
HAL Id: hal-02900534
https://hal.science/hal-02900534

Submitted on 18 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Lattice modelling of hydraulic fracture: theoretical
validation and interactions with cohesive joints

Vincent Lefort, Olivier Nouailletas, David Grégoire, Gilles Pijaudier-Cabot

To cite this version:
Vincent Lefort, Olivier Nouailletas, David Grégoire, Gilles Pijaudier-Cabot. Lattice modelling of
hydraulic fracture: theoretical validation and interactions with cohesive joints. Engineering Fracture
Mechanics, 2020, 235, pp.107178. �10.1016/j.engfracmech.2020.107178�. �hal-02900534�

https://hal.science/hal-02900534
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Lattice modelling of hydraulic fracture: theoretical validation and
interactions with cohesive joints

Vincent Leforta, Olivier Nouailletasa, David Grégoirea,b, Gilles Pijaudier-Cabota,b,∗

aUniversite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, Total, LFCR, Allée du Parc Montaury,
F-64600 Anglet, France

bInstitut Universitaire de France, Paris, France

Abstract

A hydro-mechanical coupled lattice-based model for the simulation of crack propagation
induced by fluid injection in porous saturated rocks containing cohesive joints is presented.
Rock follows an isotropic damage model for tensile fracture and cohesive joints follow a cou-
pled plasticity-damage model. The discretisation uses a dual lattice approach: a Delaunay
triangulation for the solid and the boundaries of the associated Voronoï tesselation for the
hydraulic part. A classical poromechanical framework for a materials saturated with a single
fluid is implemented. First, predictions of crack propagation are compared with analytical
models. Then, the interaction between a propagating crack and an existing joint is analysed.
Two configurations are considered: the case of a joint that is orthogonal to the crack path
and the case of a joint that is inclined by 45o with respect to the crack path. For the vertical
joint, the crack is first arrested because the cohesive joint is weaker than the rock mass. The
crack reinitiates at both crack tips and subsequently propagates in one of them. For the
inclined joint, the crack follows the joint and therefore its path is deviated. Damage in the
rock develops in the back of the crack tip, thereby enhancing the increase of permeability
due to damage in the rock mass.

Keywords:
Damage, Lattice, Hydromechanical coupling, Plastic-damageable joint

1. Introduction

Hydraulically-driven crack propagation is a complex problem with various applications
ranging from magma transport in the lithosphere (dikes, see e.g. Ref. [36]), oil and gas
reservoir stimulation [13], to dam safety analyses [47] and geological nuclear waste repository
as well.

In the case of a hydraulically-driven crack in a homogeneous material, different analytical
solutions are available, dealing with the so-called bi-wing configuration, the case of two cracks
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propagating at both tips of an existing one. For the KGD1 configuration, see e.g. the results
in Refs. [29] or [17]; for the PKN 2 configuration, see e.g. the contributions in Refs. [42], [40]
or [1]; for a comparison of the two, see Ref. [18]. These analytical solutions predict the width
and extend of hydraulically-induced fractures by taking into account the fluid transfer within
the matrix through a Carter’s leak-off coefficient [28] but to solve the problem analytically,
different asymptotic regimes are distinguished. The fluid flow may be dominated by the leak-
off or the fluid may preferentially be stored within the propagating crack. The mechanical
energy may be preferentially dissipated through the matrix fracture (toughness-dominated)
or through frictional shear forces within the fluid (viscosity-dominated) (see for instance Ref.
[5], for a study of a toughness-dominated hydraulic fracture with leak-off). For intermediate
cases, the model cannot be solved analytically and numerical modeling is needed.

Several computational models for the simulation of hydraulic fracturing are available in
the literature, see e.g. the recent review by Lecampion and co-workers [32] and also the
review by Hattori and co-workers [25] in the context of shale gas production. For instance,
standard Galerkin finite elements with remeshing, central force models and the extended
finite element method have been used by Cao and co-workers [6]. Central force (lattice)
models have been used starting in the 90’s for the purpose of simulating hydraulic fracture
in homogeneous and heterogeneous media. In Ref. [48] dry and fully saturated conditions
(using Biot Theory) have been considered, with a view to the correlations involved in crack
propagation and to the microseismicity that is induced. More recently, Milanese and co-
workers [37, 38] looked at similar issues and investigated the pressure oscillations and their
correlation during hydraulic fracturing under mode I and mixed mode conditions. Central
force model are based on networks of trusses [37, 38], beams [39, 22], or nonlinear springs
placed between rigid bodies [3, 41] generated with the help of Delaunay triangulation or
granular packing. The hydraulic problem is described either by solving the stoke equation
in the pore network [41] or by considering a dual lattice discrete problem [48]. Dual lat-
tice approaches for solving the hydro-mechanical coupled problem have been also used by
Chatzigeorgiou at al. [8] for studying how damage and permeability should be coupled in
a continuum context, and further implemented in a wide variety of analyses dealing with
poromechanics in saturated and unsaturated rocks (see e.g. [34, 2]). In addition to the
correlations involved during fracture propagation and to the influence of the fluid on these
correlations mentioned above, various effects have been also studied, such as the interaction
between different stimulated cracks [31, 46], or the influence of the spatial variation of the
rock mechanical properties on the crack extensions [30]. Also, the influence of the host rock
anisotropy may induce crack branching and change crack spacing due to the contrast of
permeability properties [43, 9].

