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Introduction

Malaria is an infectious disease caused by a species of parasite that belongs to the genus Plasmodium. This pathology affects millions of people over the world, being predominant in equatorial region, e.g., Amazon rainforest, sub-saharan Africa and South East Asia.

The Plasmodium is transmitted by female Anopheles mosquitoes when they bite and, thus, feed on human blood. Control mechanism acting on disease dynamics take into account the behavioural characteristics of mosquito population, such as anthrophagy, endophily, endophagy, physiological susceptibility to pyrethroids, and night-biting preference. The recent reports on Malaria transmission shown that the long-term use of residual spraying (IRs) and insecticide-treated nets (ITNs) has been driving mosquito physiological and behavioural resistance. Many mosquito species exhibit high levels of phenotypic plasticity that can be expressed on host preference, biting activity, etc. Such heritable phenotypic plasticity allows individuals mosquitoes to flexibly adapt their behaviour according to the environmental conditions. The development of a crepuscular, outdoor feeding phenotype among anopheline population has been observed in areas of intensive use of IRs and ITNs. This adjust on biting time can jeopardize the success of Malaria control and promotes parasite evolution [START_REF] Gatton | The importance of mosquito behavioral adaptations to malaria control in Africa[END_REF]. Hence, researches on the population dynamics of mosquitoes become essential.

In this paper, we propose a partial differential equation system to model the plasticity of mosquitoes in a natural environment, namely without any intervention of human activities, such as IRs and ITNs. Let p(a, t, x) be the distribution of individual mosquitoes of age a ≥ 0 at time t ≥ 0 and biting activity at time x ∈ [0, [START_REF] Yu | Asymptotic expression in L[0, r m ] for population evolution and controllability of population system[END_REF]. We set that the biting activity of mosquitoes is periodic in 24 hours. It is a natural hypothesis due to the behavioural characteristics of mosquitoes, such as night-biting preference. In fact, we have periodic conditions in the bitting time because mosquitoes feed almost at the same time each day. As we consider the bitting time as a variable belonging to (0,24) (in hours ) then the density of mosquitoes and its derivative are equal at 0 and 24. The introduction of the variable x in the system has the objective of illustrate mosquito biting behaviour, which will be of great importance in the following research on mosquitoes control. Let a † be the life expectancy of an individual mosquito and T be a positive constant. Let β(a) ≥ 0 be the natural fertility-rate which is bounded, nonnegative and measurable on [0, a † ], and µ(a) ≥ 0 be the natural mortality-rate of mosquitoes of age a. The new generation of mosquitoes can adapt to ensure its survival and reproduction, changing the biting time in order to maximize its fitness. This is modeled by the kernel function K(x, s) in the renewal equation. The specific form of K in the following is an outcome of some examinations.

The parameter η is the maximum difference on biting time that the new generation can reach. Mosquitoes can change their biting time up to a diffusive coefficient δ which is a positive constant. Thus, the evolution of the distribution p(a, t, x) is governed by the system

                     Dp -δ∆ x p + µ(a)p = 0, (a, t, x) ∈ Q a † ,
p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a † ) × (0, T ),

∂ x p(a, t, 0) = ∂ x p(a, t, 24), (a, t) ∈ (0, a † ) × (0, T ), p(0, t, x) = a † 0 β(a) x+η x-η K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T ) × (0, 24), p(a, 0, x) = p 0 (a, x), (a, x) ∈ (0, a † ) × (0, 24). (1.1)
where

Q a † = (0, a † ) × (0, T ) × (0, 24), ∆ x p(a, t, x) = ∂ xx p(a, t, x), the kernel K(x, s) =    (x -s) 2 e -(x-s) 2 , s ∈ (0, 24), 0, else,
and Dp(a, t, x) is the directional derivative of p with respect to direction (1, 1, 0), that is,

Dp(a, t, x) = lim ε→0 p (a + ε, t + ε, x) -p (a, t, x) ε .
For smooth enough p, it is obvious that

