T : x 7→ x+ 2 sgn (x)� (

∑k
i=1 ei), where � denotes

elementwise multiplication and k ∈ J1, dK, respectively.
Therefore, by construction, there are k relevant features and
d− k features that contain no useful information. Depend-
ing on the choice of C, two cases of our algorithm are tested:
1) squared Euclidean distance after projecting on all combi-
nations of two vectors of the canonical basis C = {Cs,l ∈
Rm×n|(Cs,l)ij = ((xi−yj)

T (es+el))
2; 1 ≤ s < l ≤ d}

and 2) the Mahalanobis ball centered at 0 as defined in
Section 3.2.1. Note that in this latter case rank(M∗) = k.

Figure 4 (left) reproduces the experiments of (Paty & Cuturi,
2019) and shows that the original OT (bottom left) is sensi-
tive to noise, while both SRW and RKP (for the 2 configura-
tions considered) are able to recover the true pushforward
transformation. However, while SRW requires a hyperpa-
rameter k to constrain the rank of the Mahalanobis matrix,
our method is parameter-free since k is found automatically

 https://github.com/sofiendhouib/minimax_OT
 https://github.com/sofiendhouib/minimax_OT
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Figure 3. (left) Evolution of the error along the iterations for |C| ∈ {10, 40, 90}; (middle) Evolution of the error with a regularization
parameter λ ∈ {1, 0.1, 0.01}; (right) Execution time of our algorithm vs solving the original LP problem with |C| ∈ {10, 20, ..., 90}
and n = m = 100. The experiments are repeated 30 times. The median and the interval between the first and third quartiles are reported.

Figure 4. (left) Results obtained on the fragmented hypercube for m = n = 250, d = 30 and k = 2 with (top row) our approach with
2D projections and Mahalanobis distances; (bottom row) Original OT problem and SRW method of (Paty & Cuturi, 2019); (middle)
Sorted eigenvalues of M∗ obtained using RPK averaged over 100 runs for different values of k reveals a phase transition between k
dominant and the k + 1 eigenvalues; (right) Correlation between the stability and the sensitivity to noise.

Figure 5. (left) Source (ocean) and target (sky) images considered as probability distributions; (right) Cost matrices sorted by Wasserstein
stability. The first 50 are Mahalanobis cost matrices, while the last 50 are random cost matrices.

as illustrated in Figure 4 (middle). In this figure, we plot
the eigenvalues of M∗ for different values of k and observe
that the eigengap between the k largest eigenvalues and the
(k + 1)th eigenvalue clearly reveals that rank(M∗) = k.

4.3. Stability and noise sensitivity

Below, we illustrate the correlation between the cost matrix
stability and the sensitivity of the Wasserstein distance to the
presence of noise using both toy and a real-world datasets.
The latter one is composed of 100 zeros and 100 ones com-
ing from the MNIST dataset, after reducing its dimension-
ality to 10 with UMAP (McInnes et al., 2018). The former

consists of 100 points drawn from two 10-dimensional Gaus-
sian distributions centered at 010 and 3× 110 respectively
with unit variance. For both datasets, we generate a family
of cost matrices {Ci}50

i=1 based on random Mahalanobis
distances with different norms, normalize them so that their
Frobenius norm equals to 1 and computeWSCi,r=0.01 from
Definition 1 for all i. To introduce noise to each Ci, we add
a random Mahalanobis cost matrix EN with ‖N‖2 = r to
it and compute the noise sensitivity defined as:

NSCi
=

∣∣∣∣min
P∈Π
〈P,Ci〉 − min

P∈Π

〈
P,Ci + EN

〉∣∣∣∣ .
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Note that we apply a Mahalanobis noise which has the ad-
vantage of taking into account the point distributions and can
be applied on any matrix Ci. Figure 4 (right) presents the
results of this experiment averaged over 200 runs and shows
a clear correlation between the stability and noise sensitiv-
ity indicating that the most stable matrices are more noise
tolerant. Other experiments on the MNIST dataset provided
in the supplementary material show a similar behavior.

4.4. Color transfer

In this last experiment, we show how we can benefit from
the notion of stability to address a color transfer task where
the goal is to transfer the colors from a blueish sky image
to the reddish ocean image shown in Figure 5 (left). Here,
we use OT between the sets of pixels in the RBG space
extracted from both images. For the sake of efficiency, we
consider only 200 pixels from each image and generalize the
obtained OT mapping to the remaining pixels following the
method detailed in (Ferradans et al., 2014). As before, we
use {Ci}50

i=1 as meaningful cost matrices and add 50 com-
pletely random matrices that are unrelated to the considered
task. The results of this experiment given in Figure 5 (right)
show a significant gap in terms of stability between the
Mahalanobis matrices (the first 50 matrices on the x-axis)
and the random ones (the last 50). This tends to highlight
the fact that the stability can be used as a criterion to se-
lect a good cost matrix, and therefore to induce a relevant
Mahalanobis distance. This also holds in terms of visual
perception as illustrated in Figure 5 (right). Even if the most
stable matrix is visually very similar to the Euclidean one, a
finer evaluation reveals more discontinuities in the center of
the picture, on the water.

5. Conclusion
In this paper, we study a general formulation of the minimax
OT problem that consists in optimizing over the coupling
matrix w.r.t. the worst cost function from a certain convex
set of cost functions. When the latter is given by an infinite
family of Mahalanobis distances, we highlight several novel
properties of the considered problem and characterize the
different features of its solutions. We further show how the
underlying optimization problem can be solved in practice
using a variation of a cutting set algorithm with theoretical
guarantees regarding its convergence speed. Finally, we de-
fine a new notion of stability for cost matrices in OT based
on the studied minimax problem and reveal a correlation be-
tween this stability and the noise resistance of the matrices.
This leads to a criterion that can be used to select a relevant
cost function which has been shown to be efficient on both
toy and real-world data. A promising line of research might
be to find the most stable cost matrix from a continuous set.
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Regularized Discrete Optimal Transport. SIAM Journal
on Imaging Sciences, 7(3):1853–1882, 2014.

Forrow, A., Hütter, J.-C., Nitzan, M., Rigollet, P.,
Schiebinger, G., and Weed, J. Statistical optimal trans-
port via factored couplings. In AISTATS, pp. 2454–2465,
2019.

Genevay, A., Peyre, G., and Cuturi, M. Learning generative
models with sinkhorn divergences. In AISTATS, pp. 1608–
1617, 2018.



A Swiss Army Knife for Minimax Optimal Transport

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In NIPS, pp. 2672–2680,
2014.
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