The mechanical and hydraulic behaviour of a rock formation is often dominated by a
network of pre-existing joints. This is particularly the case for source rocks, which have
been intensively fractured hydraulically for oil and gas extraction (see e.g. Ref. [16], for a
description of natural fractures in Barnett shales). Natural joints may have been cemented
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by geological fluid flows and the global permeability of the system will highly depend on
the capacity of the hydraulic fracture to reactivate these natural joints. In addition to the
complexity of models that involve fluid-porous skeleton interactions and fluid flow in fracture,
the mechanical response of these joints and their degradation due to fluid pressure ought to
be addressed for such a purpose. Most existing models for this rely on (i) a description of the
fracture propagation, e.g. according to a cohesive crack model, (ii) an hydrodynamics-based
model for the fluid flow in the fracture, and (iii) a geomechanical joint model. An exemple
of such a combination is the work due to Fu et al. [15] where adaptative remeshing needs
to be implemented in order to follow crack propagation. Multiscale approaches have also
been devised for the same purpose. They combine for instance a coarse description that fits
large-scale calculations to an extended finite element approach with enriched functions at the
lower scale [4, 45]. Recently, analytical derivations of the strain energy release rate involved
in crack propagation that deflects upon reaching weak interfaces or involves crack-surface
friction and the anisotropy of the crustal stress were also proposed [50]. They agree with
the theoretical formulation for a crack tip reaching an interface between dissimilar elastic
media [26]. Nevertheless, such variations of the crack propagation conditions have not been
implemented in formulations aimed at predicting hydraulic fracture yet.

In this paper we use a lattice-type numerical model allowing the simulation of crack
propagation under fluid injection in a quasi-brittle porous heterogeneous medium. This nu-
merical model uses a dual Voronoï/Delaunay description, which is very efficient to represent
dual mechanical/hydraulic couplings [19]. The lattice model, being based on continuum
damage, has demonstrated in the past its capacity at dealing easily with crack propagation
(i.e. the propagation of a damage band in a continuum setting) in heterogeneous media
[23, 20, 33]. It provides also an alternative to the phase field approaches for fracture that
have been proposed in the literature over the recent years (see e.g. Refs [27, 35]). This
computational model will be used here to get a better understanding of initiation and prop-
agation conditions of cracks in rock masses presenting a natural cohesive joint, where the
coupling between mechanical damage and fluid transfer properties are at stake.

This contribution follows the initial results summarised in Ref. [24] which will be thor-
oughly documented along with additional results. It is organized as follows. After having
briefly recalled in Section 2 the lattice model used in this paper, we proceed in Section 3
to the comparisons with analytical solutions. Section 4 presents the influence of a cohesive
joint of finite length on the propagation of fracture.

2. Lattice modeling

We start here from a 2D plane-stress lattice model that is based on the numerical frame-
work proposed by Grassl and Jirasek [21]. First, the mechanical description is addressed,
and then the hydraulic modelling is detailed. The restriction to 2D modelling should not be
seen as a limitation of the computational approach that is easily applicable to 3D examples.
Rather, it is for the sake of convenience, of computational cost, and also of comparisons
with existing analytical results that we limit ourselves to 2D calculations.
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The coupled hydro-mechanical response of the material rests upon poromechanics of
saturared porous media. It means the effective stress σt applied to the solid matrix is
related to the applied stress σ and to the variation of pore pressure p− p0 according to the
classical relationship [12]:

σt = σ − b(p− p0)[I] (1)

where b is the Biot coefficient and [I] is the identity tensor.

2.1. Mechanical description
The solid skeleton of the porous material is supposed to be homogeneous and the lattice

is made of beam elements, which idealize the material structure. First, nodes are randomly
distributed in the domain, such that a minimum distance is enforced. The lattice elements
result then from a Delaunay triangulation (solid lines in figure 1a) and the middle cross-
sections of the lattice elements are the edges of the polygons of the dual Voronoi tesselation
(dashed lines in figure 1a).

lattice elementcross section

(a) (b) (c)

Figure 1: (1a) Set of lattice elements (solid lines) with middle cross-sections (dashed lines) obtained
from the Voronoi tessellation of the domain. (1b) and (1c) Lattice element in the global coordinate
system (reproduced from [20]).

Each node has three degrees of freedom (in 2D): two translations (u, v) and one rotation
(φ) as depicted in figure 1c. In the global coordinate system, the degrees of freedom of nodes
1 and 2, noted ue = (u1, v1, φ1, u2, v2, φ2)

T , are related to the displacement jumps in the local
coordinate system of point C, uc = (uc, vc, φc)

T , see Fig. 1b. uc is related ue according to
equation 2.

uc = Bue (2)

where

B =



− cosα − sinα −e cosα sinα e
sinα − cosα −h/2 cosα sinα −h/2

0 0
√
I/A 0 0 −

√
I/A


 (3)
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Point C is located at the center of the middle cross-section of the element as represented
in figures 1b and 1c. The matrix B depends on the orientation α of the element in the global
coordinate system, on the distance e between point C and the segment relating nodes 1 and
2, on the distance h between two nodes, and on the element cross-sectional area A and its
second moment I (see [20] for details).

The strains ε = (εn, εs, εφ)T associated to the displacement uc at point C are:

ε =
uc
h

= (εn, εs, εφ)T (4)

The effective stresses σt = (σtn, σ
t
s, σ

t
φ)T are related to the strains ε following the mechanical

constitutive relation at the lattice level, here an isotropic damage model to be described
further. The subscripts n and s refer to the normal and shear components of the strain and
stress vector.