Dp = ∂p ∂t + ∂p ∂a .
Notice that in our model, the boundary condition is assumed to be periodic and the fertility term is nonlocal with the kernel K(x, s). In fact, both Dirichlet boundary condition and local fertility term are very popular in mathematical modeling, such as dynamics population models of a single species with age dependence and spatial structure. We now review some known results about such models, that is, replacing the periodic boundary condition and the fertility term by the Dirichlet condition and a † 0 β(a)p(a, t, x)da respectively. Chan and Guo [START_REF] Chan | On the semigroups for age-size dependent population dynamics with spatial diffusion[END_REF] considred this model in the semigroup framework, by setting the fertility-rate β and the mortality-rate µ being independent of the space variable x. They identified the infinitesimal generator and studied its spectral properties, which could be used to get the asymptotic behavior of the solutions. Then, Guo and Chan [START_REF] Guo | On the semigroup for age dependent population Dynamics with spatial diffusion[END_REF] removed the independence setting of β, µ and got the asymptotic expression of the solution by analyzing the spectrum of the infinitesimal generator. We also refer to the works of Langlais [START_REF] Langlais | Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion[END_REF], for the study of the long-time behaviour of the model where β and µ depend on the distribution p. We refer to [START_REF] Rhandi | Asymptotic behaviour of a non-autonomous population equation with diffusion in L 1[END_REF] for the asymptotic behaviour of an age-structured popu- We are interested in the ways on which Guo and Chan [START_REF] Chan | On the semigroups for age-size dependent population dynamics with spatial diffusion[END_REF][START_REF] Guo | On the semigroup for age dependent population Dynamics with spatial diffusion[END_REF] studied the asymptotic behaviour of the population model in [START_REF] Chan | On the semigroups for age-size dependent population dynamics with spatial diffusion[END_REF][START_REF] Guo | On the semigroup for age dependent population Dynamics with spatial diffusion[END_REF] throught the analysis of the spectrum of the infinitesimal generator and using some positive semigroup theories. In this paper, we mainly focus on the asymptotic behavior in Section 2. The key step for our paper is to find, for any initial p 0 (a, x) ∈ D(A), the asymptotic expression p(a, t, x).

Before presenting our results, we introduce some usefull notations. Consider X = L 2 ((0, a † ) × (0, 24)) with the usual norm, and the operator A : X -→ X defined as

Aφ(a, x) = - ∂φ(a, x) ∂a + δ∆φ(a, x) -µ(a)φ(a, x), ∀φ(a, x) ∈ D(A), (1.2) 
where

D(A) = {φ(a, x)|φ, Aφ ∈ X, φ(a, 0) = φ(a, 24), ∂ x φ(a, 0) = ∂ x φ(a, 24), φ(0, x) = a † 0 β(a) x+η x-η K(x, s)φ(a, s)dsda}. (1.3)
From the definition of the operator A, the system (1.1) can be transformed into an evolutionary equation on the space X:

     dp(a, t, x) dt = Ap(a, t, x),
p(a, 0, x) = p 0 (a, x).

For the following notations, we can refer to Marek [16, p.609] and Clement [START_REF] Clément | One parameter semigroups[END_REF] for instance. If A is a linear operator from X into X, then ρ(A) denotes the resolvent set of A, that is, ρ(A) is the set of all complex numbers λ for which (λI -A) -1 is a bounded automorphism of A (let R(λ, A) = (λI -A) -1 called the resolvent operator), where I denotes the identity operator. The complement of ρ(A) in the complex plane is the spectrum of A, and it is denoted by σ(A). We denote by γ(A) the spectral radius of A, that is,

γ(A) = sup{|λ| : λ ∈ σ(A)}.
If A is an infinitesimal generator of a C 0 -semigroup T (t) on the space X, the spectral bound s(A) can be denoted by

s(A) = sup{|λ| : Reλ ∈ σ(A)}. ω(A) = inf t>0 1 t log T (t) L 2 ((0,a † )×(0,24)) = lim t→+∞ 1 t log T (t) L 2 ((0,a † )×(0,24)) .
Let a † be a finite positive number. From the biological point of view addressed in [START_REF] Garroni | Age dependent population diffusion with external constraints[END_REF][START_REF] Gurtin | A system of equations for age dependent population diffusion[END_REF][START_REF] Webb | Theory of nonlinear age-dependent population dynamics[END_REF], we assume the following assumptions throughout this paper:

(J1) µ(a) ∈ L 1 loc ([0, a † )) and a † 0 µ(ρ)dρ = ∞; (J2) β(a) ∈ L ∞ ((0, a † )), mes{a|a ∈ [0, a † ], β(a) > 0} > 0; (J3) p 0 (a, x) ∈ L ∞ ((0, a † ) × (0, 24)), p 0 (a, x) ≥ 0.
The following theorems are the main results of our paper and they will be proved in the following sections.

Theorem 1.1 For any initial p 0 (a, x) ∈ D(A), the semigroup solution p(a, t, x) ∈ C([0, +∞); X)
of (1.1) has the following asymptotic expression:

p(a, t, x) =e λ 0 t e -λ 0 a T (0, a)C λ 0 a † 0 β(a) x+η x-η K(x, s) a 0 e -λ 0 (a-σ) T (σ, a) p 0 (σ, s)dsdadσ + o(e (λ 0 -)t ),
where λ 0 , C λ 0 and T (τ, s) will be defined in Section 2.

The steady state of our model is very important, especially for our further researches about the control problem. The steady state of (1.1) is denoted by p s , and should be a solution of

             ∂ a p s (a, x) -δ∆p s (a, x) + µ(a)p s (a, x) = 0, (a, x) ∈ (0, a † ) × (0, 24), p s (a, 0) = p s (a, 24), a ∈ (0, a † ), ∂ x p s (a, 0) = ∂ x p s (a, 24), a ∈ (0, a † ), p s (0, x) = a † 0 β(a) x+η x-η K(x, s)p s (a, s)dsda, x ∈ (0, 24).
(1.4) Furthermore, p s (a, x) satisfies p s (a, x) ≥ 0 a.e. (a, x) ∈ (0, a † ) × (0, 24).