The (secant) stiffness matrix K of the lattice element is defined as follows:

K =
A

h
BTDB (5)

where D is the material stiffness matrix computed at point C.
An isotropic damage model (Eq. 6) is used to describe the mechanical response of the

lattice element:
σt = (σtn, σ

t
s, σ

t
φ)T = (1− ω)Deε = (1− ω)σ (6)

where ω is the damage variable, De is the elastic stiffness and σ = (σ̄n, σ̄s, σ̄φ)T is the true
stress in the continuum damage mechanics sense. The elastic stiffness defined as:

De =



E 0 0
0 γE 0
0 0 E


 (7)

depends on model parameters E and γ, which control Young’s modulus and Poisson’s ratio
of the equivalent continuum. The equivalent strain is then calculated from equation (8)
where ε0, c and q are model parameters.

εeq =
1

2
ε0(1− c) +

√(
1

2
ε0(c− 1) + εn

)2

+
cγ2ε2s
q

(8)

The expression for the damage parameter ω is derived by considering pure tension where
the softening curve under monotonically increasing tensile strain is chosen to be of the
exponential-type:

σtn = ft exp

(
−wcn
wf

)
(9)

where wcn = ωhεn is the crack opening, wf is the initial slope of the softening curve, which
is related to the meso-level fracture energy as Gf = ftwf . This stress-strain law can also be
written, for uniaxial tension, as a function of the damage variable as in equation (10).
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σn = (1− ω)Eεn (10)

In uniaxial tension, the nominal stress is limited by the tensile strength (ft = Eε0) and
thus, by using these two expressions of σn, Eqs. (9,10), one obtains the expression which
governs the evolution of the damage variable ω:

(1− ω)κd = ε0 exp

(
−ωhκ

d

wf

)
(11)

where εn has been replaced by κd which is the history dependent variable for damage
determined by Eq. (12a) with the Kuhn-Tucker loading-unloading conditions (12b):

f(ε, κd) = εeq(ε)− κd (12a)

f ≤ 0, κ̇d ≥ 0, κ̇df = 0 (12b)

The elastic constants and the model parameters in the damage models are calibrated on
a specific material from an inverse analysis technique [20]. In Ref. [24], it has been shown
that when the thickness of damage band is sufficiently small, this lattice model compares
quite well with results obtained from linear elastic fracture mechanics in the case of a crack
loaded by a constant internal pressure. This is the case here because the solid is assumed to
be homogeneous and therefore, the width of the damage band cannot result from material
heterogeneity. It may result from the local disorder induced by the lattice discretisation
only, but upon refinement convergence towards LEFM is recovered.

2.2. Hydraulic description
In the context of clasical poromechanics, we assume that the matrix porosity is connected

and its volume depends on the fluid pressure and that the fluid saturates the porous medium.
Laminar and incompressible flow is considered and gravity effects are neglected. The porosity
and flux density are related following Eq.(13):

∂φ

∂t
+ div(~q) = 0 (13)

where φ is represent the connected porosity (volume of connected porosity divided by total
volume of the porous medium), ~q is the volumetric flux density of fluid, and t is time.

Considering Darcy’s law, volumetric flux density of fluid is related to fluid pressure
gradient:

~q = −k ×
−−−−−−→
grad(

p

ρg
) (14)
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where k is the hydraulic conductivity of the medium (m.s−1), p is the fluid pressure (Pa), ρ
is the volumetric mass of the fluid and g is the gravitational acceleration.

In a medium with cracks, hydraulic conductivity can be represented considering two
contributions : the first one is the conductivity of the homogeneous matrix, k0, the second
one is the conductivity of cracks kc. In a homogeneous medium, the hydraulic conductivity
k0 can be deduced from the permeability κ:

k = k0 + kc =
ρg

µ
κ+ kc (15)

where µ is the dynamic viscosity of the fluid (Pa.s), and κ is the permeability of the ho-
mogeneous medium (m2). The conductivity of the crack will be discussed in the next section.

The variation of porosity due to the applied effective stress and to the pore pressure is:

φ− φ0 = bεV +
p− p0
N

(16)

where φ− φ0 is the variation of porosity, εV is the first invariant of the strain tensor (volu-
metric strain), and N is Biot’s modulus. For saturated medium, it is standard to define a
modulus M related to N , φ0 and the fluid bulk modulus Kf :

1

M
=

1

N
+
φ0

Kf

(17)

In the remainder of this paper we consider parameters and validations cases given by [7] : that
is to say E=17GPa, φ0 = 0.2 and M=68.7MPa. With these parameters, in equation (16),
bεV is negligible compared to p−p0

N
. Hence, the differential equation describing the diffusion

of the fluid into the matrix reduces to:

1

M

∂p

∂t
− k

ρg
∆p = 0 (18)

Because the influence of the volumetric strain is neglected in the above equation, the increas-
ing storage capacity of the porous materials upon dilation of the pore space is neglected.
This is also true when the material is fully damaged, which means that the storage capac-
ity of the crack is also neglected. Cracking is described with a continuum setting (damage
model), and the fluid-solid coupling parameters in the poromechanics approach are set con-
stant, therefore, the same assumption holds for the undamaged and the damaged material
as well. Let us stress that this is a limitation of the present analysis which ought to be seen
as restricted to the leak-off regime where the fluid flows in the porous material and at the
same time induces fracture propagation. It means that the amount of fluid in the fracture is
small compared to the amount of fluid that leaks from the crack in the surrounding porous
material. This is of course a simplification, but the foregoing comparisons with analytical
models will show that within the restrictions of the leak-off regime, it is not important, as
opposed to what could be expected in a general case.
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2.3. Hydro-mechanical coupling
In the lattice description, fluid flow is described in a lattice that is dual to the mechan-

ical one. It follows the boundaries of the Voronoï polygons, the mechanical response being
captured by the Delauney triangulation (figure 2).

captured by the Delauney triangulation (figure 2).