(1.5)

Theorem 1.2 Consider (1.4) with λ 0 satisfying Theorem 1.1.

(1) If λ 0 > 0, then there is no nonnegative solution of (1.4) satisfying (1.5).

(2) If λ 0 = 0, then there exists infinitely many nontrivial solutions of (1.4) satisfying

(1.5). Furthermore, for any nonzero steady state p s (a, x), there exists ρ 0 > 0 such that p s (a, x) ≥ ρ 0 > 0, a.e. (a, x) ∈ (0, a 1 ) × (0, [START_REF] Yu | Asymptotic expression in L[0, r m ] for population evolution and controllability of population system[END_REF],

where a 1 ∈ (0, a † ).

(3) If λ 0 < 0, then only trivial solutions p s of (1.4) satisfying (1.5) exist, that is

p s (a, x) = 0 a.e. (a, x) ∈ (0, a † ) × (0, 24).
The rest of this paper is organized as follows. In Section 2, we make some preparations which are necessary in what follows and we prove that A is an infinitesimal generator of a C 0 -semigroup T (t). In section 3, we get the asymptotic behavior of (1.1) by analyzing the spectrum of the semigroup T (t). Many abstract theories about semigroups used in this section can be referred to [START_REF] Clément | One parameter semigroups[END_REF][START_REF] Yu | Asymptotic expression in L[0, r m ] for population evolution and controllability of population system[END_REF][START_REF] Sawashima | On spectral properties of some positive operators[END_REF]. According to the asymptotic behaviour, we investigate the existence of steady states in Section 4.

Preliminaries

In this section, we give some auxiliary lemmas as a preparation for our main results that will be derived later. In fact, we have to prove that A is an infinitesimal generator of a

C 0 -semigroup T (t).
At the beginning of this section, we study the following system

                   Dp -δ∆ x p + µ(a)p = 0, (a, t, x) ∈ Q a † , p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a † ) × (0, T ), ∂ x p(a, t, 0) = ∂ x p(a, t, 24), (a, t) ∈ (0, a † ) × (0, T ), p(0, t, x) = C a † 0 β(a)p(a, t, x)da, (t, x) ∈ (0, T ) × (0, 24), p(a, 0, x) = p 0 (a, x), (a, x) ∈ (0, a † ) × (0, 24), (2.1) 
where C can be any constant. Notice that the following properties hold for any fixed constant C and we will apply this in the proof of Theorem 3.1. Defining the operator F : X → X as:

Fφ(a, x) = - ∂φ(a, x) ∂a + δ∆φ(a, x) -µ(a)φ(a, x), ∀φ(a, x) ∈ D(F), (2.2) 
where

D(F) = {φ(a, x)|φ, Fφ ∈ X, φ(a, 0) = φ(a, 24), ∂ x φ(a, 0) = ∂ x φ(a, 24), φ(0, x) = C a † 0 β(a)φ(a, x)da},
we can rewrite (2.1) as

     dp(a, t, x) dt = Fp(a, t, x), p(a, 0, x) = p 0 (a, x).
Define an operator

F λ = a † 0 Cβ(a)e -λa e -a 0 µ(ρ)dρ e Ba da, (2.3) 
where the operator B : L 2 ((0, 24)) -→ L 2 ((0, 24)) is defined as

Bu(x) = δ∆u(x), for u(x) satisfying    u(0) = u(24), u (0) = u (24).
Lemma 2.1 The operator F defined by (2.2).

(1) F has a real dominant eigenvalue λ 0 , that is, λ 0 is greater than any real parts of the eigenvalues of F.

(2) For the operator F λ 0 , 1 is an eigenvalue with an eigenfunction φ 0 (x). Furthermore,

γ(F λ 0 ) = 1.
Proof.

(1) We denote by (λ i , φ i ) i≥0 the eigenvalues and the eigenfunctions of the following problem

         -δ∆φ i (x) = λ i φ i (x), x ∈ (0, 24), φ i (0) = φ i (24), ∂ x φ i (0) = ∂ x φ i (24)
, where 24 0 φ 2 i (x)dx = 1, i ≥ 0, and φ 0 (x) > 0 with x ∈ (0, 24). The existence of eigenvalues and eigenfunctions can be proved by re-scaling the eigenvalues and periodic eigenfunctions of -v = λv in R since we only consider one dimension in this paper. It is obvious that λ 0 = 0 and φ 0 (x) is a fixed positive constant. We also assume that 0

= λ 0 < λ 1 ≤ λ 2 ≤ • • • . F φ(a) = - dφ(a) da -µ(a)φ(a), ∀φ ∈ D(F ),
where

D(F ) = {φ(a)|φ, F φ ∈ L 2 (0, 24), φ(0) = C a † 0 β(a)φ(a)da}.
Let { λj } j≥0 be the eigenvalues of F , that is, the solutions of the following equation

1 -C a † 0 β(a)e -λj a-a 0 µ(ρ)dρ da = 0. (2.4)
We assume that λ0 > Re λ1 ≥ Re λ2 ≥ • • • , even if it means re-arrange λj . Now, we divide two steps to consider the following equation

(λI -F)φ = ψ, ∀ψ ∈ X. (2.5) 
Step 1, for any i, j ≥ 0, λ

+ λ i = λj , define φ(a, x) = ∞ i=0 R(λ + λ i , F ) ψ(a, x), φ i (x) φ i (x),
where ψ(a, x), φ i (x) = 24 0 ψ(a, x)φ i (x)dx, R(λ, F ) = (λI -F ) -1 , the resolvent operator of F . Firstly, we prove that φ(a, x) ∈ X is well defined. Since F is the infinitesimal generator of a bounded strongly continuous semigroup from [START_REF] Song | Spectral properties of population operator and asymptotic behaviour of population semigroup[END_REF], there exist constants M ,

ω > 0 such that R(λ, F ) ≤ M Reλ -ω , for Reλ > ω.
Recalling that λ i → ∞ as i → ∞, there is N such that Re(λ

+ λ i ) > ω when i > N . Then, one can compute that ∞ i=0 R(λ + λ i , F ) ψ(a, x), φ i (x) 2 ≤ N i=0 R(λ + λ i , F ) ψ(a, x), φ i (x) 2 + M Re(λ + λ N ) -ω 2 ∞ i=N +1 ψ(a, x), φ i (x) ≤ N i=0 R(λ + λ i , F ) ψ(a, x), φ i (x) 2 + M Re(λ + λ N ) -ω 2 ψ 2
It implies that φ(a, x) ∈ X is well defined. Secondly, we prove φ(a, x) is a solution of (2.5).

For any n > 0, (λI -F)

n i=0 R(λ + λ i , F ) ψ(a, x), φ i (x) φ i (x) = n i=0 [λR(λ + λ i , F ) ψ(a, x), φ i (x) φ i (x) -FR(λ + λ i , F ) ψ(a, x), φ i (x) φ i (x)] = n i=0 [λR(λ + λ i , F ) ψ(a, x), φ i (x) φ i (x) -F R(λ + λ i , F ) ψ(a, x), φ i (x) φ i (x) -R(λ + λ i , F ) ψ(a, x), φ i (x) δ∆φ i (x)] = n i=0 ((λ + λ i )I -F )R(λ + λ i , F ) ψ(a, x), φ i (x) φ i (x) = n i=0 ψ(a, x), φ i (x) φ i (x) →ψ(a, x), n → ∞.
Since F and ∆ are both closed operators on X, one can infer that F is closed. Hence, (λI -F)φ = ψ, that is, φ(a, x) is a solution of (2.5). Furthermore, it can be shown that φ is the unique solution of (2.5), and thus λ ∈ ρ(F), the resolvent set of F and

R(λ, F)ψ = ∞ i=0 R(λ + λ i , F ) ψ(a, x), φ i (x) φ i (x).
Step 2, for some i, j such that λ + λ i = λj , it is easy to check that

φ(a, x) = e -(λ+λ i )a-a 0 µ(ρ)dρ φ i (x) satisfies (λI -F)φ = 0, that is, λ = λj -λ i ∈ σ(F).
In particular, λ 0 = λ0 -λ 0 is the dominant eigenvalue of F, with eigenfunction

φ λ 0 (a, x) = e -λ0 -a 0 µ(ρ)dρ φ 0 (x).
It is easy to check that Cφ 0 (x) is the eigenfunction of the eigenvalue 1 of F λ 0 , where λ 0 = λ0 -λ 0 . Let any φ(x) ∈ L 2 (0, 24) be expanded as

φ(x) = ∞ i=0 α i φ i (x). F λ 0 φ(x) = ∞ i=0 α i a † 0 Cβ(a)e -λ 0 a e -a 0 µ(ρ)dρ e Ba φ i (x)da = ∞ i=0 α i a † 0
Cβ(a)e -( λ 0 +λ i )a e -a 0 µ(ρ)dρ daφ i (x).

Since λ i ≥ λ 0 and then λ 0 + λ i ≥ λ0 , it follows from (2.4) that

a † 0 Cβ(a)e -( λ 0 +λ i )a e -a 0 µ(ρ)dρ da ≤ 1.
Thus, γ(F λ 0 ) = 1.

Following the proof of lemma 1 in [START_REF] Guo | On the semigroup for age dependent population Dynamics with spatial diffusion[END_REF] carefully, we can get the following lemma:

Lemma 2.2 For any 0 ≤ s 0 < a + , there exists a unique mild solution u(s,x), 0 ≤ τ ≤ a + -s 0 to the evolution equation on X for any initial function φ(x) ∈ L 2 ((0, 24))

   ∂u(s,x) ∂s = (-µ(s 0 + s) + B)u(s, x), u(τ, x) = φ(x),
where the operator B is considered to be the Laplace operator with periodic boundary condition. Define solution operators of the initial value problem by T (s 0 , τ, s)φ(x) = u(s, x), ∀φ(x) ∈ L 2 ((0, 24)), then T (s 0 , τ, s)φ(x) is a family of uniformly linear bounded compact positive operators on X and is strongly continuous about τ ,s. Furthermore,

T (s 0 , τ, s) = e -s τ µ(s 0 +ρ)dρ e B(s-τ ) ,
where e Bs is the positive analytic semigroup generated by the operator B.