⇧29

⇧30

⇧31

⇧32

⇧34

⇧36

⇧37

P5

P6

P8

P16

P17

P19

P21

P23

P24

P28 P36

P40

⇧30

⇧36

h

l P5

P23

⇧30 : Mechanical node
P5 : Hydraulic node

Hydraulic pipe
Mechanical beam

Figure 2: Dual hydro-mechanical lattice description. Only nodes at the vicinity of polyhedron ⇧30

are represented.

Each element of the hydraulic model (hydraulic pipe on Fig. 2) represents a one-dimensional
flow between two nodes and has the following geometrical properties : the length of the pipe
is l, the width of the pipe is h, corresponding to the length of the dual mechanical element,
and the cross section of the pipe, Ah, equal to h ⇥ 1m in two dimension.

The corresponding conductivity matrix is given by equation (19).

Kh =
k

⇢g
Ah

1

l


1 �1
�1 1

�
(19)

In the mechanical model, polyhedron equilibrium is solved taking into account the total
stress �, that is the effective stress to which is added the contribution of the fluid:

� = (1 � !)De" + b
Pi + Pj

2
(1, 0, 0)T (20)

where Pi+Pj

2
represents the mean pressure in the hydraulic element.

In the hydraulic model, the local conductivity of the pipe, which drives the hydraulic
pressure gradient, depends on the crack opening !c of the dual mechanical element consid-
ering a cubic law. The conductivity matrix is modified following equation (21)

Kh =

✓


µ
+

1

h

!3
c

12µ

◆
A

1

l


1 �1
�1 1

�
(21)

This is a classical modification to the hydraulic conductivity matrix that assumes laminar
flow in the pipe. Numerical coupling is achieved with a staggered scheme.
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Figure 2: Dual hydro-mechanical lattice description. Only nodes at the vicinity of polyhedron Π30

are represented.

Each element of the hydraulic model (hydraulic pipe on Fig. 2) represents a one-dimensional
flow between two nodes and has the following geometrical properties : the length of the pipe
is l, the width of the pipe is h, corresponding to the length of the dual mechanical element,
and the cross section of the pipe, Ah, equal to h× 1m in two dimension.

The corresponding conductivity matrix is given by equation (19).

Kh =
k

ρg
Ah

1

l

[
1 −1
−1 1

]
(19)

In the mechanical model, polyhedron equilibrium is solved taking into account the total
stress σ, that is the effective stress to which is added the contribution of the fluid:

σ = (1− ω)Deε+ b
Pi + Pj

2
(1, 0, 0)T (20)

where Pi+Pj

2
represents the mean pressure in the hydraulic element.
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In the hydraulic model, the local conductivity of the pipe, which drives the hydraulic
pressure gradient, depends on the crack opening ωc of the dual mechanical element consid-
ering a cubic law. The conductivity matrix is modified following equation (21)

Kh =

(
κ

µ
+

1

h

ω3
c

12µ

)
A

1

l

[
1 −1
−1 1

]
(21)

This is a classical modification to the hydraulic conductivity matrix that assumes laminar
flow in the pipe. Numerical coupling is achieved with a staggered scheme.

3. Comparisons with analytical solutions

3.1. Crack propagation regimes
Hydraulic fracturing is a coupled process that depends on the type of rock in which the

crack is going to propagate and also on the properties of the fluid. Classicaly, energy dissipa-
tion has two sources: fracture propagation - the so-called toughness controlled regime, and
fluid flow - the so-called viscosity controlled regime. This distinction holds for a hydrauli-
cally driven crack into an elastic material. When a hydraulically stimulated crack propagates
within a permeable medium, its extend depends on the so-called leak-off, the quantity of
fluid which drives out within the matrix and is not used for the propagation of the crack.
Carter’s model represents the leak-off as an unidimensional diffusive flow perpendicular to
the crack lips (see e.g. ref. [28]). It follows that four regimes of crack propagation can
be considered: Two toughness controlled regimes in the presence of small or large leak-off
respectively, and two viscosity controlled regimes, again in the presence of small or large
leak-off respectively.

In order to distinguish the toughness controlled regime from the viscosity controlled one,
a non-dimensional viscosity is calculated [5]:

M = f (Q0, E,K, µ) = µ′
Q0E

′3

K ′4
(22)

with
E ′ = E

1−ν2 µ′ = 12µ K ′ = 4
√

2
π
KIc (23)

where µ is the dynamic viscosity of the fluid and Q0 is the fluid flux. If M � 1 crack
propagation follows the viscosity dominated regime and if M � 1, it is the toughness
dominated regime that is at stake.