Proof. The proof is similar as that of lemma 1 in [START_REF] Guo | On the semigroup for age dependent population Dynamics with spatial diffusion[END_REF], so we omit the details here.

Lemma 2.3

The operator A defined by (1.2) and (1.3) is the infinitesimal generator of a C 0 -semigroup T (t) on the space X.

Proof. We first prove that λ ∈ ρ(A) for all sufficiently large λ > 0. In order to do this, we deal with the following equation Then define the operator B λ : L 2 ((0, 24)) → L 2 ((0, 24)) by

(λI -A)φ(a, x) = ψ(a, x), ∀ψ ∈ X, that is,    ∂φ(a,x) ∂a = -(λ + µ(a))φ(a, x) + δ∆φ(a, x) + ψ(a, x), φ(0, x) = a † 0 β(a)
B λ (φ(x)) = a † 0 β(a) x+η x-η K(x, s)e -λa T (0, a)φ(s)dsda. (2.7) 
Here, notice that B λ (φ(x)) is nonlocal in x with φ(x), since the part of the operation B λ on φ(x) is the integral x+η x-η K(x, s)T (0, a)φ(s)ds. This is different of [START_REF] Chan | On the semigroups for age-size dependent population dynamics with spatial diffusion[END_REF] and [START_REF] Guo | On the semigroup for age dependent population Dynamics with spatial diffusion[END_REF], whose related operators are local. Therefore, λ ∈ ρ(A) if and only if 1 ∈ ρ(B λ ). Furthermore, it follows from (2.6) and (2.7) that

φ(0, x) =(I -B λ ) -1 a † 0 β(a) x+η x-η K(x, s) a 0 e -λ(a-δ) T (δ, a)ψ(δ, s)dδdsda, and R(λ, A)ψ(a, x) =e -λa T (0, a)(I -B λ ) -1 a † 0 β(a) x+η x-η K(x, s) a 0 e -λ(a-δ) T (δ, a)ψ(δ, s)dδdsda + a 0 e -λ(a-δ) T (δ, a)ψ(δ, x)dδ.
(2.8)

By the definitions of K(x, s) and T (0, a), we can show that

B λ ≤ C a † 0 β(a)e -λa e -a 0 µ(ρ)dρ e Ba da ,
where C is a constant depending on η and K(x, s), which implies that

lim λ→+∞ B λ = 0.
Hence, for all sufficiently large λ > 0, (I -B λ ) -1 exists and is bounded.

Thus 1 ∈ ρ(B λ )
which is equivalent to λ ∈ ρ(A).

On the other hand, one can compute that

Aφ(a, x), φ(a, x) ≤ N a † 0 β 2 (a)da φ(a, x), φ(a, x) , (2.9) 
for some constants N > 0, which also implies that A is an m-dissipative operator. Since λ ∈ ρ(A) for all sufficiently large λ > 0, A is a closed operator, and combining with the m-dissiptiveness of A, we know that, for all sufficiently large λ, (A -λI) is dissipative and R(I -(A -λI)) equals the whole space X. Thus from Theorem 4.6 in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], it follows that D(A -λI) is dense in X and so is D(A), since X is a Hilbert space.

The conclusion then follows from Lumer-Phillips Theorem (refer to [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]).

Asymptotic behavior

In this section, we study the asymptotic behavior of solutions of (1.1) by analyzing the spectrum of the semigroup. It means that we will prove Theorem 1.1. Now, we state the asymptotic expression which indicates the asymptotic behavior.

Theorem 3.1 (1) For the eigenvalues of the operator A, there is only one real eigenvalue λ 0 which is algebraically simple and is larger than any real part of the other eigenvalues.

(2) The semigroup T (t) has the asymptotic expression

T (t)φ(a, x) =e λ 0 t e -λ 0 a T (0, a)C λ 0 a † 0 β(a) x+η x-η K(x, s) a 0 e -λ 0 (a-δ) T (δ, a)φ(δ, s)dδdsda + o(e (λ 0 -ε)t )
where

C λ 0 = lim λ→λ 0 (λ -λ 0 )(I -B λ ) -1 and ε is any positive number such that σ(A) ∩ {λ|λ 0 -ε ≤ Reλ ≤ λ 0 } = λ 0 holds.
Proof.

(1) It will be done in two steps: (i) prove that A has only one real eigenvalue λ 0 and λ 0 is larger than any real part of the other eigenvalues; (ii) prove that λ 0 is algebraically simple by showing T (t) is compact for t ≥ a † .

(i) Define

E = {φ ∈ L 2 ([0, 24])| x+η x-η K(x, s)φ(s)ds ≥ Cφ(x)},
(ii) Integrating along the characteristic, we obtain

p(a, t, x) =      T (a -t, 0, t)p 0 (a -t, x), a ≥ t, T (0, 0, a) a † 0 β(a) x+η x-η K(x, s)p(a, t -a, s)dsda, a < t.
When t ≥ a † ,

T (t)φ(a, x) = T (0, 0, a) a † 0 β(a) x+η x-η K(x, s)[T (t -a)φ](a, s)dsda.
Let φ n weakly converge to φ in X. By the compactness of T (0, 0, a), one has

T (0, 0, a) a † 0 β(a) x+η x-η K(x, s)[T (t -a)(φ n -φ)](a, s)dsda L 2 ([0,24]) → 0.
On the other hand, T

(x, s)[T (t -a)(φ n -φ)](a, s)dsda L 2 ([0, (0, 0, a) a † 0 β(a) x+η x-η K 
≤ T (0, 0, a)

a † 0 β(a) x+η x-η K(x, s)[T (t -a)(φ n -φ)](a, s)dsda L 2 ([0,24]) ≤ M φ n -φ L 2 ([0,24])
is bounded. Using the dominant convergence theorem, we get lim n→∞

T (t)(φ n -φ) = 0;
that is, T (t)φ n converge strongly to T (t)φ. Thus, T (t) is compact.

By the results of [START_REF] Clément | One parameter semigroups[END_REF], the semigroup T (t) generated by A, is a positive semigroup and

λ 0 = s(A) = ω 0 (A)
where s(A), ω 0 (A) denote the spectral bound of A and the growth bound of the semigroup T (t) respectively. Since T (t) is compact, it is known from [START_REF] Clément | One parameter semigroups[END_REF] that ω ess (A) = -∞.

Furthermore, from Theorem 9.10 in [START_REF] Clément | One parameter semigroups[END_REF], it is easy to get that

λ 0 = {λ|Reλ = s(A)}.
It means that λ 0 is a pole of the resolvent of R(λ, A). Thus, γ(B λ 0 ) = 1 is a pole of R(λ, B λ 0 ). Moreover, by (3.1), one obtains that B λ 0 is a non-semisupporting operator.

Since Theorem 1 in [START_REF] Sawashima | On spectral properties of some positive operators[END_REF], one can obtain that γ(B λ 0 ) = 1 is an algebraically simple eigenvalue of B λ 0 . This is equivalent of λ 0 being an algebraically simple eigenvalue of A.

(2) From (1), we have that σ(A) ∩ {λ|λ 0 -ε ≤ Reλ ≤ λ 0 } = λ 0 , and T (t) is a compact operator. Then from Theorem 5 of [START_REF] Yu | Asymptotic expression in L[0, r m ] for population evolution and controllability of population system[END_REF], there are constants C and T 0 , such that

T (t) -T (t)P λ 0 ≤ Ce (λ 0 -)t , t ≥ T 0 ,
where T (t) is the semigroup generated by A, P λ 0 is the mapping from X to B λ 0 , and B λ 0 is the eigenvalue space of λ 0 of A. Furthermore,

T (t)φ = T (t)P λ 0 φ + o(e (λ 0 -)t ). (3.3)
Since λ 0 is an algebraically simple eigenvalue of A, then it is known from [START_REF] Hille | Function analysis and semigroups[END_REF] that 

P λ 0 φ = lim λ→λ 0 (λ -λ 0 )R(λ, A)φ. ( 3 

Existence of steady states

As for the steady states (1.4) satisfying (1.5), our main result is Theorem 1.2. In this section, we prove Theorem 1.2 directly according to Theorem 3.1.

Proof. Firstly, let λ 0 be as defined in Theorem 3.1. Then, we look for the steady states (1.4) in the following three cases according to the sign of λ 0 .

(1)When λ 0 > 0, we argue this case by a contradiction. Assume that p s (a, x) is a nonnegative solution of (1.4) satisfying (1.5). It is easy to see that p s (a, x) = p(a, t, x) is also a solution of the following system

                    
Dp(a, t, x) -δ∆p(a, t, x) + µ(a)p(a, t, x) = 0, (a, t, x) ∈ Q a † , p(a, t, 0) = p(a, t, 24), (a, t) ∈ (0, a † ) × (0, T ),

∂ x p(a, t, 0) = ∂ x p(a, t, 24), (a, t) ∈ (0, a † ) × (0, T ), p(0, t, x) = a † 0 β(a) x+η x-η K(x, s)p(a, t, s)dsda, (t, x) ∈ (0, T ) × (0, 24), p(a, 0, x) = p s (a, x), (a, x) ∈ (0, a † ) × (0, 24).
Then by a result of Theorem 1.1, one has the asymptotic expression p(a, t, x) =e λ 0 t e -λ 0 a T (0, a)C λ 0

a † 0 β(a) x+η x-η K(x, s) a 0 e -λ 0 (a-σ) T (σ, a)p 0 (σ, s)dsdadσ + o(e (λ 0 -)t ). Thus, p s (a, x) L 2 ((0,a † )×(0,24)) = lim t→+∞ p(a, t, x) L 2 ((0,a † )×(0,24)) = +∞
which is a contradiction. Thus, there is no nonnegative solution of (1.4) satisfying (1.5).