The effect of the leak-off is illustrated with the help of Carter’s coefficient:

CL =

√
κ

πMµ
p (24)

where κ is the permeability of the porous material, M is the Biot modulus, and p is the fluid
pressure.
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3.2. Analytical comparison for a permeable medium - toughness dominated regime
We consider here the analytical solution due to Bunger et al. [5] for a leak-off and

toughness dominated crack propagation under hydraulic stimulation. The foregoing results
have been summarized in Ref.[24], we provide here a complete presentation of them.

The geometry presented in Fig. 3 with a permeable medium is considered. Note that
the analytical solution is based on brittle fracture. In order to describe a straight crack in
the lattice model, the crack-path has been pre-meshed so as to avoid any bias due to the
tortuosity of the crack path that may be obseved in an arbitrary lattice. The foregoing
comparison is based on the model parameters used in Ref. [7] where a FEM approach with
cohesive fracture is validated against the same analytical solution.

60m

45m

notch

pre-meshed
crack

�x

�y

elastic
matrix

permeable
matrix

: permeable
: impermeable

Q0

(a) (b) (c)

Figure 3: Comparison for a crack in a permeable medium : (a) geometry; (b)-(c) mechanical and
hydraulic boundary conditions.

Poromechanical parameters are given in table 1. Minimal distance between nodes, dmin,
is equal to 5cm. The time step in the staggered scheme is �t = 0.05s. The fluid flow imposed
is equal to 5 ⇥ 10�4 m3/s. Confining stresses are �x = 7MPa and �y = 5MPa.

Parameter Unit Symb. Matrix Notch Pre-meshed
crack

Local Young modulus [GPa] E 23 17 17
Ratio Es/En [-] � 0.33 0.33 0.33

Damage threshold [-] "0,l - 1 ⇥ 10�6 74 ⇥ 10�6

Gf parameter [m] !f - 95 ⇥ 10�6 95 ⇥ 10�6

Ratio fc/ft - c - 103 103

Ratio fs/ft - q - 103 103

Biot’s coefficient [-] b 0.75 0.75 0.75
Poromechanical modulus [MPa] M 68.7 68.7 68.7

Permeability [m2]  3.47 10�17 10�18 10�18

Fluid’s dynamic viscosity [Pa.s] µ 0.0001 0.0001 0.0001
Fluid’s volumetric mass [kg/m3] ⇢ 1000 1000 1000

Initial crack opening [mm] wc,ini 0 5 0

Table 1: Parameters considered for the comparison with the analytical solution for a leak-off &
toughness dominated regime.

With these parameters, Carter’s coefficient is equal to 200 ⇥ 10�6m
p

s, and the fracture
propagation evolves in the leak-off and toughness dominated regime (M = 0, 015 ⌧ 1).

Figure 4 presents the comparison between the analytical solution and the lattice results
in term of crack extend evolution with time and crack opening repartition.

10

Figure 3: Comparison for a crack in a permeable medium : (a) geometry; (b)-(c) mechanical and
hydraulic boundary conditions.

Poromechanical parameters are given in table 1. Minimal distance between nodes, dmin,
is equal to 5cm. The time step in the staggered scheme is ∆t = 0.05s. The fluid flow imposed
is equal to 5× 10−4 m3/s. Confining stresses are σx = 7MPa and σy = 5MPa.
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Parameter Unit Symb. Matrix Notch Pre-meshed
crack

Local Young modulus [GPa] E 23 17 17
Ratio Es/En [-] γ 0.33 0.33 0.33

Damage threshold [-] ε0,l - 1× 10−6 74× 10−6

Gf parameter [m] ωf - 95× 10−6 95× 10−6

Ratio fc/ft - c - 103 103

Ratio fs/ft - q - 103 103

Biot’s coefficient [-] b 0.75 0.75 0.75
Poromechanical modulus [MPa] M 68.7 68.7 68.7

Permeability [m2] κ 3.47 10−17 10−18 10−18

Fluid’s dynamic viscosity [Pa.s] µ 0.0001 0.0001 0.0001
Fluid’s volumetric mass [kg/m3] ρ 1000 1000 1000
Initial crack opening [mm] wc,ini 0 5 0

Table 1: Parameters considered for the comparison with the analytical solution for a leak-off &
toughness dominated regime.

With these parameters, Carter’s coefficient is equal to 200× 10−6m
√
s, and the fracture

propagation evolves in the leak-off and toughness dominated regime (M = 0, 015� 1).
Figure 4 presents the comparison between the analytical solution and the lattice results

in term of crack extend evolution with time and crack opening repartition.

(a) (b)

Figure 4: Comparison between the lattice results and an analytical solution for a leak-off & tough-
ness dominated hydraulic fracture ([5]) : (a) crack extend evolution with time; (b) crack open-
ing/aperture repartition at t = 100s (reproduced from Ref.[24]).

A good agreement is observed, both on the history of crack propagation and on the crack
11



opening.