(2) When λ 0 = 0, it means that 0 ∈ σ(A). From the definition of A, every eigenfunction related to 0 and its multiplications by any constant are solutions of (1.4).

Recalling (3.2) from the proof of Theorem 3.1, there is a nonnegative function φ λ 0 (x) ∈ L 2 (0, 24) such that

B λ 0 (φ λ 0 (x)) = a † 0 β(a) x+η x-η K(x, s)e -λ 0 a T (0, a)φ λ 0 (s)dsda = φ λ 0 (x).
By Lemma 2.2, one knows that T (0, a) is a bounded operator on X. Using Cauchy-Schwarz inequality, for arbitrary x 0 ∈ (0, 24), one obtains

|φ λ 0 (x) -φ λ 0 (x 0 )| = a † 0 β(a) x+η x-η K(x, s)e -λ 0 a T (0, a)φ λ 0 (s)dsda - a † 0 β(a) x 0 +η x 0 -η K(x 0 , s)e -λ 0 a T (0, a)φ λ 0 (s)dsda ≤ β(a) L ∞ (0,a † ) a † 0 x+η x-η K(x, s)T (0, a)φ λ 0 (s)dsda - a † 0 x 0 +η x 0 -η K(x 0 , s)T (0, a)φ λ 0 (s)dsda ≤ β(a) L ∞ (0,a † ) a † 0 x+η x-η (K(x, s) -K(x 0 , s))T (0, a)φ λ 0 (s)dsda + β(a) L ∞ (0,a † ) a † 0 x+η x 0 -η K(x 0 , s)T (0, a)φ λ 0 (s)dsda + β(a) L ∞ (0,a † ) a † 0 x+η x 0 +η K(x 0 , s)T (0, a)φ λ 0 (s)dsda ≤ β(a) L ∞ (0,a † ) K(x, s) -K(x 0 , s) L 2 (x-η,x+η) T (0, a)φ λ 0 (s) L 2 ((0,a † )×(0,24)) + β(a) L ∞ (0,a † ) x+η x 0 -η |K(x 0 , s)| 2 ds 1 2 T (0, a)φ λ 0 (s) L 2 ((0,a † )×(0,24)) + β(a) L ∞ (0,a † ) x+η x 0 +η |K(x 0 , s)| 2 ds 1 2 T (0, a)φ λ 0 (s) L 2 ((0,a † )×(0,24)) ≤C β(a) L ∞ (0,a † ) K(x, s) -K(x 0 , s) L 2 (x-η,x+η) φ λ 0 (s) L 2 (0,24) + C β(a) L ∞ (0,a † ) x+η x 0 -η |K(x 0 , s)| 2 ds 1 2 φ λ 0 (s) L 2 (0,24) + C β(a) L ∞ (0,a † ) x+η x 0 +η |K(x 0 , s)| 2 ds 1 2 φ λ 0 (s) L 2 (0,24)
→0, as x → x 0 , where C is the norm of T (0, a). Thus, φ λ 0 (x) is continuous about x. Then, from the proof of Lemma 2.3, it is easy to check that φ(a, x) = T (0, a)φ λ 0 (x) is an eigenfunction of the eigenvalue λ 0 = 0 of A. Therefore, the steady states are p s (a, x) = cT (0, a)φ λ 0 (x) ≥ 0, for any constant c > 0.

By a result of Lemma 2.2, we know that T (0, a) is strongly continuous with respect to a.

Hence, p s (a, x) is continuous about a, x in (0, a † ) × (0, 24).

Consider smooth function v(a, x) such that v(a, x) = e a 0 µ(ρ)dρ p s (a, x) ≥ 0 a.e (a, x) ∈ (0, a † ) × (0, 24). Then, from (1.4), v(a, x) satisfies From the strong maximum principle, v(a, x) > 0 for (0, a † ) × (0, 24). Then, v(0, x) = a † 0 β(a) x+η x-η K(x, s)e -a 0 µ(ρ)dρ v(a, s)dsda > 0 for x ∈ (0, 24). Assume by contradiction that v attains its minimum 0 at (a 0 , 0), that is, v(a 0 , 0) = 0 for some a 0 ∈ (0, a † ).