3.3. Analytical comparison for a permeable medium - viscosity dominated regime
We use here the solution due to Adachi and Detournay [1] related to a leak-off and viscos-

ity dominated regime. The model geometry and parameters are the same as in the previous
comparison, except for the dynamic viscosity µ = 0.1Pa.s, the confining stresses σx = 8MPa
and σy = 7.2MPa, and the permeability κ = 1.07 10−14m2. With these parameters, Carter’s
coefficient is equal to 1.6 × 10−4m

√
s, and the fracture propagation evolves in the leak-off

and viscosity dominated regime (M = 7.1� 1).
Figure 5 presents the comparison between the analytical solution and the lattice results

in term of crack growth with time. Again, a reasonable agreement is observed.
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4. Influence of a joint on the hydraulic fracture crack path

The above model provides rather consistent predictions of hydraulic fracturing, at least
in the regimes of crack propagation considered above. We may now advance to the case
where a crack (i.e. a damage band in the present model) meets with an existing joint. The
issues at stake are the description of the geometry of the joint in the lattice model and the
poromechanical constitutive relations of the joint.

4.1. Implementation of a joint in the lattice model
Straight joints of finite length may be quite easily inserted in the lattice model (Figure

6). They are discretised into aligned nodal points that are placed on both side of the joint
at an arbitrary small distance apart. It follows from Voronoi Tesselation and Delanunay
triangulation that a lattice element is placed in between these nodes, perpendicular to the
joint surface. These are the lattice elements that will follow the joint mechanical constitutive
relation. Additional diagonal lattice elements connect nodes that do not face each other on
the joint surface but their cross section is negligible and they do not contribute to the
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mechanical response. In the dual hydraulic lattice, the pipes that describe the joint follows
from Voronoi tesselation and the hydraulic characteristics of the joint will be assigned to
these pipes.

Lattice points on both sides of the natural joints
Joint explicitly meshed within the lattice description
Polyhedral interfaces
Mechanical beam elements representing the joint constitutive behaviour
Ghost elements with zero-section

Figure 6: Lattice description of a 30o inclined natural joint of finite length.

4.2. Constitutive model for the joint
The mechanical behaviour of the joint corresponds to the mechanical response of the

lattice elements located perpendicularly to the joint as illustrated in Fig. 7. Here, it is going
to be based upon an elasto-plastic model coupled to damage.
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In the joint, the incremental deformation is the sum of the elastic and plastic ones:

dεn,t = dεEn,t + dεPn,t (25a)

dεs,t = dεEs,t + dεPs,t (25b)

where dεn,t is the incremental normal deformation, dεs,t is the incremental shear deformation,
dεEn,t is the normal incremental elastic deformation, dεEs,t is the shear incremental elastic
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deformation, dεPn,t is the increment of plastic normal strain, and dεPs,t is the increment of
shear plastic deformation. Total stresses are related to the elastic strains as follow:

σn,t = Enε
E
n,t (26a)

σs,t = Esε
E
s,t (26b)

where En and Es are the secant normal and shear stiffness of the joint, and σn,t and σs,t are
the total normal and shear stresses respectively.

The evolution of the plastic strains is coupled to the growth of damage in the joint: in
tension, the joint follows a normal stress-normal strain response that is similar to bulk rock
(Eq. 10). As opposed to the description of rocks in the bulk, damage is not isotropic however
in the sense that the normal stress v.s. normal strain response if affected by damage only.

En = (1− d)En0, Es = constant (27)

where d is the damage variable attached to the joint and En0 is the normal elastic stifness
of the cohesive joint, prior to any degradation.

As for the plastic response, it is governed by a Mohr Coulomb criterion that is modified
so as to be expressed in term of the true stresses applied to the joint (in the continuum
damage modelling sense).

fMC = |σs,t|+
σn,t

1− dtan(φ)− c (28)

with
c = c0(1− d) + cres (29)

In these equations, c is the cohesion, and cres is the residual cohesion after the joint has
been totally damaged. φ is the friction angle which is assumed to be constant, whatever the
value of damage. The evolution of the plastic strains follows the classical equations of non
associated plasticity. The incremental normal plastic strain is related to the incremental
shear plastic strain according to the equation:

dεPn,t = |dεPs,t|tan(µj) (30)

where µj is the dilatancy of the joint.
The equations that control the growth of damage account for two mechanism: (1) in

tension, the response of the joint should exhibit almost no plastic strain as it is essentially
due to the decohesion of the joint; (2) when the joint is subjected to shear loads, damage
may occur also, but in this case it ought to be related to plastic strains. The evolution
of damage given in Eqs. (11, 12) for the rock mass are modified for the joint in order to
account for the effect of plastic strains:

fd(ε
E, εP , κd) = εeq −max(κd, ε0) (31a)
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εeq =

[
〈εEn 〉+ + α

√
εPn

2 + εPs
2)

]
(31b)

where εeq is the new equivalent deformation calculated accounting for both the elastic strains
and plastic strains, 〈εEn 〉+ is the positive part of the elastic deformation, and α is a model
parameter that provides the influence of the plastic deformation on damage.

In tension - compression the response of the joint is very similar to that of rock in the
bulk (with specific joint parameters). In simple shear, as shown in Fig. (8), the response
of the joint exhibits first a plateau which is the classical Mohr Coulomb response (without
hardening), then damage starts and strain softening occurs, until the residual cohesion has
been reached asymptotically. In this calculation, the elastic stiffness of the joint is 4.4 Gpa,
the shear stiffness is 1.45 GPa, c = 1.4 MPa and cres = 0.7 MPa, φ = 30o, µj = 37o, and
α = 0.2.
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Figure 8: Response of the joint in simple shear

As illustrated in Ref. [24], this constitutive relation for the joint fits quite well with
experimental data that have been performed on synthetic cohesive joints made of plaster
(see Figure 9). In this specific case, it is possible to calibrate the model from experiments
by testing joints with different inclinations with respect to the applied loads. Parameter α,
which controls the amount of damage due to plastic strains, can be obtained from calibration
of such experiments.

15



Clamped face

Vertical displacement

45°

200mm

100mm

Plaster joint
Mortar

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

F
o
rc

e
 [
kN

]

Vertical Displacement [mm]

Experimental
Elasto−plastic damage model

Classical Mohr−Coulomb

Figure 9: Comparison between experimental and numerical results for an indirect shear test (re-
produced from Ref. [24]).

Finally, the implementation of this model does not carry any specific difficulties compared
to standard constitutive relations where damage is coupled to plasticity. The fact that
damage has been inserted in the constitutive relations adds, however, some complexity and
it may be important to check if there is some added value to such as addition.

4.3. Crack-joint interaction in the mechanical problem
We consider here the following mechanical problem of a crack propagating in a notched

square plate Fig. (10). The length of the notch is 0.05 m. At a distance of 0.1 m from
the tip of the notch, a joint is placed vertically. The length of the joint is 0.2 m and its
thickness is 0.001 mm. The center of the joint is aligned with the tip of the notch on the
horizontal axis. Fig. (10-b) shows the boundary conditions of the problem. On the left
vertical face of the square, horizontal displacements are fixed so as to represent an axis of
symmetry. A constant vertical pressure is applied on the faces of the notch. Calculations
are run by increasing this pressure step by step. The solid is modelled with lattice elements
with a refined zone that encompasses the notch, the joint and the expected zone of crack
propagation.
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the tip of the notch, a joint is placed vertically. The length of the joint is 0.2 m and its
thickness is 0.001 mm. The center of the joint is aligned with the tip of the notch on the
horizontal axis. Fig. (10-b) shows the boundary conditions of the problem. On the left
vertical face of the square, horizontal displacements are fixed so as to represent an axis of
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Figure 10: Interaction between a crack and a joint: (a) problem geometry, (b) boundary conditions

The model parameters are given in table 2.

Parameter Unit Symb. Joint Rock
Young’s modulus [GPa] E 4.4 53

Ratio Es/En [-] �1 0.33 0.33
Damage threshold [-] "0,l 43, 6 ⇥ 10�6 275 ⇥ 10�6

Control parameter for Gf [m] !f 150 ⇥ 10�6 150 ⇥ 10�6

Ratio fc/ft [-] c � 10
Ratio fs/ft [-] q � 2

Initial cohesion [MPa] c 1, 4 -
Residual cohesion [MPa] cres 0, 7 -

Friction angle [°] � 30 -
Dilatancy angle [°] µj 0 -

Influence of plasticity on damage [-] ↵ 1% -

Table 2: Model paratemers for the mechanical test case

Calculations have been performed with a Mohr Coulomb elastic perfectly plastic model
for the joint and with the present damage plasticity model. The mechanical model for the
rock is kept the same. The parameters in the perfectly plastic model are those of the joint,
with damage set to be equal to zero. The results are very similar until the crack passes the
joint.
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(a) (b)

(c) (d)

Figure 11: Mechanical problem: Crack propagation and interaction with a vertical joint: (a) perfect
plasticity - crack path, (b) perfect plasticity - damage map, (c) damage plastic model - crack path,
(d) damage plastic model - damage map. The crack path is defined as the elements where damage
is above 0.99.

Fig.11 shows the crack paths and damage zones obtained for the two problems at a
pressure of 76 MPa. First, the crack is stopped upon reaching the joint. The difference
between the two calculations is what happens next. For a perfectly plastic joint, the crack
passes through the joint eventually (Fig.11-a), whereas it propagates from one of the tip of
the joint when a coupled damage-plastic model is implemented (Fig.11-c). In both cases,
the damage maps show that damage develops nearby the tips of the joint, but the final crack
maps are very different. This difference is due to the cohesion of the joint compared the
mechanical properties of the rock. If the cohesion is not degraded, and if it is sufficiently high
compared to the mechanical properties of the rocks, the crack will pass through the joint.
If it is degraded due to damage, the joint acts as a screen and stresses are transferred to
the tip of the joint. The two calculations have been performed with the same discretisation,
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therefore, it should not have any influence on this difference.
This example shows that the interaction between a propagating crack and an existing

joint in a rock mass depends on the constitutive model that is implemented. In practice, it
is rather difficult to measure experimentally the mechanical response of joints in order to be
able to discriminate several constitutive models and to calibrate model parameters. Such
joints may not even be accessible for observation and sampling. Therefore, one should be very
cautious when analysing computations as their result may severely depend on quantities that
are quite uncertain. Sensitivity analyses on the type of joint models and their parameters, at
least, should be performed in order to get access to the variety of possible results considering
this uncertainty.

4.4. Crack-joint interaction in the hydromechanical problem
We consider now the same problem but instead of a mechanical distributed load applied

on the faces of the notch, we look for the effect of a pressurized fluid. The hydraulic response
of the joint follows exactly the same equations as for the bulk rock (i.e. the variation of
permeability due to damage), with different model parameters however.

We have studied two configurations: in the first one, the joint is vertical and in the
second one the joint is inclined with an angle of 45o degrees. The mechanical model for the
joint is the coupled damage-plasticity one.
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Figure 12: Influence of a natural joint on the hydraulic fracture crack path : (a) geometry; (b)-(c)
mechanical and hydraulic boundary conditions.