             ∂ a v -δ∆v =
Then, ∂ a v(a 0 , 0) = 0 and ∂ x v(a 0 , 0) ≥ 0. Since v(a, o) = v(a, 24) for a ∈ (0, a † ), one has that v(a 0 , 24) = 0 and ∂ a v(a 0 , 24) = 0, ∂ x v(a 0 , 24) ≤ 0. Since ∂ x v(a, 0) = ∂ x v(a, 24) for a ∈ (0, a † ), we obtain that ∂ x v(a 0 , 0) = ∂ x v(a 0 , 24) = 0. Then, ∆v(a 0 , 0) = ∂ xx v(a 0 , 0) > 0 since v(a, x) > 0 for (0, a † ) × (0, 24). Thus, (∂ a v -δ∆v)(a 0 , 0) < 0 which is a contradiction of the first equation of (4.1). So that, v(a, 0), v(a, 24) > 0 for a ∈ (0, a † ). By v(0, x) = a † 0 β(a) x+η x-η K(x, s)e -a 0 µ(ρ)dρ v(a, s)dsda, one also has that v(0, 0), v(0, 24) > 0. Therefore, we can conclude that for any a 1 < a † , p s (a, x) = e -a 0 µ(ρ)dρ v(a, x) > 0, a.e. in [0, a 1 ] × [0, 24] since a 0 µ(ρ)dρ < ∞ for a < a † . Finally, there exists ρ 0 > 0 such that p s (a, x) ≥ ρ 0 > 0, a.e. (a, x) ∈ (0, a 1 ) × (0, 24).

(3) When λ 0 < 0, it follows from the arguments of (1) that p s (a, x) L 2 ((0,a † )×(0,24)) = lim t→+∞ p(a, t, x) L 2 ((0,a † )×(0,24)) = 0. Thus, p s (a, x) = 0 a.e. (a, x) ∈ (0, a † ) × (0, 24).

0 ee

 0 x+ηx-η K(x, s)φ(a, s)dsda.Let T (0, τ, s) = T (τ, s) = e -s τ µ(ρ)dρ e B(s-τ ) and by Lemma 2.2, one has φ(a, x) = e -λa T (0, a)φ(0, x) + a -λ(a-δ) T (δ, a)ψ(δ, x)dδ, and φ(0, x) -, s)e -λa T (0, a)φ(0, s)dsda = -λ(a-δ) T (δ, a)ψ(δ, s)dδdsda.(2.6)

. 4 )eRemark 3 . 2

 432 Combining(3.3) and(3.4),T (t)φ = e λ 0 t lim λ→λ 0 (λ -λ 0 )R(λ, A)φ + o(e (λ 0 -)t ).Then, using the expression (2.8) of R(λ, A)φ, T (t)φ(a, x) =e λ 0 t e -λ 0 a T (0, a)C λ 0 -λ 0 (a-δ) T (δ, a)φ(δ, s)dδdsda + o(e (λ 0 -ε)t ). Here, we can see that Theorem 1.1 is a direct result of Theorem 3.1, so the proof of Theorem 1.1 is complete.

  0, (a, x) ∈ (0, a † ) × (0, 24), v(a, 0) = v(a, 24), a ∈ (0, a † ),∂ x v(a, 0) = ∂ x v(a, 24), a ∈ (0, a † ), v(0, x) = a † 0 β(a) x+ηx-η K(x, s)e -a 0 µ(ρ)dρ v(a, s)dsda, x ∈ (0, 24).

( 4
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where C > 0 is a sufficiently small constant depending on K. Since the coefficient C in (2.1) can be any constant, the properties of operators of (2.1) still hold for the constant C defined in E.

Recall F λ in (2.3) and denote the restrictions of B λ , F λ on E by B λ , F λ respectively.

Then from (2.7) and (2.3),

Given any nonnegative function φ(x), ψ(x) ∈ L 2 ([0, 24]), both not identical to zero, then from [START_REF] Amann | Dual semigroups and second-order linear elliptic boundary value problems[END_REF] and [START_REF] Nagel | One-parameter semigroups of positive operators[END_REF], e Ba φ, ψ > 0 for all a > 0. From the expression of B λ and K(x, s), it follows that B λ φ, ψ > 0, for all real λ > 0.

(3.1)

Furthermore, if φ(x) ∈ E, from assumption (J1), (J2) and the expression of F λ , we know that

From Lemma 2.1, there is a λ 0 such that γ(F λ 0 ) = 1 and 1 is an eigenvalue of F λ 0 with the eigenfunction φ 0 (x). Remembering that φ 0 (x) is a positive constant, it is easy to check that φ 0 (x) ∈ E, even if it means reducing C. Hence,

Therefore we conclude that

On the other hand, lim λ→+∞ γ(B λ ) = 0 and hence by continuity there exists a real

Theorem there exists a nonnegative φ λ 0 (x) ∈ L 2 (0, 24) such that

i.e., σ(B λ 0 ) = ∅. Since (3.1), the operator B λ is semi-nonsupporting. From Theorem 4.3 of [START_REF] Marek | Frobenius theory of positive operators: Comparison theorems and applications[END_REF], we learn that γ(B λ ) is strictly monotone decreasing with respect to real λ. This is equivalent to the uniqueness of the real eigenvalue of operator A. That is, σ(A) = ∅.

When λ > λ 0 and γ(B λ ) < γ(B λ 0 ) = 1, (I -B λ ) -1 exists and is positive, and hence R(λ, A) is positive from (2.8). Thus, λ 0 is larger than any real part of the other eigenvalues.