The model parameters are provided in table 3. The hydraulic response of the joint
is exactly the same as that of the rock, but with a different initial permeability. These
parameters are consistent with a leak-off and toughness dominated regime. The time step
of the staggered scheme is �t =0.02 s. The fluid flow imposed is equal to 50⇥10�6 m3/s.
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The model parameters are provided in table 3. The hydraulic response of the joint
is exactly the same as that of the rock, but with a different initial permeability. These
parameters are consistent with a leak-off and toughness dominated regime. The time step
of the staggered scheme is ∆t =0.02 s. The fluid flow imposed is equal to 50×10−6 m3/s.
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Parameter Unit Symb. Joint Matrix
Young’s modulus [GPa] E 4.4 53
Ratio Es/En [-] γ1 0.33 0.33

Damage threshold [-] ε0,l 43.6× 10−6 275× 10−6

Gf parameter [m] ωf 150× 10−6 150× 10−6

Ratio fc/ft [-] c − 10
Ratio fs/ft [-] q − 2
Cohesion [MPa] c 1.4 -

Friction angle [°] φ 30 -
Dilatancy [°] µj 0 -

Biot’s coefficient [-] b 1, 0 1, 0

Permeability [m2] κ 10−12 3.45× 10−17

Biot’s modulus [MPa] M 68.7 68.7
Fluid’s dynamic viscosity [Pa.s] µ 10−4 10−4

Fluid’s volumetric mass [kg/m3] ρ 1000 1000

Table 3: Influence of a natural joint on the hydraulic fracture crack path : mechanical and hydraulic
parameters.

Figs 13 and 14 show the damage maps, the maps of fluid pressure, and the distributions
of plastic strains in the joint for the two configurations plotted at the end of the calculation
(time = 100s).
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Figure 13: Vertical joint, time = 100s: (a) maps of damage and fluid pressure, (b) tangent plastic
deformations in the joint.

In both cases, the crack does not passes through the joint because the cohesion of the
joint is not sufficiently high compared to the mechanical properties of the rock. As shown in
Figs.13-(b) and 14-(b), plastic strains develop in the joint due to shear. Due to the plastic
strains and to the fluid pressure, damage grows inside the joint. As a consequence, the
permeability of the joint increases, which is is a signature of the reactivation of the joint.
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Figure 14: Inclined joint, time = 100s: (a) (a) maps of damage and fluid pressure, (b) tangent
plastic deformations in the joint.

This jump in fluid pressure is shown in Fig. (15). The jump is greater for the verti-
cal notch than for the inclined joint. For the vertical joint, the drop corresponds to the
filling of the joint with fluid, yielding a decohesion due to the growing fluid pressure with
little plastic strains. During this process, the crack is arrested. Fluid injection yields a
subsequent increase of pressure. Then, damage occurs at both tips of the joint, as if the
two where independent. One will take over eventually due to local differences in the lattice
discretisation (which is not symmetric). For the inclined joint, this process is more smooth
and plastic strains in the joint are more intense. Damage in the joint develops mostly due
to these plastic strains. One may observe on the damage map that diffuse damage occurs
below the upper part of the joint, in between the joint and the crack (see Fig.14-a). This
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tensile damage is due to positive strains induced by Poisson’s effect in the rock mass. In
practice, such an extend of damage is useful to promote the production of fluid from the
hydraulically driven fracture as it increases the size of the so-called stimulated volume.

Figure 15: History of the fluid injection pressure in the two joint configurations (vertical and
inclined).

5. Conclusions

A hydro-mechanical coupled lattice-based model has been presented for the simulation
of crack propagation induced by fluid injection in rocks containing cohesive joints. Rock
follows an isotropic damage model for tensile fracture and cohesive joints follow a coupled
plasticity-damage model. The cohesion of the joint is decreased due to damage controlled
by both elastic normal strains and plastic strains. As for the hydraulic part, permeability
increases upon damage following a cubic law, in the joint and in the rock.

The discretisation is performed according to a dual lattice approach, a Delanay triangu-
lation for the solid and the boundaries of the associated Voronoï tesselation for the hydraulic
part. We use a poromechanical framework for porous materials saturated with a single fluid.
Computations are performed with a staggered scheme. 2D examples have been presented.

The capability of the hydro-mechanical model at describing hydraulically driven fracture
has been tested against analytical models available in the literature. Comparisons cover
both the viscosity and toughness dominated regimes, under the assumption that leak-off
prevails over the storage capacity of the fluid in the fracture. A very good agreement is
found with theoretical solutions.

Then, the interaction between a propagating crack and an existing joint has been anal-
ysed. Two configurations have been considered: the case of a joint that is orthogonal to the
crack path and the case of a joint that is inclined by 45o with respect to the crack path. For
the vertical joint, the crack is first arrested because the cohesive joint is weaker than the
rock mass. Then, it reinitiates at both crack tips. For the inclined joint, the crack follows
the joint and therefore its path is deviated. Damage in the rock develops in the back of the
crack tip, thereby enhancing the increase of permeability due to damage in the rock mass.
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This framework, however, needs to be compared with experimental data, with the in-
trinsic difficulty of accessing to the model parameters for joints presents in rock masses. In
practice, the influence of the crack propagation to the mechanical parameters of the joint
and the relatively high uncertainty for these parameters call for sensitivity studies, from
which sets of potential crack paths could be obtained.
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